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Abstract—We propose a simple yet effective L0-regularized prior based on intensity and gradient for text image deblurring. The

proposed image prior is based on distinctive properties of text images, with which we develop an efficient optimization algorithm to

generate reliable intermediate results for kernel estimation. The proposed algorithm does not require any heuristic edge selection

methods, which are critical to the state-of-the-art edge-based deblurring methods. We discuss the relationship with other edge-based

deblurring methods and present how to select salient edges more principally. For the final latent image restoration step, we present an

effective method to remove artifacts for better deblurred results. We show the proposed algorithm can be extended to deblur natural

images with complex scenes and low illumination, as well as non-uniform deblurring. Experimental results demonstrate that the

proposed algorithm performs favorably against the state-of-the-art image deblurring methods.

Index Terms—Image deblurring, L0-regularized prior, text images, low-illumination images, natural images

Ç

1 INTRODUCTION

RECENT years have witnessed significant advances in sin-
gle image deblurring. The great success of the state-of-

the-art algorithms [1], [2], [3], [4], [5], [6], [7] can be attrib-
uted to the use of statistical priors on natural images and
selection of salient edges for kernel estimation. Although
numerous methods [1], [2], [5], [6], [7] have been proposed
for deblurring generic images, these priors are less effective
for cases with rich text that do not follow the heavy-tailed
gradient statistics of natural images and can be better mod-
eled by two-tone distributions.

Text image deblurring has attracted considerable
attention due to its wide range of applications. In [9],
Chen et al. propose a content-aware prior based on an inten-
sity density function of documents and foreground segmenta-
tion rather than the heavy-tailed gradient prior of natural
images. However, this method is developed specifically for
document images (i.e., binary text images) and is unlikely to
perform well for complex and cluttered images containing
text. A direct method that exploits sparse characteristics of
natural scenes is proposed for deblurring natural and docu-
ment images [10]. Nevertheless, the blur kernel is not explic-
itly estimated from an input image and the computational
load for learning an over-complete dictionary is significant.
Li and Lii [11] propose an optimization method to estimate a

blur kernel until the latent image is two-tone. However, this
method is only applied to two-tone images and is less effec-
tive for text images with complex backgrounds. In [8] Cho
et al. develop a method to incorporate text-specific properties
(i.e., sharp contrast between text and background, uniform
gradient within text, and background gradients based on nat-
ural image statistics) for deblurring. While this algorithm
achieves state-of-the-art deblurring results, the kernel estima-
tion process is complicated and the performance depends on
whether or not the stroke width transform (SWT) [12] sepa-
rates an image into text and non-text regions well. However,
the SWT is unlikely to perform well when the characters in a
text image are small or clustered. Fig. 1 shows one example
where blurred characters are clustered due to large camera
motion and its deblurred result from the algorithm [8].

In this paper, we propose an effective algorithm to
deblur text images. The contributions of this paper are sum-
marized as follows:

1) We propose an L0-regularized intensity and gradient
prior based on distinctive properties of text images
for text image deblurring.

2) We present an efficient optimization algorithm based
on the half-quadratic splitting technique. This
approach guarantees that each sub-problem has a
closed-form solution and ensures fast convergence.

3) We discuss the relationship with other methods in
terms of salient edge selection, and show that the
proposed algorithm generates reliable intermediate
results for kernel estimation without ad-hoc selection
processes. Compared with the state-of-the-art meth-
ods [8], [9], the proposed algorithm is efficient and
effective as it requires no additional operations (e.g.,
adaptive segmentation [9], smoothing intermediate
latent images [3], or SWT [8]).

4) For the latent image restoration step, we present an
effective method to deal with artifacts and evaluate
it against other alternatives.
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5) We show that the proposed algorithm can effectively
process natural blurry images including low-illumi-
nation inputs, which are not handled well by most
state-of-the-art deblurring methods. In addition, the
proposed algorithm can be effectively applied to
non-uniform image deblurring.

2 RELATED WORK

Image deblurring has been studied extensively and numer-
ous algorithms have been proposed, which can be catego-
rized into three main approaches based on variational
Bayesian inference, Maximum a Posteriori (MAP) estima-
tion, and edge prediction.

In [1], Fergus et al. present an algorithm using a mixture
of Gaussians to learn an image gradient prior via variational
Bayesian inference. Levin et al. [13] analyze the method
based on variational Bayesian inference [1] and show that it
is able to avoid trivial solutions while naive MAP based
methods may not. Since the optimization process of varia-
tional Bayesian inference is computationally expensive,
methods based on MAP formulations have been developed
with different likelihood functions and image priors [2], [6],
[7], [10], [14], [15], [16]. In addition, methods that explicitly
select sharp edges for kernel estimation have been pro-
posed [3], [4], [17] with demonstrated success on benchmark
datasets [18]. However, the edge selection step is often based
on heuristics, and the assumption that strong edges exist in
the latent images may not always hold. To better reconstruct
sharp edges for kernel estimation, exemplar based meth-
ods [19], [20], [21] have been recently presented to exploit
information contained both in a blurred input and example
images of an external dataset.

Blurred images acquired from moving cameras (e.g.,
rotational and translational movements) can be better mod-
eled by non-uniform blur models. Shan et al. [22] solve the
in-plane rotation deblurring problem based on transparency
maps. Tai et al. [23] propose a general projective motion
model for non-uniform image deblurring where a blurred

image is considered as an integration of a latent image
under a sequence of projective transformations that describe
the camera path. Whyte et al. [24] simplify this model and
propose a variational Bayesian approach similar to [1].
In [25], a similar model is proposed in which motion density
functions are used to represent camera motion trajectories.
To make the non-uniform methods computationally effi-
cient, methods based on locally uniform blur models [26],
[27] are developed where the deconvolution step can be
computed by Fast Fourier Transforms (FFTs). In addition to
camera motion, blurred images caused by different object
motions are analyzed [28], [29], [30]. Methods based on the
depth variation of scenes are also proposed by [31], [32]. We
note most of the aforementioned deblurring methods are
developed for generic scenes and few of them exploit prop-
erties of text images.

Since the properties of text images are different than those
of natural images, Chen et al. [9] propose a prior based on the
image intensity rather than the heavy-tailed gradient prior of
natural scenes to characterize text images. Cho et al. [8] con-
sider image properties specific to text images in a way similar
to [9] and present a deblurring method on detected regions.
However, the above method has limited application domains
as it entails text detection [12] and heuristic filtering [3]. In
contrast, the proposed algorithm does not require additional
filtering or text segmentation in the deblurring process.
Although the proposed prior is based on text images, we
show that it is able to describe the convolution as well as blur
process in generic scenes and applicable to deblur natural and
low-illumination images.

3 L0-REGULARIZED IMAGE PRIOR

In this section, we present an L0-regularized prior of inten-
sity and gradient for text image deblurring.

3.1 L0-Regularized Intensity and Gradient Prior

The proposed intensity and gradient prior is based on the
observation that text and background regions usually have
nearly uniform intensity values in clear images without
blurs. Fig. 2b illustrates that the pixel intensity distribution
of a clear text image (Fig. 2a) is peaked at two values (near 0
and 255). For a blurred text image, the pixel intensity

Fig. 1. A challenging blurred text image.

Fig. 2. Intensity and gradient properties of text images. (a) A clear text
image. (b) Pixel intensity distribution from (a). (c) Distribution of horizon-
tal gradient from (a). (d) A blurred image. (e) Pixel intensity distribution
from (d). (f) Distribution of horizontal gradient from (d).
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distribution is significantly different from that of a clear
image. Fig. 2e shows the histogram of pixel intensities (from
a blurred image in (d)) with fewer pixels of value 0 and 255.
The reason is that each pixel in a blurred image can be
viewed as the weighted sum of a few neighborhood pixels of
a clear image. Thus, the intensity distribution is squeezed
from both ends of the intensity range. As a result, there are
fewer pure black pixels (intensity value 0) in a blurred text
image than a clear one. This intensity property does hold for
generic images, and appears more obviously in text images
(e.g., document images). For an image x, we describe the
propertywith a regularization term in the proposedmodel,

PtðxÞ ¼ kxk0; (1)

where kxk0 counts the number of nonzero-intensity pixels in
x. With this intensity property, clear and blurred images can
be differentiated. We note that, for an image with more
white pixels, we can also reverse the pixel intensity by
1� x! x (for both latent and blurred images) and use the
same blur model.

Gradient priors are widely used for image deblurring as
they have been shown to be effective in suppressing arti-
facts [2], [3]. As the intensity values of a clear text image are
close to two-tone, the pixel gradients are likely to have a
few nonzero values. Figs. 2c and 2f show the horizontal gra-
dient histograms of a clear text image and the correspond-
ing blurred one. It is clear that the nonzero values of
blurred image gradients are denser than those of the clear
one. Thus we use a similar L0-regularized prior, PtðrxÞ, to
model image gradients.

With the aforementioned regularized priors on intensity
and gradient, the prior for text image deblurring is defined by

P ðxÞ ¼ sPtðxÞ þ PtðrxÞ; (2)

where s is a weight to balance two priors. Although P ðxÞ is
developed based on the assumption that background
regions of a text image are uniform, we show this prior can
also be applied to deblur complex scenes effectively.

3.2 Text Image Deblurring via Proposed Prior

A blurred image y can be formulated as the result of a convo-
lutionprocesswith a spatially invariant kernel or point spread
function,

y ¼ x � kþ e; (3)

where x and e denote the latent image and noise; k is a blur
kernel; and � is the convolution operator. Given a blurred
image y, we estimate the latent image x and blur kernel kwith
a regularized formulation based on the proposed prior P ðxÞ,

min
x;k
kx � k� yk22 þ gkkk22 þ �P ðxÞ; (4)

where the first term is concerned with image data, and the
remaining two terms are constraints for the blur kernel
and the latent image, with their respective weights, g and
�. We note that we introduce the prior for uniform deblur-
ring first, and extend that to non-uniform deblurring in
Section 7.

4 DEBLURRING TEXT IMAGES

The deblurring process is modeled as the optimization
problem by alternatively solving the latent image x

min
x
kx � k� yk22 þ �P ðxÞ; (5)

and the blur kernel k,

min
k
kx � k� yk22 þ gkkk22: (6)

The details of the two sub-problems are described in the
following sections.

4.1 Estimating Latent Image x

Due to the L0 regularization term in (5), minimizing (5) is
computationally intractable. Based on the half-quadratic
splitting L0 minimization approach [33], we propose an effi-
cient alternating minimization method to solve this prob-
lem. We introduce the auxiliary variables u with respect to
x and g ¼ ðgh; gvÞ corresponding to image gradients in hori-
zontal and vertical directions. The objective function can be
rewritten as

min
x;u;g
kx � k� yk22 þ bkx� uk22
þ mkrx� gk22 þ �ðskuk0 þ kgk0Þ;

(7)

where s is the weight defined in (2), b and m are penalty
parameters. When b and m are close to infinity, the solution
of (7) approaches that of (5) [34]. With this formulation, (7)
can be efficiently solved through alternatively minimizing
x, u, and g independently by fixing the other variables.

The values of u and g are initialized to be zeros. In each
iteration, the solution of x is obtained by solving

min
x
kx � k� yk22 þ bkx� uk22 þ mkrx� gk22; (8)

and the closed-form solution for this least squares minimi-
zation problem is

x ¼ F�1 FðkÞFðyÞ þ bFðuÞ þ mFG

FðkÞFðkÞ þ bþ mðPi2fh;vg FðriÞFðriÞÞ

 !
; (9)

where Fð�Þ and F�1ð�Þ denote the Fourier transform and its

inverse transform, respectively; the Fð�Þ is the complex con-

jugate operator; and FG ¼ FðrhÞFðghÞ þ FðrvÞFðgvÞwhere
rh and rv denote the horizontal and vertical differential
operators.

Given x, we compute u and g separately by

min
u

bkx� uk22 þ �skuk0; (10a)

min
g

mkrx� gk22 þ �kgk0: (10b)

We note that (10) is a pixel-wise minimization problem.
Thus, the solutions of u and g are obtained based on [33],

u ¼ x; jxj25 �s
b
;

0; otherwise;

�
(11)

and

g ¼ rx; jrxj25 �
m
;

0; otherwise:

�
(12)
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The main steps for solving (7) are summarized in Algo-
rithm 1. We pose the subproblem u in the outer loop for the
following reasons. If we pose the subproblem for g (10b) in
the outer loop, the algorithm in the inner loop is equivalent
to solve the minimization problem

min
x
kx � k� yk22 þ �skxk0 þ mkrx� gk22; (13)

by introducing auxiliary variable u. Similarly, posing the
sub-problem u (10a) in the outer loop indicates solving

min
x
kx � k� yk22 þ bkx� uk22 þ �krxk0; (14)

by introducing auxiliary variable g in the inner loop. As the
intensity prior is based on independent pixels instead of dis-
parities of neighboring pixels (i.e., gradients), it introduces
significant noise and artifacts in image restoration (See
Fig. 3b). In contrast, the gradient prior is based on dispar-
ities of neighboring pixels, which enforces smooth results
with fewer artifacts in the recovered image (Fig. 3c). As the
inner loop involves image restoration, we pose the sub-
problem u in the outer loop to reduce artifacts generated by
the intensity prior. Fig. 3e demonstrates the advantages of
posing the sub-problem u in the outer loop.

Algorithm 1. Solving (7)

Input: Blurred image y and blur kernel k.
x y, b 2�s.
repeat
solve for u using (11).
m 2�.
repeat
solve for g using (12).
solve for x using (9).
m 2m.

until m > mmax

b 2b.
until b > bmax

Output: Intermediate latent image x.

4.2 Estimating Blur Kernel k

Given x, (6) is a least squares minimization problem in
which a closed-form solution can be computed by FFTs. As
the estimation based on gradients has been shown to be
more accurate [3], [5], [7], we estimate the blur kernel k by

min
k
krx � k�ryk22 þ gkkk22; (15)

and the solution can be efficiently computed by FFTs [3].
After obtaining k, we set the negative elements to 0, and
normalize it so that the sum of its elements is 1. Similar to
the state-of-the-art methods, the proposed kernel estimation

process is carried out in a coarse-to-fine manner using an
image pyramid [3]. Algorithm 2 shows the main steps for
kernel estimation algorithm on one pyramid level. The step
in (12) performs similar to the edge selection methods [3],
[4]. As suggested by [3], [4], we decrease � gradually to
include more informative gradients for kernel estimation.

Algorithm 2. Blur Kernel Estimation Algorithm

Input: Blurred image y.
initialize kwith the results from the coarser level.
for i ¼ 1! 5 do
solve for x using Algorithm 1.
solve for k using (15).
� maxf�=1:1; 1e�4g.

end for
Output: Blur kernel k and intermediate latent image x.

4.3 Removing Artifacts

Although the latent images can be estimated from (5) as
shown in Fig. 4c, this formulation is less effective for scenes
with complex backgrounds or fine texture details. We
note that the non-blind deblurring method with a hyper-
Laplacian prior [35] has been shown to preserve fine details.
However, significant ringing artifacts caused by deconvolu-
tion are likely to appear using this prior as shown in Fig. 4b.
In contrast, the method with the proposed L0-regularized
prior generates fewer fine details and ringing artifacts as
shown in Fig. 4c.

Based on the properties of the results generated by these
two aforementioned priors, we propose a non-blind decon-
volution method that preserves fine details. This method
uses the residue of two recovered images similar to the ring-
ing suppression method [2]. First, we estimate the latent
image Il (See Fig. 4b) using the method with a Laplacian
prior [35]. Second, we estimate the latent image I0 (See
Fig. 4c) using the proposed algorithm via (5) with only the
gradient regularization PtðrxÞ at this stage (i.e., setting
s ¼ 0). Similar to [2], we compute a difference map between
these two estimated images and apply bilateral filtering to
it. The filtered residue can be viewed as the artifacts that
non-blind deconvolution methods do not handle well. We
then subtract the filtered difference map from Il to remove
these artifacts. The results in Fig. 4e show that this approach
is effective for text and natural images, and performs favor-
ably against the ringing suppression method [2].

Fig. 3. Effectiveness of Algorithm 1. (a) Blurred image and kernel. (b)-(c)
Results by only PtðxÞ and PtðrxÞ. (d)-(e) Results by posing the estima-
tion of g in the outer and inner loop. The smooth regions enclosed in the
red boxes in (b) and (d) are not preserved well, while some characters in
(c) are over smoothed.

Fig. 4. Non-blind deconvolution examples. (a) Blurred images and the
estimated kernels. (b) Results by [35] with Laplacian prior. (c) Results
by setting s ¼ 0 in (5). (d) Ringing suppression results by [2]. (e) Our
results.
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5 ANALYSIS OF ALGORITHM

In this section, we analyze how the proposed algorithm per-
forms on text image deblurring. We also demonstrate the
importance of the intensity prior for text image deblurring
and discuss its relationship with other methods in terms of
the edge selection. Furthermore, we show that the proposed
algorithm can be applied to deblur natural images.

5.1 Effectiveness of the L0-Regularized Prior

The solution for u using (11) leads to results containing seg-
ments with an intensity value of 0. The appearance of those
segments enhances the contrast of u, and therefore drives the
solution of x in (9) to have salient edges around the segment
boundaries (See Fig. 5f).

The text image deblurring method [8] involves a hard-
thresholding step ((7) in [8]) with values determined by
SWT [12] to segment texts. In addition, this text image
deblurring algorithm uses the sparse gradient minimization
method [33] to remove ringing artifacts from the intermedi-
ate latent images, which increases the computational load
significantly. Fig. 5 shows one examplewhere themethod [8]
does not performwell. The reason is that SWT is not effective
in detecting text when the blurred characters are cluttered as
illustrated in the intermediate results of Fig. 5e.

The success of recent deblurring methods hinges on
latent image estimation explicitly [3], [4] or implicitly [1],
[2], [6]. The proposed method is distinguished from existing
methods as it does not involve ad-hoc edge selection (e.g.,
spatial filtering [3], [4], [8], or edge re-weighting [2], [6]) for
kernel estimation. Instead of finding one good threshold to
remove subtle image structures such as filter-based edge
selection methods [3], [4], the proposed algorithm computes
intermediate latent images iteratively by solving the optimi-
zation problems in a way similar to [7]. By using (11)
and (12) of the proposed algorithm, pixels with small inten-
sity values or tiny structures can be removed while salient
edges are retained. Furthermore, our method exploits the
gradient prior with PtðrxÞ. If s of (7) is set to 0, the pro-
posed algorithm is reduced to the recent methods based on
L0 gradient priors [7], [36] which achieve state-of-the-art
results for deblurring natural images. On the other hand,
these L0-based methods [7], [36] (L0Deblur for short) do not
perform well for text images. Fig. 5g shows intermediate
salient edges extracted by [7]. As no sharp edges are
extracted, the blur kernel is not estimated well by this
method.

We note that image deblurring using only the intensity
prior is less effective (See Fig. 5i) as PtðxÞ is based on indepen-
dent pixelswithout considering image gradients. On the other
hand, image deblurringwith only gradient priorPtðrxÞ is not
effective (See Fig. 5h) as no salient edges are extracted.

5.2 Convergence of the Proposed Algorithm

The proposed kernel estimation algorithm is mainly based
on the alternating minimization method which ensures that
each sub-problem has a closed-form solution. Thus, the pro-
posed algorithm has a fast convergence property.

We evaluate the convergence rate of the proposed
method using 96 blurred text images from the proposed
dataset. The average energy of the objective function (5)

decreases with respect to the number of iterations as shown
in Fig. 6a. The results demonstrate that the proposed algo-
rithm (Algorithm 1) exhibits good convergence. We also
measure the quality of the recovered images in terms of
PSNR. Fig. 6b demonstrates fast convergence of Algorithm 1
in terms of PSNR. Furthermore, we analyze how the pro-
posed method converges by posing g estimation as the outer
loop and the inner loop in Algorithm 1. The plots in Figs. 6a
and 6b show that the approach with estimating g in the
inner loop converges to better solutions with lower energy
values and higher PSNR values of the recovered images. On
the other hand, the approach with estimating g in the outer
loop does not perform well. The difference between these
two approaches is in line with our analysis in Section 4.1.

Fig. 5. An example presented in [8]. (a) Blurred image and kernel; (b)
Results of [8]; (c) Our results without using PtðxÞ in the kernel estimation;
(d) Our final results; (e) Intermediate results of [8]; (f) Our intermediate
results (including x and u); (g) Intermediate salient edges of [7]; (h) Inter-
mediate salient edges using only PtðrxÞ; (i) Intermediate results using
only PtðxÞ; (j) Our intermediate salient edges, i.e., g in (12).
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We evaluate the convergence and performance of Algo-
rithm 2 with respect to the domain of the data term. The pro-
posed kernel estimation is carried out by alternatively
solving (5) and (6), where the first term can be based on either
image intensity or gradient. The plots in Fig. 6c1 show that
similar convergence is achieved for both approaches. How-
ever, the combination of using image intensity for the first
term of (5) and image gradient for that of (6) performs better
than the others as shown in Fig. 6d.

5.3 Deblurring Saturated Images

Estimating blur kernels from blurred images with saturated
regions is known to be a difficult problem. Although a few
non-blind deblurring methods [37], [38], [39] have been pro-
posed to deal with such images, it remains challenging to
develop effective blind deblurring algorithms. Saturated
regions usually appear sparsely in clear images and these
areas are much larger (e.g., blobs or streaks) after blurring.
Fig. 7b shows two examples of saturated blurred images from
Fig. 7a. We use the binary images to display the saturated
regions in Figs. 7c and 7d, where there are more non-zero ele-
ments in the binary images of the blurred images than those
of the clear binary images. As the L0-norm in PtðxÞminimizes
the number of non-zero coefficients, the proposed deblurring
algorithm favors solutions with few blobs or streaks in the
clear images, which leads to non-trivial solutions. We present
results from challenging images in Section 8.2.

6 DEBLURRING NATURAL IMAGES

We analyze how the proposed algorithm performs on text
images with complex backgrounds and present a method to
deal with generic blurred images.

The success of state-of-the-art generic image deblurring
methods stems mainly from restoration of intermediate
images with salient edges for kernel estimation. The
restored intermediate images do not necessarily resemble
the sharp natural images in terms of rich textures and con-
tain structures of large gradients [3], [4], [7] or matte
maps [40]. In [40], [41], Jia shows that the matte map of an
image helps estimate the blur kernel for natural image
deblurring. In image matting, the matte map segments an
image into background, foreground, and ambiguous
regions. The values are zeros for background pixels, ones
for foreground pixels, and float numbers between zero and
one for ambiguous pixels [42]. In the deblurring process,
the intermediate result u can be viewed as the matte map of
multiple layers (where each object is represented by one
layer). The modeled blur process generates ambiguous
regions around the boundaries between different objects
due to the mixture of pixels belonging to different objects. If
the intermediate result contains sharp edges or a strong con-
trast around the object boundaries, it helps the kernel esti-
mation as the intermediate result approximates the latent
image in terms of clear boundaries. In the proposed method,
the solution of u in (11) is determined by thresholding x

with the value of �s
b
. This process results in many zero-inten-

sity pixels in u and enforces a higher contrast in the gener-
ated result. Similarly, the sub-problem of the gradient prior
in (10) maintains only large gradient values, but removes
small gradients. Thus, the effect of the L0-regularized gradi-
ent prior is able to retain salient edges in the optimization
process. With two components in (8), the intermediate result
x is likely to maintain the properties of u and g, which leads
to sharper object boundaries and thus improves kernel esti-
mation. In contrast, the intermediate latent image estima-
tion step from [7] relies only on g, which does not help
preserve sharp object boundaries in text image deblurring
(See Fig. 5g). This is the main reason that our method per-
forms better than the method that uses only the image gra-
dient prior.

As discussed above, the sub-problem on the L0-regular-
ized intensity prior encourages more zero-value pixels in
the intermediate image x. This step is based on the varying

parameter �s
b
and its initial value is critical for the success of

the method. To handle text or natural images with numer-
ous zero-intensity values, the initial value can be easily
determined as there exist pixels of low intensity values that
are close to zero in both the blurred image and the clear
image. We note that the document image is nearly two-tone

Fig. 6. Convergence properties of Algorithms 1 and 2. (a)-(b) show the
convergence of Algorithm 1. (c)-(d) show the convergence of Algorithm 2
and the corresponding energies and kernel similarity values are com-
puted from the finest level of Algorithm 2. The legend Intensity in (5) &
Gradient in (6) in (c) and (d) indicates that the first terms in (5) and (6)
use image intensity and image gradient, respectively.

Fig. 7. Saturated images. (a) Clear images with saturated regions and
ground-truth kernel. (b) Blurred images with saturated regions. (c)
Binary images of (a). (d) Binary images of (b). (c) and (d) are obtained
from (a) and (b) with the same threshold value.

1. We use the image intensity to compute the energy of (4), if the
data terms of (5) and (6) are in different domains.

PAN ETAL.: L0-REGULARIZED INTENSITYAND GRADIENT PRIOR FOR DEBLURRING TEXT IMAGES AND BEYOND 347



and the value 0:5 usually separates the intensity histogram
into two components (text and background) [43]. Since the
initial value of b is set to be 2�s in Algorithm 1, the initial

value of �s
b

is 0:5. However this approach does not work

well for natural images as they contain more complex inten-
sity histograms than those of text images. To address this
issue, we propose to find a threshold to segment the inten-
sity histogram of the natural images into two parts (i.e.,
foreground and background). We determine the initial

value of �s
b
according to the intensity histogram of a blurred

image with the threshold selection method by Otsu [44]
where it determines the optimal value for two modes of
image pixels for separation. We denote the value deter-
mined by Otsu algorithm as o, and then set the initial value

of b to be �s
o2
in Algorithm 1.

Fig. 8 shows an example where the proposed algorithm
with an adaptive initial threshold value is able to generate
reliable intermediate results for kernel estimation, while
the algorithm [43] with a pre-defined value fails in this nat-
ural image (See Figs. 8c and 8f). This is mainly because the
initial value of �s

b
in [43] is 0:5, meaning the pixels whose

intensity values are larger than
ffiffiffiffiffiffiffi
0:5
p

will be retained in the
computation of u (See (11)). According to the aforemen-
tioned analysis, this will improperly segment x (See the
white areas in Fig. 8f), which accordingly alters the struc-
tures of intermediate results. Compared to the method [7],
our intermediate latent image restoration step with the

intensity prior maintains salient structure of the object
boundaries. The proposed prior with an adaptive thresh-
old value helps enhance the contrast and preserve more
salient edges in the intermediate latent image (See the com-
parisons in Figs. 8e and 8g).

We further consider a modification of the proposed algo-
rithm as there may exist multiple peaks in the intensity his-
togram of a natural image. As the height of the highest peak
in an intensity histogram of a natural or text image is
reduced after the blur process, we modify the intensity prior
to reflect this property,

PcðxÞ ¼ skx� ck0 þ krxk0; (16)

where c is the intensity value corresponding to the highest
peak of an intensity histogram. The modification, x� c,
assumes that the solution x containsmore pixels whose inten-
sity values are c in the sharp image rather than the blurred
one due to the shift of c. Intuitively, the solution using this
prior PcðxÞ favors a clear image. However, this process does
not necessarily facilitate the kernel estimation process. The
term kx� ck0 used in the intermediate latent image estima-
tion enforces the pixel values approximate to c and thus
reduces the contrast in the restored result. Furthermore, it is
likely to result in segmentation effects, i.e., generating seg-
ments with constant values (See Fig. 9c). In comparison, the
term kxk0 used in the proposed prior P ðxÞ of (2) and its solu-
tion enforces the pixels of small intensities to be dark pixels of
intensity value 0. Although the use of the prior P ðxÞmay gen-
erate unnatural results, it is able to enhance the contrast and
preserve sharp edges in the restored result, which is critical in
image deblurring. This is the main reason that we use (2)
rather than (16) in kernel estimation.

7 NON-UNIFORM DEBLURRING

Camera shake during the exposure time often leads to spa-
tially varying blurring effects on the image. Based on the geo-
metric model of camera motion [23], [24], we represent a
blurred image as the weighted sum of a clear image under
transformations,

y ¼
Xt
l¼1

wlKðulÞxþ e; (17)

where a blurred image y, a latent image x, noise e are in vec-
tor forms, wl is the weight corresponding to the camera pose
ul that satisfies wl � 0,

P
l wl ¼ 1, and t is the number of sam-

pled camera poses. In (17),KðulÞ is a matrix derived from the
homography matrix HðulÞ that warps the latent image x. As
in [24], the homographymatrixHðulÞ is defined by

Fig. 8. Intermediate results with different priors in natural image deblur-
ring. (a) Blurred image. (b) Intermediate result with PtðrxÞ. (c) Deblurred
result using [43] with fixed initial threshold 0:5 for �s

b
. (d) Deblurred result

using the proposed algorithm with the adaptive initial threshold for �s
b,

estimated by Otsu algorithm [44]. (e) Intermediate results with PtðrxÞ.
(f) Intermediate results [43]. (g) Our intermediate results.

Fig. 9. Effect of different priors used in intermediate latent image restora-
tion. (a) Ground-truth clear image and the blur kernel. (b) Blurred image.
(c)-(d) Non-blind deconvolution results with prior PcðxÞ and P ðxÞ. The
red boxes in (c) enclose some artificial structures.
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HðulÞ ¼ TRðulÞT�1; (18)

where T is the intrinsic matrix of the camera and RðulÞ is the
rotation matrix describing the motion of the camera.

Similar to [24], we use the bilinear interpolation when
applyingKðulÞ to a latent image x. Thus, (17) can be rewritten
as

y ¼ Axþ e ¼ Bwþ e; (19)

whereA ¼Pl wl KðulÞ, B ¼ ½Kðu1Þx; Kðu2Þx; . . . ;KðutÞx�, and
w ¼ ½w1; w2; . . . ; wt�>. Based on (19), the non-uniform deblur-
ring process is carried out by alternativelyminimizing

min
x
kAx� yk22 þ �P ðxÞ; (20)

and

min
w
kBw� yk22 þ gkwk22: (21)

Similar to the optimization process of (5), we introduce
the same auxiliary variables and rewrite the objective func-
tion as

min
x;u;g
kAx� yk22 þ bkx� uk22
þ mkrx� gk22 þ �ðskuk0 þ kgk0Þ;

(22)

where u and g are vector forms of u and g defined in (5), b
and m are the same to those in (5). We note that k � k0 is
defined on each pixel. Thus, the solution of minimization
problems with respect to u and g can be still obtained
by (11) and (12).

The minimization problem,

min
x
kAx� yk22 þ bkx� uk22 þ mkrx� gk22; (23)

cannot be solved directly using FFTs. Since the blur kernels
in a small region can be similar, we use the locally uniform
blur model to approximate the non-uniform blur using the
fast approximation method [26]. It divides the image into Q
patches and the matrix A can be represented by

A �
XQ
r¼1

diagðMrÞAr; (24)

where diagðvÞ is a diagonal matrix with the element of vec-
tor v on the main diagonal,Mr is a window function that is
zero-padded near the border which helps blend overlaid
patches, and Ar is the matrix corresponding to the blur ker-
nel ar for the rth patch. To compute A using FFTs, A can be
expressed as

A � Z�1y

XQ
r¼1

C�1r ðF�1ðdiagðFðZaarÞÞÞFðCrdiagðMrÞÞÞ;

(25)

where Zy and Za are the zero-padding matrices that pre-
pend zeros to a vector such that its size matches the size of
the vector resulting from the summation, Crð�Þ is a mapping

function that chops the rth patch from a vector, and C�1r ð�Þ
is a mapping function that pastes the rth patch to the origi-
nal vector.

By using the approximation (25) of A, the solution of (23)
can be obtained by

x ¼W
XQ
r¼1

C�1r F�1 Dn

Dd

� �� �
; (26)

where W is a weight to suppress visual artifacts caused

by the window functions [26], Dd ¼ FðZaarÞFðZaarÞ þ b þ
mFðCrðrÞÞFðCrðrÞÞ, and Dn ¼ FðZaarÞFðCrðdiagðMrÞyÞÞ þ
bFðCrðuÞÞ þ mðFðCrðrvÞÞFðCrðgvÞÞ þ FðCrðrhÞÞFðCrðghÞÞÞ.

The algorithm for solving (22) is the same in Algorithm 1,
where we only need to replace (9) with (26). For the optimi-
zation of the kernel estimation model (21), we use the same
optimization process proposed by [7]. The proposed non-
uniform deblurring method is achieved by alternatively
minimizing (22) and (21). We use the same settings as the
uniform deblurring presented in Algorithm 2.

8 EXPERIMENTAL RESULTS

We present experimental evaluations of the proposed algo-
rithm against the state-of-the-art deblurring methods for
text and generic images. All experiments are carried out on
a desktop computer with an Intel Core i7-4790 processor
and 24 GB RAM. The execution time for a 255	 255 image
is 15 seconds on MATLAB without code optimization. In all
the experiments, we set � ¼ 0:004, g ¼ 2, and s ¼ 1, respec-

tively. We empirically set bmax ¼ 8 and mmax ¼ 105 in Algo-
rithm 1. In the final stage, the method presented in Section
4.3 is employed to estimate the latent image, and the non-
blind deconvolution method [38] is used to recover a satu-
rated image. More experimental results, the MATLAB code,
and datasets can be found at http://faculty.ucmerced.edu/
mhyang/project/text-deblur/.

8.1 Text Images

Synthetic text images: We first use the example from [8] (See
Fig. 5) for comparisons. Table 1 shows the structural similarity
(SSIM) [45] and kernel similarity [46] values of the recovered
images and estimated kernels by the state-of-the-art deblur-
ring methods for text images [8] and generic images [3], [4],
[5], [7], [47]. We also compare the proposed deblurring
method for text images in Section 4 (referred to as L0RIG) and
the deblurring method for natural images in Section 6
(referred to as IL0RIG). Overall, the proposed algorithm per-
formswell in terms of bothmetrics aswell as visual quality.

In addition, we construct a dataset containing 15 ground
truth document images and eight kernels from [13] (See the
project web page for images). For each sharp image, we com-
pute the average PSNR on the blurred images generated by
different blur kernel estimation methods [3], [4], [5], [6], [7],

TABLE 1
Quantitative Comparison Using the Example Shown in Fig. 5a

[3] [4] [5] [7] [47] [8] Using PtðrxÞ Using PtðxÞ L0RIG IL0RIG

SSIM of images 0.6457 0.6269 0.5611 0.4867 0.6190 0.5526 0.5963 0.6718 0.8916 0.8819
Kernel similarity 0.5200 0.5200 0.4170 0.6407 0.4938 0.6456 0.5849 0.6285 0.8699 0.9298
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[47] as shown in Fig. 10. Although the IL0RIG method does
not perform well for some examples in this text image data-
set (e.g., im11), it performs better than existing methods for
text or natural images as shown in the last column of Fig. 10.
We also note that the IL0RIG method usually generates
sharper text images than the L0RIG approach despite the
fact that they perform similarly in terms of PSNR values
(more results can be found on the project web page).

Real text images: We evaluate the proposed algorithm
and other methods using real text images. For fair compari-
sons with [8], we use an example from [8] and show the
deblurred results in Fig. 11. The natural image deblurring
methods do not perform well on text images. The deblurred
result of [9] contains ringing artifacts and some strokes are
not recovered well. Although the state-of-the-art method by
Cho et al. [8] performs well, the motion blur is not fully
removed as shown in the red box in Fig. 11h. In addition, the
deblurred result contains unnatural colors due to the SWT
process. Compared with [8], the proposed algorithm gener-
ates sharper and visually pleasing deblurred results. We
note that the L0Deblur method [7] does not estimate the blur
kernel or deblur the image well which also demonstrates the
importance of PtðxÞ in the proposed prior P ðxÞ. Both L0RIG
and IL0RIGmethods performwell on this text image.

Images containing text and complex background: We
present an example in Fig. 12 where the image contains rich
text and cluttered background regions. The state-of-the-art
natural image deblurringmethods [3], [4], [6], [7] are not effec-
tive in handling this text image with a complex back-
ground. Although the text image deblurring method [8]

handles this example well (as shown in Fig. 12f), the esti-
mated kernel retains certain amount of noise and the
deblurred result contains some unnatural colors as a result
of the SWT process. In contrast, the proposed algorithm
generates the deblurred image (clear text, sharp edges, and
natural color) and blur kernel well. Figs. 12g and 12h show
the results using the proposed algorithm with only PtðrxÞ
or PtðxÞ. The results in (g) and (h) show that sharp images
cannot be obtained by using only the gradient or intensity
prior, which indicates that the proposed prior P ðxÞ plays a
critical role in text image deblurring.

8.2 Low-Illumination Images

Most state-of-the-art deblurring methods are less effective
in processing blurred images with saturated regions [37]
which often appear in low-illumination scenes. As dis-
cussed in Section 5.3, the proposed algorithm can be used to
deblur such images.

Fig. 13 shows a real captured image which contains sev-
eral saturated regions (red boxes in (a)).We compare the pro-
posed algorithmwith the state-of-the-artmethods [3], [4], [5],
[6], [7], [47]. Since the priors of the state-of-the-art methods
are developed to exploit salient edges for motion deblurring,
these algorithms do not perform well for images containing
numerous saturated regions. As the recent method [47] is
developed to handle large Gaussian noise, it is less effective
for saturated images. Although the saturated areas (e.g.,
highlighted blobs, streaks, and characters in Fig. 13a) are
large due to motion blur, the L0-regularized prior P ðxÞ
favors a clear image with few blobs and streaks as a solution

Fig. 10. Quantitative comparison on the proposed text image dataset. The x-axis denotes the image index and the average PSNR values of all the
images are shown on the rightmost column.

Fig. 11. A real blurred image from [8]. The part in the red box in (h) contains blurry and unnatural results.
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of the optimization of (4) in Section 3.2. The recovered image
shown in Fig. 13h is sharper and clearer. We note that while
our method is able to estimate the blur kernel well, there still
exist some ringing artifacts due to the limitation of the final
latent image estimation process as shown in Fig. 13h. To gen-
erate better deblurred results, we use the non-blind deconvo-
lution method [38]. The deblurred results shown in Fig. 13i
contains clearer text information and finer textures which
demonstrates the effectiveness of the proposed algorithm for
kernel estimation. Both the L0RIG and IL0RIG methods are
able to deblur this low-illumination imagewell.

We note that one recent work [48] is developed for
detecting light streaks in low-illumination images for kernel
estimation and deblurring. Different from [48], the pro-
posed method does not require any pre-processing and per-
forms well when light streaks cannot be detected in low-

illumination images. Fig. 14 shows one example with
numerous saturated regions and deblurred results from the
state-of-the-art methods [3], [4], [5], [6], [7], [47], [48]. As the
saturated areas are large and light streaks cannot be
detected in this image, the method [48] does not perform
well in this case. For fair comparisons, we use the non-blind
deconvolution method [38] to generate the final latent
images in all the evaluated algorithms. The results show
that the state-of-the-art deblurring methods are less effec-
tive for estimating blur kernels from saturated images,
whereas the proposed algorithm is able to estimate motion
blur kernels well for reconstructing deblurred results.

To further analyze the deblurring performance for low-
illumination images, we create a dataset containing 6
ground truth low-illumination images and eight kernels
from [13]. Similar to [37], [48], we stretch the intensity

Fig. 13. Real blurry image with numerous saturated regions. The red boxes in (a) enclose some saturated pixels (e.g., highlighted blobs, streaks,
and characters).

Fig. 12. A synthetic blurred image with text and complex background. Our method performs well in the kernel estimation and deblurred image.
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histogram range of each image into [0, 2.2] and then apply 8
different blur kernels to generate blurred images where the
pixel intensities are clipped into the range of [0, 1]. For fair
comparisons, we use the same non-blind deconvolution
method [48] to generate the final results and use PSNR to
evaluate the quality of the restored images. Fig. 15a shows
that the proposed algorithm performs favorably against the
state-of-the-art deblurring methods and generates clear
images (See the project web page for images).

8.3 Natural Images

We show that the proposed algorithm can be applied to
deblur natural images. We first evaluate our method on the
benchmark image dataset [13] on uniform image deblur-
ring, and compare with the state-of-the-art methods [1], [2],
[3], [4], [5], [6], [7], [43], [47]. For fair comparisons, all the
final deblurred results are generated by the same non-blind
deconvolution method [5], and the error ratio metric [13] is
used for evaluation.

Overall, the L0RIG algorithm performs well on natural
scenes despite being designed to deblur text images. How-
ever, the L0RIG method alters the structures of intermediate
results due to the complex intensity histograms of natural
images according to the analysis in Section 6. Thus, the
results are not comparable to those of the state-of-the-art
approaches designed for generic scenes [4], [7]. As the
IL0RIG algorithm extends the L0RIG method by exploiting
the properties of input images to recover reliable salient
edges for kernel estimation, the results in Fig. 15b show that
it is able to deblur natural images well.

We evaluate the proposed algorithm on the benchmark
dataset [19]. For fair comparisons, all the final deblurred
results are generated by the same non-blind deconvolution
method [50], and the error ratio metric [13] is used for evalu-
ation. As shown in Fig. 15c, the proposed algorithm per-
forms favorably against the state-of-the-art methods, and
the curves for the L0RIG and IL0RIG methods demonstrate
the effectiveness of the proposed prior.

We also evaluate our method on the benchmark dataset
for blind deconvolution [18], which contains four images
with 12 blur kernels including several challenging cases.
The average PSNR values are shown in Fig. 15d. Overall,
the proposed L0RIG and IL0RIG methods perform well on
this dataset against the state-of-the-art algorithms.

In Fig. 16, we show deblurring results using real natural
images [7]. As the L0RIG and IL0RIG methods with the pro-
posed prior are able to preserve the salient edges, the
deblurred results are sharper with fewer ringing artifacts.
More results and quantitative evaluations are presented on
the project web page.

8.4 Non-Uniform Image Deblurring

In this section, we compare the proposed algorithms with
the state-of-the-art non-uniform deblurring methods [7],
[24], [25], [26], [49]. Fig. 17 shows an example from [25]
which has been used for evaluation on non-uniform image
deblurring. Fig. 17 shows the recovered letters of (b)-(f) con-
taining some ringing artifacts. Compared to the reported
non-uniform deblurring results, the proposed L0RIG and
IL0RIG methods generate comparable results with clear tex-
tures. Fig. 18 shows another example of non-uniform image

Fig. 14. Real blurred image with a lot of saturated areas.

Fig. 15. Quantitative evaluation on the proposed low-illumination image dataset and the benchmark datasets [13], [18], [19]. The x-axis in (b) and (c)
denotes the error ratio values.
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deblurring. Compared with other methods, the proposed
L0RIG and IL0RIG methods generate results with few ring-
ing artifacts and fine textures. More experimental results
can be found on the project web page.

8.5 Sensitivity Analysis

The proposed model involves three main parameters, �, s,
and g. In this section, we show how they affect the image
deblurring performance.

To analyze the effects of these parameters on image
deblurring method for the IL0RIG method, we collect 16
blurred images for tests. For each parameter, we carry
out experiments with different parameter settings by
varying one and fixing the others with the kernel simi-
larity metric to measure the accuracy of estimated ker-
nels. For parameter �, we set its values from 10�5 to 0:01
with the step size of 0:001. Fig. 19a demonstrates that
blur kernels can be well estimated by a wide range of �,

Fig. 16. Deblurring real natural images. The proposed methods generate visually comparable results compared to the state-of-the-art methods.

Fig. 17. Non-uniform image deblurring [25]. The images shown in (b)-(f) are obtained from the reported results.

Fig. 18. Non-uniform image deblurring. The images shown in (b)-(d) are obtained directly from the reported results or generated by the original codes.
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i.e., within ½0:001; 0:01�. Similarly, we set the values of g

from 0:02 to 5 with the increment of 0:2, and the values
of s from 0 to 2 with the increase of 0:1. Figs. 19b and
19c show that the proposed IL0RIG algorithm performs
well with a wide range of parameter settings.

9 CONCLUDING REMARKS

In this paper, we propose a simple yet effective prior for text
image deblurring. We discuss how the proposed prior facili-
tates preserving salient edges in image deblurring, and
extend it to deal with natural images. With this prior, we
present an effective optimization algorithm based on the
half-quadratic splitting approach, which ensures that each
sub-problem has a closed-form solution. Experimental
results show that the proposed algorithms perform favor-
ably against the state-of-the-art methods for deblurring text
images without additional pre-processing steps (e.g., filter-
ing, adaptive segmentation and SWT). In addition, we
develop a latent image restoration method which helps
reduce artifacts effectively. The proposed algorithm is also
extended to deblur natural images and low-illumination
scenes, as well as non-uniform cases.

Limitations: We note that the prior kxk0 counts the num-
ber of nonzero-intensity pixels of an image x. If x does not
contain zero-intensity pixels, we have kxk0 ¼ C, where C is
the total number of pixels in x and it is a constant for an
image x. Mathematically, the minimization problem (4)
would reduce to the model used in [7]. Furthermore, we
would have kxk0 ¼ kyk0 as the blurred image y would also
not contain zero-intensity pixels according to the properties
of convolution. This further demonstrates that the prior
kxk0 does not help the kernel estimation.

The proposed methods are likely to fail when a blurred
image contains a large amount of noise (e.g., Gaussian and
non-Gaussian noise) as the data term used in the proposed
model (4) is based on L2 norm which is less robust to noise.
In addition, the proposed intensity prior counts the number
of pixels with nonzero-intensity values. As the pixels are
treated independently, the proposed algorithm is sensitive
to large image noise and exacerbates its effect in the inter-
mediate results (See Fig. 20b). Our future work will focus
on simultaneously denoising and deblurring for both text
and natural images.
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