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Evaluation of Segmentation Quality via Adaptive
Composition of Reference Segmentations

Bo Peng, Lei Zhang, Senior Member, IEEE, Xuanqin Mou, and Ming-Hsuan Yang, Senior Member, IEEE

Abstract—Evaluating image segmentation quality is a critical step for generating desirable segmented output and comparing
performance of algorithms, among others. However, automatic evaluation of segmented results is inherently challenging since image
segmentation is an ill-posed problem. This paper presents a framework to evaluate segmentation quality using multiple labeled
segmentations which are considered as references. For a segmentation to be evaluated, we adaptively compose a reference
segmentation using multiple labeled segmentations, which locally matches the input segments while preserving structural consistency.
The quality of a given segmentation is then measured by its distance to the composed reference. A new dataset of 200 images, where
each one has 6 to 15 labeled segmentations, is developed for performance evaluation of image segmentation. Furthermore, to
quantitatively compare the proposed segmentation evaluation algorithm with the state-of-the-art methods, a benchmark segmentation
evaluation dataset is proposed. Extensive experiments are carried out to validate the proposed segmentation evaluation framework.

Index Terms—Image segmentation evaluation, segmentation quality, image segmentation dataset

1 INTRODUCTION

MAGE segmentation aims to localize object boundaries in

accordance to human visual interpretation. It is inherently
an ill-posed problem since there exist multiple plausible seg-
mentations for the same input image [46]. As numerous seg-
mentation algorithms have been developed in the past
decades, quantitative evaluation of segmentation results has
become a crucial problem for performance evaluation. In
addition, proper parameter values can be determined based
on reliable quantitative evaluation of image segmentation.

Evaluation methods of machine segmentation can be cat-
egorized based on whether human labeled segmentations
are used as references or not. In the first category, one or
more human labeled segmentations of an image are used as
references [4], [24], [28], [44], [45], [46] to compute the
degree of similarity (or difference) as quality scores. While
in the second category, criteria of desired segmentations are
defined (without using labeled segmentations) and used to
measure the quality of input segmentations [6], [10], [38],
[53]. The criteria are usually generalized from common
characteristics or semantic information of objects (e.g.,
homogeneous regions and smooth boundaries) although
they may not accurately describe complex objects in natural
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images. In this work we focus on methods based on refer-
ence segmentations labeled by humans.

In most reference-based segmentation evaluation meth-
ods [4], [24], [28], [44], [45], [46], each element (e.g., a pixel, a
region) in the given segmentation is equally compared to its
counterparts in all the labeled segmentations, and the aver-
age is often used as the quantitative score. However, human
visual system (HVS) tends to focus on structural information
from natural scenes [50], and a good measure should take
visual perception into account. In addition, it is known that
different observers may pay attention to different regions in
an image [28], [29], and multiple human labeled segmenta-
tions reflect different levels of perceived details. Thus,
human labeled segmentations of an image are rarely identi-
cal on the holistic scale, but more consistent in terms of local
structures. Consequently, evaluation of image segmentation
should rely more on local structures. On the other hand,
using more labeled segmentations as references is likely to
facilitate fair evaluation. However, generating reference seg-
mentations is time-consuming, and in practice only a few
human-labeled results are available at our disposal. The lim-
ited number of labeled results likely leads to certain bias on
segmentation evaluation, and likewise the problem with
object boundary localization errors is exacerbated [28].

To address the above-mentioned problems, we propose a
novel algorithm to evaluate segmentation quality based on
multiple segmentations labeled by humans.' The main idea
of this work is illustrated in Fig. 1. Given an input (Fig. 1a),
an image segmentation (Fig. 1b) is generated by an algo-
rithm, which is not identical to any of the labeled segmenta-
tions by humans (Fig. 1d). While the segments of the good
segmentation are different from the labeled segmentations
on the holistic scale, they are similar in terms of local struc-
tures (i.e., the parts of Fig. 1b are shown in Fig. 1c with

1. Preliminary results of this work are presented in [33].
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Fig. 1. An illustrative example between a machine segmentation and labeled segmentations by humans. (a) An input image. (b) An image segmenta-
tion of (a). (c) Different parts (shown in different colors) of the segmentation in (b) are similar to those segments labeled by humans in (d). In order to
better evaluate image segmentation algorithms, it is important to have a good reference segmentation composed from labeled segments by humans.

different colors, and they are similar to the segments labeled
by humans in Fig. 1d). Motivated by this observation, we
propose to construct a reference segmentation which gener-
alizes configurations of the labeled segmentations while
preserving structural consistency. The underlying assump-
tion of this work is that if an image segmentation is good, it
can be composed by pieces of the labeled results.

Given an image, the composed reference segmentation
should locally match the input segmentation as much as
possible. Notice that in Fig. 1c, the matched regions between
the input segmentation and human labeled results are in
irregular shapes and thus the composition process is data-
driven. Fig. 2 illustrates the main steps of the proposed seg-
mentation evaluation framework. For an input segmenta-
tion, a composed reference segmentation is adaptively
constructed based on the labeled segmentations in the data-
set. The quality score is computed based on the proposed
similarity measure between the pair of input segmentation
and composed reference segmentation.

The second contribution of this work is that a new bench-
mark dataset is constructed for evaluating segmentation
quality. The developed dataset is motivated by the Berkeley

segmentation database (BSDS500) [29] which contains 500
source images and each has four to nine (5.4 on average) seg-
mentations labeled by humans. The proposed dataset con-
sists of 200 source images and most of them have 8 to 13 (10.7
on average) labeled segmentations. In addition, the proposed
dataset consists of objects from more diverse categories.

We note that in some existing large-scale databases such as
MS-COCO [25] and KITTI [19], the images are labeled based
on the given object categories, and only one human labeled
segmentation is provided for each image. These datasets are
developed for high-level vision tasks, such as object detection,
recognition, and tracking. In contrast, the BSDS500 and pro-
posed datasets are not constrained to object categories and
they contain multiple pixel-wise labeled segmentations in an
image, which can be used for image segmentation and bound-
ary detection tasks considered in this work.

Another important contribution of this work is that a
dataset is constructed to quantitatively compare different
segmentation evaluation methods. The proposed evaluation
dataset is composed of 500 pairs of segmentations generated
by state-of-the-art segmentation algorithms such as the effi-
cient graph-based algorithm [16] and mean-shift based

Human labeled segmentations
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segmentation

Segmentation
quality
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Fig. 2. Proposed evaluation framework based on adaptive composition of the reference segmentation.
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method [11]. Each pair of segmentation results is evaluated
by human subjects. To the best of our knowledge, this data-
set is the largest segmentation evaluation set in the litera-
ture in terms of number of images, diversity of objects, and
number of human judgment per segmentation.

2 RELATED WORK

In this work, a segmentation describes image regions where
pixels have similar properties (e.g., Fig. 1b). These segmenta-
tions can be either generated by algorithms or annotated by
humans. A segmentation consists of several segments (or
regions) which are described by their boundaries. We review
the representative reference-based segmentation evaluation
methods. These methods are designed to measure the similar-
ity or difference between an input segmentation and labeled
segmentations based on regions, pixels, or boundaries.

2.1 Region-Based Methods

An image segmentation can be viewed as a collection of
connected but exclusive regions (or segments). Region-
based methods compute similarity measures in terms of dif-
ferences or affinities between two segmentations. For exam-
ple, the region-based measure in [22] uses the directional
Hamming distance to compute discrepancy of two segmen-
tations. The Local Refinement Error (LRE) and Global Con-
sistency Error (GCE) [28] measure to which degree the
segmentations S; and S, agree with each other. Let R(S, p;)
be the set of pixels in segmentation S that are in the same
region as pixel p;, the LRE is defined as

|R(S1,pi) \ R(S, pi)l

, (1)

E(ShS%pi) =

where | - | is the cardinality of a set, and \ denotes set differ-
ence. The GCE is defined as

1
GCE(S),5,) = Nmin{zE(ShSz,pi)»ZE(52,517P7;)},

(2)

where N is the total number of pixels in 5. While the GCE
measure accommodates refinements at different granular-
ities, this measure suffers from degenerate cases (e.g., when
there are few pixels in a segment) [29].

The Segmentation Covering (SC) [4] measures the simi-
larity between segmentations by weight averaging the over-
laps of regions in two segmentations. The covering of a
segmentation S, by a segmentation ) is defined by

RO R

R| - 3
Yo liSE @

C(Sy — Sy) =

where R and R’ are regions in S} and Ss, respectively.

Instead of using a single measure, multiple measures can
be used to quantify segmentation quality. The approach in
[14] performs evaluation in a multi-dimensional fitness
(cost) space with multiple measures. In [21], five instances
of segmentation are defined, from which the corresponding
measures are designed for evaluation.

By considering a region as a cluster of image pixels, com-
parison of clusters can be used for segmentation evaluation.
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Meila [30] proposed an information-theoretic distance of
clusters. For segmentations, this distance can be interpreted
as the average conditional entropy of one segmentation
given the other. The Variation of Information (VOI) measure
is defined as

VOI(Sl7SQ) = H(Sl‘SQ) + H(52|Sl)7 4)

where H and I respectively denote the entropy and mutual
information of the given segmentation S; and human labeled
segmentation S,. If two segmentations are identical, the VOI
value is zero. The upper bound of VOI is finite and depends
on the number of elements in the segments. Since clustering
has been extensively studied in machine learning, various
measures of difference [24] or similarity [47] between clus-
ters can be adopted for segmentation evaluation.

2.2 Pixel-Based Methods

Significant efforts have been made to design measures for
the pair-wise comparisons between a segmented image and
multiple human labeled segmentations [17], [24], [36], [44],
[45], [46]. The Probabilistic Rand Index (PRI) [46] defines
correctness of segmentations by a statistical function. Sup-
pose that I(I¥ = l}s ) is a binary function on the labels of each
pair of pixels (z;, x;), the PRI is defined as

ST = )y + 1 £ 1)1 — i),

PRI(S,{S:}) = (N)
i,J,i#]

(5)

where N is the number of pixels, {S;} is the set of labeled
segmentations, and p;; is the probability that the labels of (z;,
x;) are the same. In practice, the mean pixel pair relationship
in all labeled segmentations is used to compute p;; and the
range of PRI is within [0, 1]. A score of zero indicates that the
labeling of a test segmentation is completely opposite to that
of the labeled segmentation, while a score of 1 indicates that
the labels of input segmentation and labeled segmentations
are the same on every pixel pair. This measure accommo-
dates region refinements appropriately as it accepts refine-
ments only in regions that human observers find ambiguous.
The Normalized Probabilistic Rand (NPR) index [46] extends
the PRI measure and allows one to compare segmentations
between different images. Specifically, it normalizes PRI
with the expected values of input images so that NPR is
zero-mean with larger range than PRI

2.3 Boundary-Based Methods

Boundary-based quality measures have also been proposed
in recent years. The Boundary Displacement Error (BDE)
[18] defines the error of one boundary pixel as the distance
to the closest pixel in the other boundary image. A near-
zero mean and a small standard deviation indicate good
quality of the segmentation. The F-measure can be applied
to both region-based [3], [34] and boundary-based [28] eval-
uation. In particular, a precision-recall framework is intro-
duced in [28], where a combination of precision and recall
leads to the F-measure as below

PR

TIR+(1-o)P’ ©
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where 7 is a relative cost between precision P and recall R.
Other discrepancy methods in this category can be found in
(71, [13], [31], [42].

2.4 Evaluation with Multiple References

While all the measures introduced above can be used for
evaluating the segmentation quality, little attention has been
paid to how to effectively utilize the multiple human labeled
segmentations. Most existing methods compute the quality
score by each of the reference segmentations and output the
average. For example, the methods based on Mutual Infor-
mation [49], Mean Square Error [51], Segmentation Covering
[4], Probabilistic Rand Index [36] and Recall Curves [28]
holistically compare an input segmentation with a collection
of references, and compute the average matching result as
the final score. On the other hand, the method based on Pre-
cision Curves [28] computes the fraction of a segmentation
that matches any of the references for evaluation. Since the
human visual system tends to perceive local structures of an
image, these measures may not be appropriate for percep-
tual evaluation of segmentation quality.

3 COMPOSING REFERENCE SEGMENTATIONS

Numerous methods have been proposed to process images
based on composite pieces [2], [9], [12], [23], [27], [39]. When
there is no image in the template set that is holistically similar
to an input image, Russell et al. [39] use a composition of tem-
plates for scene segmentation. The composition of figure-
ground segments of an image [9], [12], [23], [27] can generate
plausible segmentation on multiple scales. The approach of
combining parts from different photographs into one single
composite picture [2], [5] can be applied to many editing
tasks, such as relighting, extended depth of field, panoramic
stitching, detection of saliency, etc. In this work, we propose
to compose a reference segmentation based on labeled
segmentations for evaluating a given segmentation. Each
composed reference is not only adaptive to a given segmenta-
tion, but also structurally consistent to the labeled segmenta-
tions. The composition is carried out on the segmentation
maps instead of the original image. To the best of our knowl-
edge, the proposed framework is the first one that generalizes
and infers the labeled segmentations for evaluation.

3.1 Proposed Algorithm

Image segmentation can be considered as a labeling prob-
lem. Consider a set of human labeled segmentations
G ={G1,Gs,...,Gk} of an image X = {z1,zs,...,2n},
where G; = {¢!, 45, ..., g%} denotes a set of labels for each
pixelin X,i=1,..., K, and N is the number of pixels in the
image. Let S = {s1,s2,...,sy} be a given segmentation of
X, where s; is the label of z;, j=1,..., N. For image seg-
mentation, labels are values that indicate the class a pixel
belongs to, e.g., a binary value as the boundary or the non-
boundary. Refer to Fig. 2, to examine the similarity between
S and G, we compute the similarity between S and a new
reference segmentation G*, G* = {¢7,¢g5,..., gy}, which is
generated from G based on S. We construct G* by putting
together pieces from G, i.e., each piece g; € {g},93,..., 9} }-
Clearly, one primary challenging factor is how to reduce the
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Fig. 3. An example to compose a reference segmentation for segmenta-
tion S with labeled segmentations G;; and G». The optimal labelings /¢, ,
la, of Gy and G, generate a reference segmentation G*, which matches
S closely.

artifacts in the process of selecting and fusing image pieces.
The pieces of the composed reference should be integrated
seamlessly to maintain consistency of image contents. Our
principle is that each one of g7 should be most similar to its
counterpart in S with the structural consistency constraints
across multiple labeled segmentations. Once G* is con-
structed, the quality of segmentation S is evaluated by
computing the similarity between S and G*.

A reference segmentation G* is a geometric ensemble of
local pieces from the set G. We use an optimistic strategy to
choose the element g}, by which S will match G as much as
possible. To construct a reference segmentation G*, we
introduce a labeling set L = {l,|l,; € {1,..., K'}}. For each
g;, ly; indicates the reference index where it is selected from.
G* is generated by first computing the labeling set
{lg 1 lgys - - -, lgy }, then g7 is set to be boundary or non-bound-
ary according to the value of ¢. Fig. 3 illustrates how to
construct a reference segmentation G* for part of a segmen-
tation (in the red rectangle). Given two human labeled seg-
mentations G and G,, the labeling set L = {lg =1,
la, = 2} is computed based on S. Then, we assign elements
of G* to the class label at the corresponding location in G
or G. This leads to the maximum similarity match between
Sand G*.

For multiple references, the labeling set can be an arbi-
trary finite set, e.g., L ={1,2,...,K}. Let I = {l,|l, € L}
denote a labeling, i.e., label assignments to all elements in
G*. We formulate the labeling problem in terms of energy
minimization, and seek for the labeling / that minimizes the
energy. We propose an energy function that follows the
Potts model [35]

()= Z D(ly,) + A

The first part D(ly;) of this energy function is the data term,
which penalizes the decision of assigning l,; to element g7,
and can be considered as the measure of d1fference. Sup-
pose that the normalized distance between a reference ¢
and segmentation S is Ad(s;, g;), we define

Yo gy Ty #1y). (D

{997 eM

D(ly;) = Ad(s;, g;)- ®)
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The second part gy oy - T(ly, # ly,) of (7) indicates the
cost of assigning different labels to the pair of elements
{9j,97} in G*. In (7), M is a neighborhood system, and 7 is
an indicator function

T(ly, #1y,) = { 1oif 1y, # 1, ©

0 otherwise.

The smoothness term of (7) encourages the elements in
the same region to have the same labels, and thus the consis-
tency of neighboring structures can be preserved. It is
expected that separation of regions incurs higher cost on the
elements which appear in fewer labeled segments and
lower cost otherwise. We define uyg, gy} s

Ufg g/} = min{Ad;, rd]/}7 (10)

where Ad; is the average distance between g; and
{9,797}

The optimization problem in (7) is NP-hard and we adopt
the expansion moves and swap moves algorithm [8] to solve
it. The algorithm computes the minimum cost multi-way
cuts on a defined graph. Nodes in the graph connect to their
neighbors by n-links and each is assigned a weight Ufg;g,}
defined in the energy function (7). Suppose that we have K
labeled segmentations, then K virtual nodes are created in
the graph. Each graph node connects to the K virtual nodes
by t-links. We weight the ¢-links as D(/,;) to measure the sim-
ilarity between the graph nodes and the virtual nodes. The
K-way cuts divide the graph into K parts, and generate a
one-to-one correspondence to the labeling of the graph.

The parameter A in (7) controls the relative importance of
the data and smoothness terms. If A is small, only the data
term matters and the label of each element is independent
of other elements. If X is large, all the elements have the
same label.

In the proposed algorithm, we use L labels, where each
label corresponds to one reference segmentation, to compose
G*. While it is NP-hard to compute the exact minimum of the
proposed formulation, there are several justifications for
using this approach rather than using a binary label (bound-
ary or non-boundary) to compose reference segmentations.

Although an object boundary may be considered as an
entity for binary labeling, it is an extremely thin elongated
structure. The optimization process for a binary labeling
model will have a bias toward shorter boundaries (known
as the “shrinking bias”), which makes it difficult to label
thin elongated structures [48]. Introducing regularizer terms
into energy functions [20], [41] or using connectivity con-
straints [43], [48], however, will lead to higher-order cost
functions or require user guidance for boundary connection.
Although the proposed model is non-convex, we experi-
mentally show that it is insensitive to initialization and
parameter A (See Section 6.1), and our approach generates
stable evaluation results for image segmentation.

3.2 Distance Ad

The distance Ad in (8) and (10) needs to be defined before
we minimize the labeling energy function (7). Although
many distance measures have been proposed in the litera-
ture, it is not a trivial task to select a suitable measure to
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Fig. 4. An example of inconsistent boundaries among different human-
labeled segmentations from the Berkeley Segmentation Dataset [29]. The
whiter pixels indicate that more human subjects mark them as boundary.

compare the machine segmentation with the human-labeled
segments. Due to the localization errors from human labeling
process, boundaries or regions of the same object may not be
fully overlapped in different labeled segmentations. This is
an inherent issue for human labeled segmentations. In par-
ticular, the boundary based measures are more sensitive to
the dissimilarity of segmentations than the region based
measures. Fig. 4 shows an example of boundary distortions
among different human labeled segmentations. If directly
comparing the corresponding pixels, the distance will be
over-penalized by slightly different boundaries in the
labeled segmentations. Since the HVS is insensitive to such
minor inconsistency, to compare the segmentations faith-
fully, the pixel-based distance measure should be able to
accommodate some geometric inconsistency of boundaries.

In [28], this problem is addressed by matching the
boundaries with a predefined threshold instead of precise
correspondence. In [40], Sampat et al. propose a structural
similarity index in the complex wavelet domain. This index
is based on the fact that the relative phase of complex wave-
let coefficients preserve the structural information of local
image patterns well, while rigid translation of image
structures leads to constant phase shift. In addition, this
index does not require precise correspondence between
pixels, and it is robust to small geometric distortions.
We use the principle of this index to define a pixel-based
distance, which uses the complex Gabor transform coeffi-
cients instead of the steerable complex wavelet transform
coefficients. The coefficients are computed by convolving
a segmentation with 24 Gabor kernels on three scales
and along eight directions. With the outputs of these
Gabor filters, the similarity index between two segmenta-
tions is defined by

2 qu\:l |(’T7HF;;1‘ +o
le |Cax,i|2 + le |Cy,i|2 +a
23 ity | + B

2 Zf\il |eaicy il + B’

H(cy,cy) =
an

where c, and ¢, are the complex Gabor coefficients of two
segmentations x and y, respectively; |c,;| is the magnitude
of a complex Gabor coefficient, and c*is the conjugate of c;
and « as well as § are small positive constants for computa-
tional stability. It is easy to see that the maximum value
of His 1if ¢, and ¢, are identical. Therefore, we define the
distance Ad as

Ad(cy,cy) =1 — H(cy, cy), (12)

where H(c,, c,) is the average value of H(c,, ¢,) obtained by
24 Gabor filters. With the distance Ad defined in (12), we



1934 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.39, NO.10, OCTOBER 2017

q Given segmentation 1 Composed reference 1 | Given segmentation 2 Composed reference 2

m

Human segmentation 1 || Human segmentation 2 Human segmentation 3

(@) Qp1=0.81, Q,,=0.80, Q1=0.73, Q2=0.69

| [ Given segmentation 1 || /Composed reference 1 Given segmentation 2 Composed reference 2

/r

y

. L
i, .
|

Human segmentation 1 || _Hurhan ségmentation 2 || Humian ségmentation 3
(b) Qp1=0.69, Qp2=0.74, Qp1=0.56, Q2=0.55
Fig. 5. Examples of composed references for human labeled segmentations. For each example, the first row shows the original image, two human

labeled segmentations (labeled in green) of it and the corresponding composed reference segmentations G* (labeled in red). The second row shows
the human labeled segmentations used to compose the reference segmentations. The images are from the Berkeley Segmentation Dataset [29].

optimize (7) and obtain the composed reference G* for the in green), the reference segmentations (labeled in red) are
given segmentation S. Figs. 5 and 6 show some composed adaptively composed from multiple labeled segmentations
reference segmentations. Given the segmentations (labeled (labeled in black).
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Fig. 6. Examples of composed references for machine segmentations. For each example, the first row shows the original image, two machine
segmentations (labeled in green) of it and the corresponding composed reference segmentations G* (labeled in red). The second row shows
human labeled segmentations used to compose the reference segmentations. The images are from the Berkeley Segmentation Dataset [29].
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4 MEASURING SEGMENTATION QUALITY

Once the composed reference G* for the given segmentation
S is obtained, the problem of measuring segmentation qual-
ity becomes the problem of computing image similarity. To
compute the similarity (or distance) between S and the ref-
erence G*, we propose a measure based on the pixel based
distance used in composing the references.

When the pixel-based distance defined in (12) is used to
construct a reference G*, some geometric inconsistency of
local boundaries in S has been factored in. When the dis-
tance Ad(s;, g;) between s; and gj is obtained, the distance
for the whole segmentation can be computed by the average
of all Ad(s;, ;). However, the confidence of g; should also
be considered since less weight should be given to those
ambiguous structures, even if they are very similar. Thus,
we introduce R;as the empirical global confidence of g;
with respect to G. For example, we can estimate st as the

similarity between g: and {g;, g7, ..., g} } and define it as

Ry, =1—Adj, (13)
where Ad; is the average distance between g; and {gj,
gf, o gf( }. In (13), R;; achieves the highest value 1 when
the distance between g and {g},¢7,...,g\} is zero and
achieves the lowest value zero when the situation is
reversed. Since R,; is a positive factor for describing the
confidence, the similarity between s; and g;f should be nor-
malized to [—1, 1] such that the high confidence works rea-
sonably for both of the good and bad segmentations. If
there are K instances in G and all of them contribute to the
construction of G*, we can decompose S into K disjointed
set {Sy, S1, ..., Sk}. Finally, we define the pixel-based quality
measure as

K
Q(5,6) = x>0 3" (1-2d(s;,0)) Ry ()

i=1 s;€8;

The proposed quality measure is related to the accumulated
sum of the similarities computed from each element of S.
The minimum value of Ad(s;, g;) is 0 when s; is identical to g;
of a reference segmentation. If all the labeled segmentations
in G are identical, R;; is 1 and @Q,(S, G) has the maximum
value. Note that the measure is determined by both Ad(s;, g})
and R,,. If S is only similar to G* without high consistency
among the labels { gjl., g?, . gf‘ }, the value of R;; is low and
hence the absolute value of @,(S, G) is also low. This issue
may arise for images with complex contents, where percep-
tual interpretation of image contents is likely to be different.
The scores of the proposed measure with the composed
reference ((),) and by averaging over multiple references
(Q) are illustrated in Figs. 5 and 6. In Fig. 5, there are two
input human labeled segmentations for each image, and the
remaining three human labeled segmentations are used to
compose the reference segmentation. Obviously, these
human labeled segmentations have good quality. As
expected, the proposed measure rates them with good
scores, which are higher than those by the averaging

approach (i.e., Q, > Q). In Fig. 6, there are two input
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Fig. 7. User interface of the developed image segmentation tool.

segmentations generated by the Mean Shift algorithm [11]
for each image, and all the five human labeled segmenta-
tions are used to compose the reference segmentation. One
can see that the two input segmentations have visually very
different quality, and the proposed measure generates
scores with larger discrepancy than the averaging approach
(e, |Qu — Q2| > |Q1 — Q2]). In Fig. 6b, the first segmenta-
tion is worse than the second one and the proposed measure
reflects this (i.e., @)1 < @,2). However, the averaging scores
of human labeled segmentations suggest otherwise.

5 DATASETS

To assess the performance of a segmentation algorithm, it is
crucial to develop a dataset with multiple labeled segmenta-
tions and human evaluation scores of each image. Although
several image segmentation datasets have been devel-
oped [1], [3], [26], [29], there are some limitations in terms of
number of labels and subject scores. In this work, we
develop a new image segmentation dataset and a novel seg-
mentation evaluation dataset with subject scores. These two
datasets are available at http://www4.comp.polyu.edu.hk/
~cslzhang/ISE/ISE.htm.

5.1 Image Segmentation Dataset

Several image segmentation datasets have been constructed
in past decades. The Weizmann segmentation dataset [3] con-
tains 200 images with labeled foreground (with one or two
objects) and background segments. Achanta et al. [1] develop
a saliency segmentation dataset with 1,000 images. The
salient objects in each image are manually segmented based
on the salient regions drawn by Liu et al. [26]. However, only
one labeled segmentation is generated for each image.

The Berkeley Segmentation Database (BSDS500) [29] is
large and representative which has been used in numerous
vision problems. It contains 500 source images with four to
nine human labeled segmentations per image. Nevertheless,
some of the labeled object contours can be delineated more
precisely with greater details. Furthermore, the number of
labeled results per image can be extended to cover a wide
range of visual perception differences.

In order to better evaluate segmentation algorithms, we
construct a new segmentation dataset of 200 images where
each one is labeled by 6 to 15 persons. We develop a plat-
form that facilitates drawing object boundaries in an image
(See Fig. 7). Two functions to label image segmentations are
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Fig. 8. Sample images and the labeled segmentations in the developed
dataset.

provided, either manually or with software aids. As hand
tremors often lead to unsmooth segmentation on object
boundaries for users with no prior training on digital art,
we use the livewire algorithm [15] to facilitate the labeling
process. This tool allows a user to initialize a starting point
on the boundary and the subsequent point is selected inter-
actively based on the shortest path to best fit the object of
interest. For boundaries in the blurred regions or complex
objects, users are suggested to use manual segmentations to
minimize errors via the interactive process. Compared to
the process with all manual labels, these two modules help
to generate accurate boundaries with less effort.

To construct the segmentation library, we ask 45 subjects
to segment images. Each subject is randomly assigned 50 to
150 images, and is asked to segment each image into three
to 100 pieces. In order to reduce ambiguous interpretations
caused by image contents, subjects are asked to pay more
attention to low level features (e.g., color, textures) and pay
equal attention to all objects in the scenes. Fig. 8 shows
some sample segmented images in the developed dataset.
Note that the segmentations are labeled with different levels
of details that correspond to different visual perception.

The statistics of the proposed dataset and the BSDS500
database are summarized in Table 1. Although the number
of source images in the proposed dataset is smaller than
that of the BSDS500 database, each image in our dataset is
labeled by more human subjects. By using the developed
toolkit, the segmentation time in our dataset is much shorter
than that with the BSDS500 database. This largely reduces
the efforts of human subjects and allows them to focus on

TABLE 1
Summary of the BSDS500 and Proposed Datasets

Dataset BSDS500 Our Dataset
# images 500 200
# labeled segme- 4-9 6-15
ntations/image

(5.4 on average) (10.7 on average)
Image type Natural images Natural images
Software supported Yes Yes
# subjects 30 45
Time/segmentation 5-30 mins 2-4 mins
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Fig. 9. Distribution of labeled segmentations in the proposed and
BSDS500 datasets.

drawing boundary details of objects. Fig. 9 shows the char-
acteristics of labeled segmentations in the two datasets. In
the BSDS500 dataset, most images have 5 to 6 labeled seg-
mentations by humans while most images in our developed
dataset are labeled by 8 to 13 subjects.

5.2 Segmentation Evaluation Dataset

Several meta-measures [28], [34] have been proposed to
compare the performance of a pair of segmentation algo-
rithms based on a segmentation dataset with human labeled
results. Nonetheless, these measures are limited for quanti-
tatively evaluating the segmentation algorithms. In [32], 10
different segmentations per image (from a set of 80 images)
labeled as “good” or “bad” are used to select parameters for
segmentation algorithms. An evaluation dataset consisting
of 199 pairs of human and machine segmentations are con-
structed [54], where the human segmentations are indicated
as “good” ones. In addition, results for another set of 249
pairs are presented. However, the number of segmentation
pairs or the diversity of machine segmentations is limited.
Furthermore, none of these datasets is publicly accessible.

In this work, we design and develop a novel dataset for
evaluating segmentation evaluation algorithms. The pro-
posed benchmark dataset contains 500 pairs of segmenta-
tions and the corresponding evaluation results by human
subjects. The first 200 pairs (Part A) are generated by using
200 images from our segmentation dataset (in Section 5.1),
while the other 300 pairs of segmentations (Part B) are gen-
erated by 300 images selected from the BSDS500 dataset [29].
As different segmentation algorithms exploit different prop-
erties, we generate diverse segmentation results by using
the efficient graph-based (EG) algorithm [16], mean-shift
(MS) approach [11], compression-based texture merging
(CTM) [52] algorithms as well as texture and boundary
encoding-based segmentation (TBES) method [37].

As these algorithms are developed based on various cri-
teria, the segmentation results are different and diverse.
Table 2 shows the parameter settings of the four algorithms
used to generate the segmentations (the parameter settings

TABLE 2
Parameter Settings of the Four Algorithms for
Generating Segmentations in Our Evaluation Dataset

Algorithms Parameter values

EG[16] K = {600, 800, 1,000, 1,400, 1,800}

MS [11] h, = {7,11,15,19,23}, h, = 7, ming = 150.
CTM [52] e =1{0.1,0.2,0.3,0.4,0.5}

TBES [37] Ny, =200. € = {50,100, 200, 300, 400}
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Fig. 10. Sample pairs in the segmentation evaluation dataset.

are not the same as those in the original settings). With these
parameters, each algorithm generates diverse results rang-
ing from over-segmentation to under-segmentation.

After inspecting and removing the results with poor seg-
mentations with little semantic meaning, we obtain 17 seg-
mentations for each image. Next, 10 human subjects are
asked to select the best three and the worst three segmenta-
tions from these segmentations. Based on the consensus of
human evaluation, a candidate group of good segmenta-
tions is constructed (and likewise for the bad segmenta-
tions). For each image, we randomly select one
segmentation from the group of good results and pair it
with a segmentation randomly selected from the group of
bad segmentations. We form the segmentation pairs to
ensure that the quality difference in each pair is not too
small to tell by human subjects. It should be noted that
machine segmentations generally have much lower quality
than human segmentations, and thus in our dataset there
are few pairs in which one segmentation is clearly better
than the other. This ensures the level of difficulty to distin-
guish the quality of different segmentations. In addition,
since the segmentations in each pair may be produced by
different algorithms, the results are more diverse. Finally,
500 pairs of segmentations are generated in the evaluation
dataset. Fig. 10 shows some example pairs in our dataset.

In this work, 70 subjects with little or no research experi-
ence in image segmentation are asked to evaluate the 500
pairs of segmentations. We note that one may misjudge the
segmentation quality when a segmentation contains too
many regions. Instruction is given to subjects that all
segmented regions should have approximately equal
importance in evaluation. We evenly divide the 500 seg-
mentations pairs into 10 groups. Each time one subject is
only asked to evaluate one group (each one evaluates no
more than four groups).

The consistency of the evaluation results is measured by
the confidence rate, which is defined as the percentage of
subjects making the same judgment for the same pair. The
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Fig. 11. Distribution of confidence rates on the proposed segmentation
evaluation dataset.

distribution of confidence rates is plotted in Fig. 11. The con-
fidence rate reflects the level of difficulties in evaluating the
pair of segmentations. Fig. 11 shows that more than 50 per-
cent of the evaluations have the confidence rate over 0.8.
About 10 percent of the evaluations have the confidence
rate between 0.5 and 0.6, which correspond to the difficult
pairs for comparisons.

6 EXPERIMENTAL RESULTS

We evaluate the proposed segmentation quality measure @,
in comparison with existing measures based on PRI [46],
VOI [30], GCE [28], SC [4], BDE [18] and F-measure [28].
Among the evaluated methods, the PRI and our proposed
measure work with multiple labeled segmentations. The
other measures operate on each labeled reference individu-
ally, and the average results are reported.

All experiments are carried out on a desktop computer
with an Intel Core 2 Duo 3.00 GHz CPU and 4 GB memory.
The run time of the proposed measure consists two parts:
24.6 £ 6.0 seconds for composing the reference G* and
10.7 £ 1.1 seconds for computing the score @,.

6.1 Sensitivity Analysis

In Section 3, the energy function (7) is defined to construct
the reference segmentation, yet, the value of parameter \
should be chosen before implementing the algorithm.
Meanwhile, the initial labeling of graph cut algorithm [8] is
randomly decided in the optimization. Experiments in [8]
have shown that varying the initial labelings does not signif-
icantly change the final result. In this section, we perform
extensive experiments to test the effects of A and initial
labeling on the final evaluation score.

In all our experiments in Sections 6.2 and 6.3, we fix A to
be 800. Therefore, we evaluate the effect of A within a mod-
erate range around 800, more specifically, [500, 1,200] with
an interval of 50. We carry out experiments to analyze the
standard deviations of our measure (), on each of the 1,000
segmentations in the evaluation database (Part A and Part
B). The initial labeling of graph cut is set randomly, then the
mean values and standard deviations of (), with respect to
the 15 different values of A are computed. Fig. 12 shows the
results sorted in an ascending order of the mean value of @,,.

As shown in Fig. 12, there are 963 of the 1,000 segmen-
tations with deviation smaller than 0.05. Only one seg-
mentation has deviation larger than 0.1 and the deviation
is 0.106. Since @), is a number between —1 and 1, the
results show that our measure is insensitive to the change
of A\ within a large range.
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Fig. 12. Means and standard deviations of @, for 1,000 segmentations in
our evaluation database. Error bars show the standard deviations with
respect to A\, where X is set within the range of [500, 1,200] with an inter-
val of 50. The results are sorted in an ascending order of means.

To evaluate the effect of initial labeling on the final evalu-
ation score, we carry out the proposed algorithm 50 times
with random initialization of labeling. Fig. 13 shows the
plot of the means and standard deviations of @, for the
1,000 segmentations where A is fixed to be 800. For 973 of
the 1,000 segmentations, the deviation of @, is less than
0.05, and the largest deviation is 0.078. These results show
that @), does not change much by varying the initial label-
ings. Therefore, we carry out experiments using the pro-
posed algorithm with random initialization.

6.2 Evaluation with Meta-Measure

By verifying different hypotheses on the evaluation outputs,
meta-measures [28], [34] have been proposed to compare the
goodness of the segmentation evaluation measures. For
example, one hypothesis is that a good measure should be
able to discriminate two pairs of human segmentations, one
pair from the same image while another pair from different
images. More specifically, the quality score of a human seg-
mentation evaluated by segmentations from the same image
should be better than that evaluated by segmentations from a
different image. Based on this principle, a meta-measure [28]
is defined to count the number of human segmentation pairs
coming from the same images which are misjudged as less
similar than other pairs from different images. Pont-Tuset
and Marques [34] further extended this meta-measure to dis-
criminate machine segmentations from different images.

We evaluate the proposed measure using an approach
similar to that in [28], [34]. The meta-measure is defined as
the percentage of human labeled segmentations from the
same images that are determined as more similar than the
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Fig. 13. Means and standard deviations of @, for 1,000 segmentations in
our evaluation database. Error bars show the standard deviation of @,
with respect to 50 random initial labelings. The results are sorted in
ascending order of means.
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Fig. 14. Distributions of @, for segmentations of the same images (in
blue) and different images (in red) on the BSDS500 and proposed data-
sets, respectively.

machine segmentations from different images. Namely, the
meta-measure is used to compare each human labeled seg-
mentation of a certain image with two other groups of seg-
mentations: (i) human labeled segmentations of the same
image and (ii) machine segmentations of a different image.
The rationale is that the evaluation score generated by case
(i) should be better than that by case (ii), and we use the per-
centage of comparisons that agree with this principle as the
meta-measure result. This comparison incorporates the dis-
criminations of segmentations from the same and the differ-
ent images, and segmentations created by different sources
(human labeled and machine generated).

We evaluate all the human segmentations in the BSDS500
and our proposed segmentation datasets. The same amount
of machine segmentations are randomly created by the EG,
MS, CTM and TBES methods for each image in the data-
bases. Each human segmentation is evaluated by the rest of
human segmentations of the same image, as well as the
same number of machine segmentations from a different
image. Let Dyyme and Dg;fs be the distributions of scores in
case (i) and case (ii), respectively. Fig. 14 shows the distribu-
tions for the two types of segmentations using the (), mea-
sure. The meta-measure is computed as the percentage of
comparisons outside the overlap between Dy, and Dy
(the percentage of overlap is reported as Bayes risk in [28]).
Table 3 shows the meta-measure results for different seg-
mentation quality evaluation measures. On both databases,
the proposed measure performs favorably better than other
measures, which demonstrates the effectiveness of using
composed references for evaluation. Except for the F-mea-
sure, all the other measures obtain higher scores on the pro-
posed dataset than the BSDS500 database, which suggests
the merits of using more reference segmentations for seg-
mentation evaluation.

6.3 Evaluation with Proposed Segmentation
Dataset

We first use an example to illustrate the effectiveness of the
proposed measure for assessing segmentation quality.
Fig. 15 shows five segmentations of a given image generated
by the EG method [16] with different parameters. In this
experiment, 10 subjects are asked to rank the segmentation
results. Most participants agree that the best segmentation
is Fig. 15d since it preserves the main structure of the object
with minimal number of misclassified boundaries, followed
by (c), (e), (a) and (b). The quality scores measured by differ-
ent methods are shown on the right side in Fig. 15. These
plots indicate that the proposed measure matches human
perception best, while other measures either do not reflect
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TABLE 3
Evaluation Results with the Meta-Measure
Measures PRI GCE VOI BDE F-measure SC(S — G) SC(G — S) Qp
BSDS500 0.911 0.929 0.967 0.921 0.882 0.962 0.956 0.984
Proposed dataset 0.959 0.981 0.991 0.947 0.838 0.974 0.979 0.994

&PRI

2 3 2 3 .4 5 23 4 &
. Segmentation Segmentation Segmentation
(] d e 20 .9,
3 e Fb)
‘ o i
8 0.7
»
0.6}

1 3 4 5 1 2 3 4 5 4
ry = %egmentation Segmentation

2 3 4
Segmentation

Fig. 15. Quality scores of the segmentations in a ~ ¢ by the EG algorithm [16] using different measures, i.e., GCE, PRI, SC(S — G), BDE, F,
(F-measure on boundary) and Q,,.

TABLE 4
Evaluation Results by Different Measures

Measures PRI GCE VOI BDE F-measure SC(S— G) SC(G—S) Ave(Q,) Min(Q,) Max(Q,) Qp
Part A CorrectNo. 156 156 148 146 146 133 147 165 160 164 168
(200 pairs)  Rate (%) 078 0.78 0.74 0.73 0.73 0.67 0.74 0.83 0.80 0.82  0.84
Part B Correct No. 241 143 182 237 232 165 215 120 137 118 251
(300 pairs)  Rate (%) 0.80 048 0.61 0.79 0.77 0.55 0.72 0.4 0.46 039  0.83
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Fig. 16. False evaluation rate of segmentation pairs under different confidence levels.

the best segmentation (i.e., F-measure) or do not well differ-
entiate the best segmentation and the others (i.e., PRI and
BDE). The values of the SC measure are in a relatively small
range, which do not reflect the differences of segmentations
well. In contrast, the proposed measure is effective for
modeling segmentation quality as it adaptively evaluates
image structures on different levels.

We then quantitatively examine the segmentation meas-
ures using the proposed evaluation dataset presented in
Section 5.2. In addition, we evaluate three other measures:
@), based on average Ave(Q,), minimum Min(Q,), and
maximum Max(Q,) of human annotated scores. Table 4

shows the number of correct evaluations (i.e., the ones
which are consistent with human judgments) for all evalu-
ated measures. On both Part A and Part B of our dataset,
the proposed measure by using reference (),,) outperforms
existing measures. For GCE, VOI, Ave(Q,), Min(Q,,) and
Max(@,), the performance on Part A and Part B varies sig-
nificantly. When the number of labeled segmentations per
image is small (e.g., Part B), there is a significant decline in
the number of correct evaluations. The PRI, BDE and F-mea-
sure measures have opposite trends on the two parts but
with less variation. The proposed measure has the highest
correction rate and comparable results on both sets, which
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can be attributed to the composition of references with the
proposed evaluation measure.

Another important factor is whether a measure is effective
when it is difficult to evaluate a segmentation pair. We com-
pare the false evaluation rates with respect to the confidence
rate of human subjects (See Fig. 11 for distribution of confi-
dence rate). Fig. 16 shows the results where we uniformly
quantize the confidence rate into five bins, and count the
falsely evaluated pairs in each bin. When the confidence rate
is low (i.e., less than 80 percent), @), has lower false evalua-
tion rates than the others. When the confidence rate is high
(e.g., in the range between 0.9 and 1), the advantages of our
measures are not significant. This can be explained by the
fact that if a segmentation is clearly good or bad (which usu-
ally results in high confidence in subject evaluation), the task
is easier and many existing measures perform well.

7 CONCLUSIONS

We proposed a framework for evaluating segmentation
quality with multiple human labeled segmentations to take
into account both local structure and global consistency of
segmentations. To achieve this goal, a reference segmenta-
tion was adaptively constructed for a given segmentation
and used in conjunction with the proposed measures to
compute quality score. In addition, we presented a segmen-
tation dataset and segmentation evaluation dataset to facili-
tate quantitative quality assessment. The segmentation
dataset contains images with more labeled segmentations
than BSDS, which is important for objective evaluation. The
evaluation dataset is diverse in segmentation quality and
contains extensive subjective evaluation results. Both data-
sets are publicly available to the research community.
Extensive experiments on the proposed datasets and the
BSDS dataset demonstrate the effectiveness of our frame-
work in evaluating segmentation quality.
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