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Abstract—Most multi-object tracking algorithms are developed within the tracking-by-detection framework that consider the pairwise

appearance similarities between detection responses or tracklets within a limited temporal window, and thus less effective in handling

long-term occlusions or distinguishing spatially close targets with similar appearance in crowded scenes. In this work, we propose an

algorithm that formulates the multi-object tracking task as one to exploit hierarchical dense structures on an undirected hypergraph

constructed based on tracklet affinity. The dense structures indicate a group of vertices that are inter-connected with a set of

hyperedges with high affinity values. The appearance and motion similarities among multiple tracklets across the spatio-temporal

domain are considered globally by exploiting high-order similarities rather than pairwise ones, thereby facilitating distinguish spatially

close targets with similar appearance. In addition, the hierarchical design of the optimization process helps the proposed tracking

algorithm handle long-term occlusions robustly. Extensive experiments on various challenging datasets of both multi-pedestrian and

multi-face tracking tasks, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.

Index Terms—Multi-object tracking, tracklet, hierarchical, undirected affinity hypergraph, dense structures
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1 INTRODUCTION

MULTI-TARGET tracking in unconstrained environments
is an important and challenging problem with numer-

ous applications including video surveillance, activity anal-
ysis, and anomaly detection, to name a few. Recent multi-
object tracking algorithms have been developed within the
tracking-by-detection framework where targets are usually
detected by pre-trained object detectors or background
subtraction methods, and matched throughout video
sequences. Such approaches are attractive and effective for
handling visual drifts and recovering from tracking failure.
Specifically, the task of correctly matching target objects
over time is known as the data association problem.
Although numerous methods have been proposed to tackle
the target association problem, less effort has been made to
exploit high-order information (i.e., beyond pairwise rela-
tions between objects) contained among multiple objects in
the temporal domain.

Most existing multi-object tracking methods exploit simi-
larities between pairwise detection responses or tracklets
for data association (e.g., MCMC data association [1], [2],
[3], detection matching [4], [5], network flow [6], [7], [8], [9],
k-shortest path (KSP) [10], maximum weight independent
set [11], linear programming [12], tensor power itera-
tion [13], [14], and Hungarian algorithm [4], [15], [16], [17],

[18]), rather than among multiple tracklets in the temporal
domain within a global view. For example, when several
objects with similar appearance or motion patterns appear
in close proximity as denoted by the circles in Fig. 1, identity
switches are likely to occur. To alleviate this problem, a
method based on minimum clique graph optimization [19]
has been developed recently which considers the relation-
ships between different detections across the temporal
domain. Dehghan et al. [20] pose the data association prob-
lem as a generalized maximum multi-clique task and pres-
ent an integer program algorithm for multi-target tracking.
However, these two methods are less effective in handling
non-linear object motion in crowded scenes when occlu-
sions happen frequently, mainly due to only the pairwise
relationships of the targets are considered.

In this paper, an undirected hierarchical affinity hyper-
graph based tracker (H2T) is proposed, which formulates the
tracking task as exploiting multiple dense structures on a
constructed tracklet affinity hypergraph as depicted in
Fig. 1b. Different from existing methods, the similarities
(e.g., appearance or motion similarities) among tracklets
across the temporal domain are considered globally by con-
sidering the high-order connections and exploiting motion
constraints to distinguish spatially close target objects with
similar appearance. Meanwhile, a local-to-global strategy is
developed to generate target trajectories hierarchically,
which significantly reduces the computational complexity in
exploiting dense structures and handles large appearance
variations as well as sudden motion changes effectively. The
main contributions of this paper are summarized as follows:

� We propose a novel multi-object tracking algorithm
by exploiting dense structures from hierarchically
constructed undirected affinity hypergraphs of
tracklets.

� The motion and appearance patterns are analyzed in
the optimization process by considering high-order
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similarities among multiple tracklets globally in the
constructed hypergraph.

� We use a RANSAC-style approach to convert the
hypergraph to an approximate common graph
which retains all the significant structures and facili-
tates extraction of dense structures efficiently.

� We evaluate on both multi-pedestrian and multi-face
tracking tasks, and demonstrate the proposed algo-
rithm performs favorably against the state-of-the-art
methods, especially in crowded scenes.

2 RELATED WORK

We review the most relevant multi-object tracking methods
for generic objects and specifically for faces.

Multi-Object Tracking. Numerous approaches based on
Kalman or particle filters and detection results for state pre-
diction have been proposed in recent years [21], [22], [23],
[24], [25], [26], [27]. These methods typically predict states
effectively for short durations but do not perform well in
complex scenes. Data association approaches based on the
joint probabilistic data association filter (JPDAF) [28] and
multiple hypotheses tracking (MHT) [29] have been devel-
oped to address these problems. The JPDAF method esti-
mates the best assignment at each time step by considering
all possible associations between targets and detections.
In contrast to frame-by-frame predictions by the JPDAF
method, the MHT approach evaluates the likelihoods of the
hypothesized assignments over several time steps. Since
the search space grows exponentially with the number of
frames, both methods are less effective for handling long-
term association. To alleviate this issue, Yu et al. [2] present
a data driven Markov Chain Monte Carlo method to esti-
mate target trajectories using a batch of observations. How-
ever, this sampling-based method entails proper settings of
numerous parameters that restricts its application domains.

Greedy approaches have been developed for multi-object
tracking [4], [5] in which detection results with similar
appearance and motion patterns are matched in multiple
consecutive frames. As limited temporal locality is used in
matching multiple objects, these methods do not perform
well in sequences with long-term occlusions, complex
motions, or cluttered backgrounds.

Recent algorithms consider associations of detection
pairs as an optimization task based on network flows [6],
[7], [8], [30], K-shortest paths (KSP) [10], maximum weight
independent sets [11], tensor power iterations [13], [14], lin-
ear programs [12], and high-order motion constraints [31],
[32]. Meanwhile, several methods have been developed in
which short tracklets are constructed using detections in
consecutive frames based on spatial-temporal proximity,
and connected to generate long trajectories. The tracklet
association problem has been posed as a continuous energy
minimization problem [33], or a discrete-continuous optimi-
zation task [34] involving data association of the tracklets
and trajectory fitting. In addition, the tracklets assignment
problem has also been tackled by the hierarchical Hungar-
ian algorithm [15], [17], [18] to generate trajectories of target
objects. By exploiting global information, the aforemen-
tioned methods are more effective in dealing with partial
occlusions and complex motions. However, as only associa-
tions of pairs of detection results are considered, these algo-
rithms do not perform well when multiple similar objects
appear in proximity.

In [9], a directed graph is constructed to describe pair-
wise associations between candidate couplings, which are
constructed by the detections from different cameras at the
same time step. In contrast, we construct an undirected
hypergraph, in which each vertex represents one tracklet,
and the hyperedges are constituted by multiple tracklets
across the temporal domain. The optimization processes for
these two approaches are not similar since the hypergraph
construction and the objectives are significantly different.

Multi-Face Tracking. Robust multi-face tracking in uncon-
strained surveillance scenes involves challenging factors
(e.g., large pose and illumination changes) different from
generic multi-object tracking, and existing approaches
mainly focus on constructing robust appearance models.
Kim et al. [35] introduce visual constraints using a combina-
tion of generative and discriminative models in the particle
filtering framework for specific face tracking. Wang and
Ji [36] combine an offline trained generic face model and an
online appearance model specific to a target in a dynamic
Bayesian network. However, both methods do not handle
drift problems well when abrupt pose variations occur.
Consequently, methods based on active appearance mod-
els [37], [38] have been developed to handle pose variations.

To better handle recovery from tracking failure, Kalal
et al. [39] propose an algorithm in which an offline trained
detector is used to localize frontal faces and an online
trained validation module is employed for matching the
detected results. Cai et al. [40] present a method that inte-
grates an offline detector, an online learned recognizer, and
an online learned face tracker for person-specific face track-
ing. Both methods perform well when the goal is to track
one specific face, but fail to handle multiple faces in surveil-
lance scenarios.

Roth et al. [41] associate face detection responses from
two stages using the Hungarian algorithm for multi-face
tracking. On the other hand, Duffner and Odobez [42] pro-
pose an approach to address the tracklet management prob-
lem (i.e., deciding when to add a new target or stop a
tracklet) within a Bayesian filtering framework where the
states are estimated by a Markov Chain Monte Carlo

Fig. 1. (a) Existing methods often fail when multiple objects with similar
appearance or motion patterns appear in proximity. (b) The proposed
tracking algorithm based on an undirected affinity hypergraph effectively
handles such cases. The circles denote different tracklets and the colors
represent the corresponding appearance or motion patterns. Existing
methods, which focus on the pairwise similarities of tracklets in short
and local temporal span, are likely to generate incorrect trajectories
(blue splines). In contrast, the proposed algorithm searches for dense
structures on the affinity hypergraph of tracklets which consider similari-
ties among multiple tracklets across the temporal domain (i.e., high-oder
information), and generates correct trajectories (red splines).
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sampling method. More recently, an approach [43] that
simultaneously clusters and associates face tracklets (based
on detection responses) using a hidden Markov Random
Field (MRF) model to represent the joint dependencies of
cluster labels and tracklet associations. This method focuses
onmulti-face tracking in movie clips with relative fixed cam-
era view angles in indoor scenes. Although the aforemen-
tioned methods perform well in constrained indoor scenes,
they are not effective for unconstrained surveillance scenes
which contain similar targets with frequent occlusions.

3 ALGORITHMIC OVERVIEW

In this section, we give an overview of the proposed multi-
object tracking algorithm based on a hierarchical undirected
affinity hypergraph. The notations used in this paper are
listed in Table 1. After detection responses are obtained in
each frame, we construct an undirected affinity hypergraph
where the vertices are the tracklets (i.e., we treat each detec-
tion response as a degenerate tracklet of unit length), and
the hyperedges describe the high-order relationships
among them. The affinity value of a hyperedge indicates the
probability of the tracklets corresponding to the hyperedge
associated with the same object.

The multi-object tracking problem is solved by extracting
dense structures on the constructed hypergraph of degree k.
As it is computationally expensive to operate directly on a
large number of hyperedges, we construct a Random Con-
sensus Hypergraph (RCH) in a way similar to [44] by sam-
pling reliable Minimal Size Samples (MSSs) which are vertex
sets of k� 1 vertices. To further reduce computational com-
plexity, we convert a RCH to a common graph in which the
significant dense structures are retained. Consequently, the
underlying dense structures in a hypergraph can efficiently
be extracted on a common graph using the search algorithm
for searching dense neighborhoods on an affinity graph [45].
We further process the extracted results, resolve conflicting
dense structures, and then connect the tracklets in each dense
structure to generate target trajectories.

As it entails significant amount of run time and memory
to directly process all image frames, we propose a hierarchi-
cal approach for a multi-object tracking that consists of the
following main steps:

1. An image sequence is first divided into multiple
non-overlapping segments where each one consists
of d1 frames.

2. For each segment, an undirected hypergraph is con-
structed where the graph vertices correspond to the
tracklets. Dense structures on a graph are extracted
to generate longer tracklets. The tracklets in all seg-
ments are processed in this manner.

3. Furthermore, temporally dl apart segments are
merged to generate a new segment division for the
next layer.

Steps 2 and 3 are repeated until only one segment
remains in the last layer (i.e., the whole image sequence).
Finally, dense structures are extracted on the constructed
hypergraph of the segment in the last layer to generate the
final target trajectories.

4 EXTRACTING DENSE STRUCTURES

The multi-object tracking problem is solved by exploiting
dense structures on an undirected affinity hypergraph. Here
a dense structure indicates a group of vertices that are inter-
connected by a set of hyperedges with high affinity values.
The core problem for extracting dense structures of a tracklet
on an undirected affinity hypergraph is to estimate the num-
ber of vertices in each dense structure. This number is
treated as the hidden variable in the optimization process
and estimated by maximizing the affinity value of each
structure. Multiple dense structures can thus be extracted.

4.1 Problem Formulation

We denote the collection of detected tracklets in a segment
as fT 1; . . . ; T ng and use ti ¼ fti1; . . . ; tirig to denote the set of
all frame indices of the corresponding tracklet T i

1, where ri
is the length of tracklet T i. In a segment, we construct a
global tracklet affinity hypergraph G ¼ ðV ;E;AÞ to describe
the relationships among multiple tracklets, where the ith
vertex vi 2 V in the hypergraph corresponds to the ith
tracklet T i (i.e., vi � T i), i ¼ 1; . . . ; n, and E is the hyper-

edge set, i.e., E ¼ feeg � V � � � � � V
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k

, where ee ¼ fve1 ; . . . ;
vekg and k is the degree of the hyperedge ee. In one hyper-

graph, A : E ! R is the affinity values of hyperedges in E
which reflects the probability of the tracklets in ee being asso-
ciated with one tracked target. The constructed affinity
graph is a hypergraph when k > 2 and degenerates to a
common graph when k ¼ 2.

In the multi-object tracking context, certain prior knowl-
edge can be exploited for better results, e.g., removing edges
between tracklets that are far apart even when they have
similar appearance. Thus, we construct a vertex constraint
function P indicating whether two vertices in G can belong
to the same hyperedge to guide the construction of hyper-
edges in E.

After constructing a graph G, we exploit the dense struc-
tures to determine the target trajectories. Intuitively, if some

TABLE 1
Notation

Symbol Description

dl Number of temporally adjacent segments in the lth
layer used to generate the new segment division in
the lþ 1th layer.

k k is the degree of an edge
vi ith vertex (tracklet) in the affinity hypergraph.
G Undirected affinity hypergraph, i.e. G ¼ ðV ;EÞ.
V Vertex set of a hypergraph G, i.e. V ¼ fv1; . . . ; vng,

where n is the number of vertices.
E Hyperedge set of the hypergraph, i.e.,

E � V � � � � � V
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k

.
ee k-tuple vertices involved in a hyperedge, i.e.,

ee ¼ fve1 ; . . . ; vekg.
hhi ith minimal size samples involving k� 1 vertices.

1. Note that our definition of tracklets generalizes cases for single
detection response (i.e., jtij ¼ 1) or continuous sequence of detection
responses (i.e., ti ¼ fa� 1; a; . . . ; b; bþ 1g where a < b are two
integers).
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vertices belong to a dense structure, they should be inter-
connected by a set of hyperedges with high affinity values.
Based on this aspect, for the vertex vp, we aim to determine
its dense structure NðvpÞ, which has the maximum value
based on a predefined affinity measure function Gð�Þ of the
vertex set:

N�ðvpÞ ¼ arg max
NðvpÞ

G
�
vp [ NðvpÞ

�
s:t: NðvpÞ � V ; vp =2 N ðvpÞ; jN ðvpÞj ¼ f;

(1)

where f represents the number of vertices in a dense struc-
ture which can be inferred automatically. However, for
multi-object tracking in crowded scenes, it requires high
computational load as the number of hyperedges in G is
large. For example, suppose there are 40 vertices in G, and

the degree k ¼ 5, there exists
40
5

� �
	 6:6� 105 hyperedges.

Nevertheless, when k ¼ 2, G degenerates to a common
graph in which dense structures can be extracted

directly [46]. For computational efficiency, we approximate

a hypergraph G (k 
 3) with a common graph G
$
through a

RCH G0 rather than traversing all the hyperedges of G

in [46]. The details of the algorithm will be discussed in the
following sections.

4.2 Enforcing Hyperedge Constraints

In most multi-object tracking applications, the target objects
are assumed to move under a terminal velocity. We set the
maximal velocity of the tracked targets in a scene to a�

based on prior knowledge of object velocity, and introduce
the vertex constraint function P to guide the construction of
hyperedges in G, i.e., P : V � V ! f0; 1g is a function indi-
cating whether two vertices can be included in the same
hyperedge of G. Clearly, if the two vertices vi and vj overlap
in time, they cannot be associated with the same target since
a target cannot occupy two different positions at a time. We
set Pðvi; vjÞ ¼ 0 if that is the case. Thus, we only consider
the vertices with non-overlapping frame indices. Without
loss of generality, the vertex vi is assumed to precede vj in
the temporal domain. If the ‘2 distance between the last
frame of vi and the first frame of vj is larger than the maxi-
mal distance the target object can reach with the maximal
velocity a� in the corresponding time lapse, we set
Pðvi; vjÞ ¼ 0 to indicate vi and vj cannot be associated with
one target, and otherwise Pðvi; vjÞ ¼ 1.

4.3 Constructing Random Consensus Hypergraph

To convert a hypergraph G to a common graph, we first

approximate it with a RCH G0, which preserves important
dense structures. We gradually sample multiple hypotheti-
cal MSSs fhh1; . . . ; hhi; . . .g, where the ith sampled MSS hhi is a
vertex set involving k� 1 vertices. To ensure all important
structures of a hypergraph are included in a RCH, we tra-
verse all hypergraph vertices to generate the hypothetical
MSSs. For the ith vertex vi, we randomly select the other
k� 2 vertices fvs1 ; . . . ; vsk�2g satisfying the hyperedge con-

straint P. That is, for each sj, Pðvi; vsjÞ ¼ 1, and we have the

hypothetical MSS hhi ¼ fvig [ fvs1 ; . . . ; vsk�2g. The hyper-

edge constraints of target objects are thus integrated in the

process of generating MSSs to remove unreliable hyper-
edges introduced in a RCH. To further remove unreliable
MSSs, we use three affinity functions to quantify the hypo-
thetical MSS hh based on appearance affinity RaðhhÞ, motion
affinity RmðhhÞ, and smoothness affinity RsðhhÞ. A hypotheti-
cal MSS hh is retained if the corresponding affinity values are
all above the predefined thresholds, ua, um, and us.

We compute the confidence scores of all vertices for each
generated MSS to indicate the reliability of all vertices and
MSSs for constructing the hyperedges. The confidence
scores of hhi are defined as

CCðhhiÞ ¼ fC1ðhhiÞ; . . . ; CnðhhiÞg: (2)

If the jth vertex vj is included in hhi (i.e., vj 2 hhi), we set
CjðhhiÞ ¼ m, where m is the predefined confidence threshold.
Otherwise, we have

CjðhhiÞ ¼ v1 � Rað�vvi;jÞ þ v2 � Rmð�vvi;jÞ þ v3 � Rsð�vvi;jÞ; (3)

where Rað�vvi;jÞ, Rmð�vvi;jÞ, and Rsð�vvi;jÞ, are the appearance,
motion, and trajectory smoothness affinities of the vertex set
�vvi;j ¼ hhi [ fvjg, and v1, v2, and v3 are the weight parame-

ters such that
P3

i¼1 vi ¼ 1.
The sampling process of the MSSs is a progressive refine-

ment procedure of a RCH G0 to approximate a hypergraph
G. For each hyperedge ee 2 E, we define its instantaneous
affinity value after sampling the ith MSS hhi,

CeeðhhiÞ ¼ min
j¼f1;...;kg

CejðhhiÞ: (4)

If CeeðhhiÞ is larger than the current affinity value, we set the
hyperedge affinity value to be CeeðhhiÞ. The obtained hyper-

graph is called a Random Consensus Hypergraph G0. As
the number of hypothetical MSSs increases, we obtain a

series of better approximations of hypergraph G, fG01; . . . ;
G0mg, with G0 ¼ G0m. For any hyperedge ee in G0i, we have

AðiÞee ¼ max
i

j¼1
CeeðhhjÞ; (5)

where AðiÞee is the current affinity value of the hyperedge ee

after sampling the ith MSS hhi. We have Að1Þee � . . . � AðmÞee ,
where m is the number of generated hypothetical MSSs.

Clearly, AðiÞee is non-negative with an upper bound. As a

number of MSSs are generated, AðmÞee approximates the
hyperedge affinity value Aee of the original hypergraph G
with non-decreasing affinity values. Thus, we approximate

a hypergraph G using a RCH G0 more accurately by sam-
pling MSSs gradually. Similar to [44], we do not need to
compute or store the affinity value of each hypergraph.
Instead, we store all confidence vectors fCCðhh1Þ; . . . ; CCðhhmÞg
generated by the sampled MSSs and the graph vertices,
which retains all information of a RCH.

As a crucial part in constructing a RCH, three vertex set
affinity functions are described with details. As tracklets that
overlap in time cannot be associated with one target (i.e., one
target cannot occupy two different positions at a time), we
set all affinity measures to zero if that is the case. Thus, in the
subsequent discussion of affinity functions, we consider
only all tracklets with no overlapping frame indices.
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Appearance Affinity. We use object appearance to measure
the affinity of the tracklets sorted in time vv ¼ fv1; . . . ; vug
associated to one target based on three histograms of color,
gradient and local binary patterns (LBPs) [47], respectively.
Specifically, we use 8 bins for each channel of the RGB space
for the color histogram, and 36 dimensions for the gradient
histogram. As depicted in Fig. 2a, for a pair of tracklets vi
and viþ1 with vi preceding viþ1, the appearance affinity is
computed based on the Bhattacharyya similarities between
the color histograms xcðvi; viþ1Þ, gradient histograms xs

ðvi; viþ1Þ, and LBP histograms xbðvi; viþ1Þ in the last frame
detection of vi and the first frame detection of viþ1, that is

’aðvi; viþ1Þ ¼ e�1xcðvi;viþ1Þþ�2xsðvi;viþ1Þþ�3xbðvi;viþ1Þ; (6)

where �1, �2 and �3 are the predefined weight parameters.
Thus, the appearance affinity of a set of tracklets is com-
puted by the sum of affinity values between consecutive
tracklet pairs, i.e.,

RaðvvÞ ¼
Xu
i¼1

’aðvi; viþ1Þ: (7)

Motion Affinity. We use the forward-backward prediction
strategy to measure the motion affinity of the tracklets
sorted in time vv ¼ fv1; . . . ; vug associated with one target.
Before describing the motion affinity of a set of tracklets vv,
we first discuss the motion affinity of a pair of non-overlap-
ping tracklets vi and viþ1 with vi preceding viþ1, which is
computed based on the forward-backward prediction
between the last frame detection of vi and the first frame
detection of viþ1. As depicted in Fig. 2b, the trailing velocity
of vi is first estimated by dividing the position difference of
its last two frame detections with their corresponding time
lapse. The predicted position for the first frame of viþ1 is
obtained by projecting the position of the last frame detec-
tion of vi with the estimated trailing velocity, multiplied by
the time lapse between the last frame of vi and that of the
first frame of viþ1. After that, the ‘2 distance dfpðvi; viþ1Þ
between the actual position of the first frame of viþ1 and its
forward prediction from vi is computed. Similarly, the back-
ward prediction is computed as the ‘2 distance between the
actual position of the last frame of vi and its backward pre-
diction from viþ1, donated as dbpðvi; viþ1Þ. Thus, the motion
affinity between the tracklet vi and viþ1 is computed by

’mðvi; viþ1Þ ¼ e��4
�
dfpðvi;viþ1Þþdbpðvi;viþ1Þ

�
; (8)

where �4 is a weight parameter controlling the sensitivity of
the affinity to the forward and backward distances. After

computing the motion affinity between a pair of tracklets,
we define the motion affinity of the tracklets vv as

RmðvvÞ ¼
Xu
i¼1

’mðvi; viþ1Þ: (9)

Smoothness Affinity. We assume the tracked target objects
to have continuous and smooth motion patterns. The
smoothness affinity is used to evaluate the spatio-temporal
coherence of a longer trajectory formed by a set of non-over-
lapping short tracklets vv ¼ fv1; . . . ; vug. Specifically, we fit a
piecewise second order smooth parametric trajectory with
cubic spline interpolation to a subset of the detection
responses sampled at equal intervals of these tracklets vv as
shown in Fig. 2c. Then, the ‘2 distance dsmoðvvÞ of the remain-
ing detection responses on these tracklets vv with their pre-
dictions based on the fitted smooth curve is computed.
Note that smaller values of this quantity indicate more
coherent of the tracklets in vv associated with the same
tracked target. The smoothness affinity of these tracklets is
computed from dsmoðvvÞ by

RsðvvÞ ¼ e��5dsmoðvvÞ; (10)

where �5 is a weight parameter controlling the sensitivity of
affinity deviation to smooth trajectories.

4.4 Converting Hypergraph to Common Graph

As there usually exist a large number of hyperedges in a
RCH G0, we convert it to a common graph G

$ ¼ ðV $
; E

$
;

W
$ Þ by analyzing the consensus information contained in

G0 to retain most significant structures effectively. The con-
sensus information of vertices describes the mutual sup-
porting evidence of them belonging to the same target
object. In a common graph G

$
, V

$
is the vertex set contain-

ing the same vertices as G0, E
$ ¼ V

$ � V
$

is the edge set
describing the consensus information between different ver-
tices, and W

$
is the weight array of the edges. Intuitively, if

the two vertices are in the same structure (i.e., they are part
of a target trajectory), they are expected to appear in several
hyperedges in a RCH. Thus we construct G

$
by counting

the number of hyperedges with large affinity values for
each vertex pair according to the corresponding confidence
scores fCCðhh1Þ; . . . ; CCðhhmÞg.

To remove unreliable hyperedges counted in the edge
weight W

$
, we construct a binary neighboring graph

Q ¼ ðL; EÞ in which L ¼ fvjjCjðhhsÞ 
 m; j ¼ 1; . . . ; ng is a
vertex set with the confidence larger than m corresponding
to the MSS hhs (m is the predefined confidence threshold)
and E is the edge set describing whether two vertices in L

Fig. 2. (a) Appearance affinity of a set of tracklets. (b) Motion affinity of a set of tracklets. (c) Smoothness affinity of a set of tracklets.
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satisfy P. The neighboring relationship between vertices vi
and vj is constructed if and only if Pðvi; vjÞ ¼ 1. We parti-
tion a binary neighboring graph Q into a few cliques
fY1; . . . ;Ybsg using [48], where Yi is the ith clique in Q,

and bs is the number of cliques in Q. Different from [44],
which treats all vertices equally, we take the confidence
scores between the vertices and MSSs into account. Hence,
the edge weight between a vertex pair vp and vq in G

$
is

defined by

W
$ ðp; qÞ ¼

Xm
s¼1

Xbs
i¼1

X
vp;vq ;vj2Yi
j6¼p;j 6¼q

ki � CjðhhsÞ; (11)

where ki ¼ ð
jYij � 3
k� 3

Þ is the number of hyperedges involv-

ing vertices vp and vq:
2 We note that W

$
is a symmetrical

matrix and thus the computational load can be further

reduced. Algorithm 1 shows the main steps to construct a
common graph from a hypergraph.

Algorithm 1. Constructing a Common Graph

Require: Confidence scores of MSSs fCCðhh1Þ; . . . ; CCðhhmÞg and
confidence threshold m.

1: Set all elements inW
$
to zeros.

2: for s ¼ 1 tom do
3: Construct a binary neighboring graph Q ¼ ðL; EÞ, where

L ¼ fvjjCjðhhsÞ 
 m; j ¼ 1; . . . ; ng and E is the edge set

describing whether two vertices in L satisfying P.
4: Find all the cliques fY1; . . . ;Ybsg in Q using [48].
5: for i ¼ 1 to bs do
6: Compute ki ¼

jYij � 3
k� 3

� �
.

7: for each vertex pair fp; qg, p < q, vp; vq; vj 2 Yi, j 6¼ p,
and j 6¼ q do

8: W
$ ðp; qÞ ¼W

$ ðp; qÞ þ ki � CjðhhsÞ.
9: end for
10: end for
11: end for
12: E

$ ðp; qÞ is added, iffW$ ðp; qÞ > 0.
13: W

$ ðq; pÞ ¼W
$ ðp; qÞ.

Ensure: Common graph with edge E
$
and weightW

$
.

4.5 Extracting Structures on Common Graph

As discussed above, the problem of recovering longer trajec-
tories of target objects is formulated as searching for dense
structures on a constructed common graph G

$
based

on [45]. Starting from each vertex vp, we aim to find f vertices
in V

$
with the maximum value according to a predefined

affinity measure function G
$ ðvp

S
NðvpÞÞ corresponding to

a common graph G
$
, such that the dense structure contains

fþ 1 vertices (as described by (1) in Section 4.1). To avoid
the degeneracy problem, we require the minimal size of
the dense structure to be a fixed number, i.e., f� �
minvp2V

$ jN ðvpÞj. Let U ¼ fvpg
S
NðvpÞ � V

$
be the vertex

set including vp and the f exploited vertices. We use yy 2 Rn

as the indicator vector of the subset U where yi ¼ 1 if vertex

vi is included in the dense structure, vi 2 U , and yi ¼ 0 other-
wise. Thus, we have the following constraints:

Xn
i

yi ¼ fþ 1; yi 2 f0; 1g; yp ¼ 1: (12)

The first two terms requires that fþ 1 vertices are included
in the dense structure, and the last term requires that a solu-
tion must contain vertex vp.

The key issue of exploiting dense structures is the defini-
tion of the affinity measure function G

$ ðvp
S
NðvpÞÞ. For

ease of presentation, we define EU as the edge set corre-
sponding to the vertex set U . Intuitively, if the vertices in U
are associated to the same target, most of the edges in EU

should have large weights. Thus, we use the total weight
value of the edge set EU as the affinity measure function,

eG$ ðUÞ ¼
X

vi;vj2U
W

$ ði; jÞ: (13)

However, in the multi-object tracking context, the weight of
the edges in G

$
are all non-negative and eG$ ðUÞ usually

increases as the number of vertices in U increases, which
makes it hard to handle dense structures of different size.3

Thus, we use the average weight values for the affinity mea-
sure function describing the confidence of dense structures.

Since
Pn

i yi ¼ fþ 1, there are ðfþ 1Þ2 summations in eG$ ðUÞ,
we have

G
$ ðUÞ ¼ 1

ðfþ 1Þ2
eG$ ðUÞ ¼

X
vi;vj2U

W
$ ði; jÞ yi

fþ 1

yj
fþ 1

:

The problem of exploiting dense structures on a common
graph is then formulated as

max
xx

gðxxÞ ¼
X

vi;vj2U
W

$ ði; jÞ � xi � xj

s:t:
Xn
i

xi ¼ 1; xi 2 f0; �g; xp ¼ �;

(14)

where xi ¼ yi
fþ1 and � ¼ 1

fþ1 � 1
f�þ1. To reduce the complexity

of this NP-hard problem, the conditions in (14) are relaxed

to xi 2 ½0; 1
f�þ1�, i.e., xi 
 0, and xi � 1

f�þ1. The pairwise

update algorithm [49] is used to solve (14) effectively. More
details regarding the optimization process for (14) can be
found in [49].

4.6 Post-Processing

The dense structures directly extracted from a common
graph may not obey the physical constraints, e.g., one vertex
included in more than two dense structures violates the
constraint that an object can only occupy one position at a
time. Thus, we propose two post-processing procedures to
remove the conflicts among dense structures. As described
above, the average affinity value of each dense structure
reflects its reliability. Thus, we first obtain the sorted dense
structures fc1; . . . ;cng according to the corresponding
average affinity values in descending order, where n is the

2. The number of hyperedges contained in a RCH, including verti-
ces vp, vq and vj (j 6¼ p and j 6¼ q) is a combinational problem, i.e., select-
ing k� 3 vertices from Yi that exclude the vertices vp, vq and vj.

3. Large size dense structures are always preferable according to
this kind of affinity measure function.
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number of dense structures. Let C� be the dense structure
set after post-processing. We have C� ¼ ; first and add the
sorted dense structures sequentially. For the i-th dense
structure ci, if ci \ c�j ¼ ;, 8j, c�j 2 C�, we add ci to C�,

i.e., C�  C�
S
fcig. Otherwise, if ci \ c�j 6¼ ;, we use the

following conservative or greedy approach to process the
dense structure ci.

Clearly, in the first layer of the hierarchical optimization,
the tracklets are short that contains relative unreliable evi-
dence (due to limited motion and appearance information)
to ensure the accuracy of dense structures. To avoid identity
switches, a conservative approach is used to remove the
intersecting part from ci and then add it to C�, i.e.,
ci  ci=c

�
j and C�  C�

S
fcig. On the other hand, the

tracklets are much longer in the remaining layers and con-
tain enough evidence (with much richer motion and
appearance information). To reduce the fragmentation
errors of tracklets, a greedy approach is designed by directly
adding the cluster ci to c�j , i.e., c

�
j  c�j

S
ci. With these

procedures, the post-processed dense structure set C� is
extracted. According to the post-processed dense structure
set C�, the target trajectories in the segment are obtained by
threading the tracklets in the same dense structure based on
their temporal ordering.

5 EXPERIMENTS

We evaluate the proposed algorithm against the state-of-
the-art methods on both multi-pedestrian and multi-face
tracking tasks. We denote the method of our prior work [46]
as H2T_woAcc which directly exploits dense structures on a
hypergraph using the pairwise update algorithm [49], and
denote the proposed RANSAC-style algorithm that exploits
dense structures as H2T_Acc. The source code and datasets
will be made available to the public.

5.1 Datasets

Multi-Pedestrian Datasets. For multi-pedestrian tracking
experiments, we use five sequences from the PETS2009
dataset [50]: S2L1, S2L2, S2L3, S1L1-1, and S1L1-2 sequences
and the ParkingLot dataset [19]. These sequences can be
roughly categorized as low-density (S2L1 and ParkingLot),
or high-density (S2L2, S2L3, S1L1-1, and S1L1-2). The S2L1
sequence is widely used for multi-object tracking which
consists of 795 frames with non-linear motion patterns, mul-
tiple similar objects appearing at proximity with frequent
occlusions. The ParkingLot sequence contains 1;000 frames
of a few pedestrians. The S2L2 and S2L3 sequences are
high-density datasets with long-term occlusions and vari-
ous motion patterns, which contain 436 and 240 frames,
respectively. The S1L1-1 and S1L1-2 sequences are more
challenging datasets which contain a large crowd of pedes-
trians with 221 and 241 frames, respectively.

Multi-Face Datasets. In addition to pedestrians, we also
evaluate multi-object tracking methods on the SubwayFaces
dataset, which is captured from surveillance videos with
ground truth annotations. The dataset consists of the S001,
S002, S003, and S004 sequences with 1;199, 1;000, 1;600, and
1;001 frames, respectively. The S001, S002, and S004 sequen-
ces contain a crowd of people with frequent occlusions,

whereas the S003 sequence is composed of a few fast mov-
ing people with blurry appearance.

5.2 Evaluation Metrics

We use two CLEAR Multi-Object Tracking (MOT) met-
rics [51] for evaluation, i.e., the Multi-Object Tracking
Accuracy (MOTA) and Multi-Object Tracking Precision
(MOTP) metrics. The MOTA metric integrates False Nega-
tives (FN), False Positives (FP), and Identity Switches (IDS)
to evaluate the overall performance of a tracker. On the
other hand, the MOTP metric computes the total error of
estimated positions for matched object-hypothesis pairs
over all frames, with normalization to the hit/miss thresh-
old value. In addition, we report the Mostly Lost (ML), the
Mostly Tracked (MT), the Ground truth Trajectories (GT),
the Identity Switches (IDS), and the Fragmentations of the
target trajectories (FM) scores. The ML and MT metrics
measure the percentage of tracked trajectories less than
20 percent of the time span based on the GT, and the tar-
gets successfully tracked (where objects are tracked at least
80 percent of the time span). The IDS metric summarizes
the number of times that the matched identity of a tracked
trajectory changes, while the FM measure is the number of
times that trajectories are disconnected. The IDS and FM
metrics reflect the accuracy of tracked trajectories. Other
metrics including Recall (Rcll), Precision (Prcsn), and False
Alarms per Frame (Fa/F) are also presented.

5.3 Multi-Pedestrian Tracking

It is well known in the MOT literature [52] that detection
results and ground truth annotations are important for perfor-
mance evaluation. For fair and comprehensive comparisons,
we use the original source codes [8], [10], [33], [34], with the
same detection results and ground truth annotations in each
sequence for all methods. In addition, some reported results
(marked by asterisk) are also listed for comparisons. Table 3
shows quantitative multi-pedestrian tracking results of the
H2T_woAcc and H2T_Acc algorithms, as well as eight state-
of-the-art trackers [5], [8], [10], [19], [33], [34], [41], [53]. Fur-
thermore, we also report the average performance of the
trackers across all image sequences. Some qualitative tracking
results of the H2T_Acc method are shown in Fig. 5, and more
tracking results are available at www.youtube.com/watch?
v=bZYbVRF7Jfw&feature=youtu.be/.

It is worth noting that the H2T_woAcc and H2T_Acc
methods track all targets in the 2D image plane. Since most
trackers track targets of the PETS2009 sequences in the 3D
space, we evaluate the tracking results similar to [53]. For
3D evaluations, the hit/miss threshold of the distance
between an output trajectory and the corresponding ground
truth on the ground plane is set to be 1 meter. In addition,
2D evaluations are carried out on the ParkingLot sequence
as the camera parameters are not known. For 2D evalua-
tions, the hit/miss threshold of the bounding box overlap
between an output trajectory and the ground truth is set to
be 50 percent.

5.3.1 Parameter Settings

The parameters for the H2T_Acc method are detailed as
follows. The maximal velocity a� of a tracked target is
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empirically set to be 50 pixels per frame. The affinity thresh-
olds ua, um, and us for MSS generation are 0:5, 0:35, and 0:2,
respectively. The weight parameters for computing the con-
fidence between the vertices and MSSs in (3) are v1 ¼ 0:6,
v2 ¼ 0:2, and v3 ¼ 0:2. The number of generated MSSs m is
set to be 60 for each vertex, and the preset confidence
threshold m indicating whether the vertex belongs to the
model is set to be 0:1. The values for parameters �1; . . . ; �5

for computing affinity based on appearance, motion and
smoothness affinities are: �1 ¼ 0:7, �2 ¼ 0:1, �3 ¼ 0:2 in (7);
�4 ¼ 0:02 in (9); �5 ¼ 0:01 in (10). The minimal size of the
dense structure parameter f� is 3.

The hypergraph degree k and the number of tempo-
rally adjacent segments dl are two critical parameters for
the H2T_Acc method. To examine the effect of the hyper-
graph degree k, we change the value of k from 2 to 8
while keeping other parameters fixed. Since only the com-
mon graph is used to describe the pairwise similarities
between the tracklets for k ¼ 2, the H2T_woAcc method
and the H2T_Acc method achieve the same tracking per-
formance. We present the results of both the H2T_woAcc
and H2T_Acc methods for k ¼ 2; . . . ; 6 on the S2L2
sequence, due to high computational cost of the
H2T_woAcc method when k is larger than 6. As depicted
in Fig. 3, the performance for both the H2T_woAcc and
H2T_Acc methods decrease as k increases when k is larger
than 5. Taking both accuracy and speed into account, we
use the hypergraph of degree 3 in our algorithm for
multi-pedestrian tracking.

For the number of temporally adjacent segments dl, we
set dl to be d� for all layers l > 1, and d1 to be d in all the
experiments. To show the effect of dl, we carry out two
experiments: 1) change d from 6 to 15 while keeping other
parameters fixed; 2) change d� from 2 to 8 while keeping
other parameters fixed. The results of the first experiment,
presented in the first column of Fig. 4, show that d has lim-
ited effect on the performance, and the speed is decreased
as the segment size increases in the first layer. We set d to
be 8 in the following experiments. The results of the second
experiment, presented by the curves in the second column
of Fig. 4, demonstrate that d� has little effect on both accu-
racy and speed of the H2T_Acc method. In the following
evaluations, we set d� to be 4.

5.3.2 Discussion

We first demonstrate the contributions of different compo-
nents of the proposed algorithm in Table 2 using the CLEAR
MOT metrics.

Effectiveness of Dense Structures. We construct two track-
ers to demonstrate the effect of dense structures exploited
in the proposed algorithm. One is the undirected Hierarchi-
cal affinity Graph based Tracker (HGT) which considers

Fig. 3. Effect of the hypergraph degree k on tracking performance and
running speed for the H2T_Acc (Denoted by the suffix _Acc) and the
H2T_woAcc (Denoted by the suffix _woAcc) methods. The left and right
figures show the tracking performance in terms of accuracy (measured
by MOTA) and speed (measured by frame-per-second (fps)) by changing
the hypergraph degree k.

Fig. 4. Effect of the number of temporally adjacent segments used to
generate the new segment division for both the first layer and the
remaining ones. The first and second columns present the tracking per-
formance (measured by MOTA) and speed (measured by frame-per-sec-
ond) by changing d and d�.

TABLE 2
Effect of Different Components in the Proposed Method

The symbol " means higher scores indicate better performance while # means lower scores indicate better performance. The red and blue colors indicate the best
and second best performance of the tracker on that metric.
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pairwise similarities between tracklets, and the other one is
based on the widely used Hungarian algorithm. Since simi-
larities between different tracklets of both methods are the
same as the H2T_Acc method, we evaluate these two algo-
rithms to demonstrate the importance of exploiting dense
structures for MOT.

Table 2 shows that the HGT algorithm outperforms the
Hungarian algorithm. The Hungarian algorithm uses the
similarities between pairwise tracklets greedily instead of
considering multiple similarities of pairwise tracklets
jointly used in the HGT algorithm. Consequently, the
Hungarian algorithm generates a considerable number of
incorrect associations as shown by the high IDS and FM
scores. The IDS, FM, and MOTA scores on average
performance of both methods show that exploiting dense

structures on the affinity graph significantly helps
improve tracking performance.

Effectiveness of Hypergraph. To demonstrate the impor-
tance of hypergraph in the proposed algorithm, we compare
the H2T_woAcc and HGT methods. The HGT algorithm
merely considers pairwise similarities between tracklets
instead of the high-order similarities among multiple track-
lets in a hypergraph of the H2T_woAcc method.

As shown in Table 2, the H2T_woAcc algorithm performs
well with higher MOTA scores in three sequences, and bet-
ter results on IDS and FM metrics in all sequences than the
HGT method. These results can be attributed to the use of
hypergraphs in which high-order similarities among multi-
ple tracklets instead of simple pairwise ones are used such
that full motion information is exploited in the presence

TABLE 3
Quantitative Comparison Results of the Proposed Trackers with Other State-of-the-Art Trackers in the Multi-Pedestrian

Tracking Sequences (Results Marked with the Asterisk Are Taken Directly from the Literature)

The symbol " means higher scores indicate better performance while # means lower scores indicate better performance. The red and blue colors indicate the best
and the second best performance of the tracker on that metric.
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of appearance ambiguities, thereby reducing IDS by 8 per-
cent and FM by 26 percent on average. Although we use an
approximate algorithm to convert the hypergraph to a com-
mon graph, such that the dense subgraph can be searched
efficiently, the approximate common graph retains the
high-order information to ensure tracking performance.

5.3.3 Quantitative Evaluation

As presented in Table 3, the H2T_woAcc and H2T_Acc
methods perform favorably against the state-of-the-art
trackers [8], [10], [33], [34] with more than 8 and 9 percent
gain in MOTA and MT scores, while on average reducing
more than 7 percent trajectories that are not correctly
matched (ML score) by other methods.

Low-Density Sequences. The S2L1 sequence is one of the
most widely used videos in multi-pedestrian tracking
which contains non-linear motion, targets in close proxim-
ity with similar appearance and frequent occlusions. As
shown in Table 3, the H2T_woAcc and H2T_Acc methods
perform well against the state-of-the-art trackers based on
the MOTA metric. The ParkingLot sequence contains
14 pedestrians with frequent occlusions and similar
appearance. Table 3 shows that the proposed H2T_woAcc
and H2T_Acc algorithms outperform the state-of-the-art
trackers [8], [10], [33], [34] in nearly all metrics.

Table 3 shows that in the two low-density sequences the
H2T_Acc method outperforms other trackers with high
MOTA and MT scores as well as low IDS and FM scores.
When only local similarities of detection results are con-
sidered, it is difficult for other methods [8], [10], [33], [34]
to robustly track multiple objects, especially when two

similar targets appear in close proximity. Note that the
H2T_Acc algorithm performs well by considering similar-
ities among multiple tracklets across the temporal
domains in a global view, thereby achieving lower IDS
and FM than other methods.

Compared to the H2T_woAcc tracker, the H2T_Acc
method achieves comparable performance in most metrics
(i.e., MOTA, MT and FM). Fig. 3 also shows that the
H2T_Acc method performs well against the H2T_woAcc
tracker when the degree of hypergraph changes in both
S2L1 and S2L2 sequences with much faster execution speed.
This can be explained by hypothesize-and-test approaches
which construct a common graph that approximates a
hypergraph to efficiently exploit dense structures. Specifi-
cally, as shown in Fig. 3, we note that both the H2T_woAcc
and H2T_Acc methods perform well for the hypergraph
with the degree between 3 and 5. That is, the approaches
using excessive high-degree hypergraphs to exploit dense
structures are not effective in dealing with scenes where
objects move in drastically different direction and speed.

High-Density Sequences. The S2L2 sequence contains 74
pedestrian with different motions and frequent occlusions,
while the S2L3 sequence contains up to 44 pedestrians with
frequent occlusions and illumination changes. The proposed
H2T_woAcc and H2T_Acc algorithms perform well in both
sequences in terms of MOTA,ML, FN and Rcll metrics.

The S1L1-1 and S1L1-2 sequences are two dense sequen-
ces containing target objects with linear motion patterns.
Overall, the H2T_Acc method performs well with high
MOTA, MT, FN, and Rcll scores and low ML scores. The
results also demonstrate that the H2T_Acc method performs

TABLE 4
Quantitative Results of the Evaluated MOTAlgorithms in the Subway Surveillance Sequences

The symbol " denotes higher scores indicate better performance while #means lower scores indicate better performance. The red and blue colors indicate the best
and second best performing method using one metric.
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more effectively on the high-density sequences. As pre-
sented in Table 3, the H2T_Acc method outperforms the
state-of-the-art trackers [8], [10], [33], [34] in the high-den-
sity sequences with the highest MOTA scores, mainly by
exploiting the hierarchical dense structures which consider
similarities among multiple tracklets globally.

Although the H2T_Acc algorithm performs better than
the H2T_woAcc method in MOTA, it has higher IDS and
FM scores. This can be explained by two factors. First, in the
crowded scenes, the hypothesize-and-test process in the
H2T_Acc method facilitates exploiting dense structures in
the presence of noise. Second, some true positives for each
dense structure are inevitably removed in the sampling pro-
cess, thereby resulting in higher IDS and FM scores.

The H2T_Acc and H2T_woAcc methods perform worse
in terms of MOTP for the crowded scenes (e.g., S2L2, and
S2L3) containing non-linear motion patterns. As the linear
interpolation based trajectory recover mechanism is used in
the proposed methods, it is unlikely to handle scenes with
non-linear target motions precisely. On the other hand,
methods that perform well with higher MOTP [8], [34] fail
to re-identify the targets when the occlusions occur and
miss the targets completely, as shown by the FN scores.

5.4 Multi-Face Tracking

We evaluate the proposed algorithms on four challenging
multi-face tracking sequences, which are collected by our-
selves in the crowded subway scenes. For fair comparisons,
we use publicly available source codes [8], [10], [33], [34]
with the same detection results and annotated ground truth
as our methods. Both the H2T_woAcc and H2T_Acc meth-
ods track multi-face in the 2D image plane. Similar to multi-
pedestrian tracking, the hit/miss threshold is set to be 50
percent. Quantitative evaluation results using different met-
rics are shown in Table 4, and some tracking screenshots are
presented in Fig. 5.

For multi-face tracking, we consider both face and
upper torso regions for object representations. We include
z percent of a whole face (20 percent in all our experi-
ments), and extract color, gradient, and LBP histograms
for representation. Most parameters for multi-face track-
ing are set the same as the multi-pedestrian tracking, as
described in Section 5.3.1, except the number of tempo-
rally adjacent segments used to generate the new segment
division is set as d1 ¼ d ¼ 10, dl ¼ d� ¼ 5, l > 1, and the
maximal velocity of the tracked objects in the scene a� is
set to be 60 pixels per frame.

Fig. 5. Tracking results of the proposed tracking algorithm in multi-pedestrian tracking sequences (PETS2009-S2L2 and PETS2009-S2L3) and multi-
face sequences (SubwayFaces-S001 SubwayFaces-S002, SubwayFaces-S003 and SubwayFaces-S004). The highlighted area in the PETS2009
sequences is the tracking region which is set as [53].
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5.4.1 Quantitative Evaluation

Compared to the state-of-the-art trackers [8], [10], [33], [34],
Table 4 shows the proposed H2T_woAcc and H2T_Acc algo-
rithms achieve more than 3:2 percent and 1:9 percent
improvements on MOTA and MT metrics, while reduce
more than 24 percent IDS of average performance.

Low-Density Sequence. The S003 sequence contains a few
faces in the scenes. Due to large illumination variations and
motion blurs, some faces are not detected in all the frames,
which in turn affects the performance of the tracking meth-
ods. In contrast to the state-of-the-art trackers [8], [10], [33],
[34], the H2T_Acc method performs well since it considers
similarities among multiple tracklets across the temporal
domain and associates the tracklets with long-term tempo-
ral interval. Meanwhile, the H2T_Acc algorithm performs
better than the H2T_woAcc method with higher MOTA, MT
and Rcll, and lower IDS and ML scores, mainly due to the
RANSAC-style optimization process for exploiting dense
structure that helps distinguish noisy observations.

High-Density Sequences. The S001, S002, and S004 sequen-
ces contain multiple faces with fast motion and frequent
occlusions in the unconstrained scenes. The H2T_Acc
method performs well against the state-of-the-art track-
ers [8], [10], [33], [34], which can be explained by high-order
similarities among multiple tracklets for distinguishing sim-
ilar targets in close proximity. In contrast to multi-pedes-
trian tracking, the H2T_Acc algorithm outperforms the
H2T_woAcc method with higher MOTA, MT, ML, IDS, FM,
FN, Rcll scores in most of the sequences. Overall, the
H2T_Acc method is more effective for handling multi-object
tracking in scenes (e.g., the crowded scenes) where the tar-
gets are similar but with different motion patterns.

5.5 Run Time Performance

We implement the H2T_woAcc and H2T_Acc methods in C
++ without any code optimization. We run all the evaluated
tracking methods five times in a single thread for all the
sequences of both the multi-pedestrian and multi-face track-
ing on a laptop with a 3.2 GHz Intel processor and 16 GB
memory. Given the detection responses, we present the
average execution speed for all these trackers in Table 5.
Frame-per-second (fps) is used to measure the speed of the
tracker. Compared with other state-of-the-art methods [8],
[10], [33], [34], the proposed H2T_Acc algorithm performs

well in run time for both multi-pedestrian and multi-face
tracking sequences. Meanwhile, the H2T_Acc method gen-
erates better tracking results against [8], [10], [33], and [34]
with 14:6, 20:7, 10:5 and 8:1 percent higher MOTA scores in
multi-pedestrian tracking (Table 3) and 3:2, 13:0, 26:9 and
8:2 percent higher MOTA scores in multi-face tracking
(Table 4). In addition, the H2T_Acc algorithm runs about 4:5
times faster in the multi-pedestrian tracking sequences and
5:2 times faster in the multi-face tracking sequences than
the H2T_woAcc method on average, respectively. Overall,
the proposed H2T_Acc method is more effective for multi-
object tracking tasks in real-world applications.

6 CONCLUSION

In this paper, a multi-object tracking algorithm that exploits
dense structures is proposed. The multi-object tracking task
is carried out by exploiting dense structures on multiple
affinity hypergraphs constructed hierarchically, which con-
sider similarities among different tracklets across the tem-
poral domain for better association in terms of identity and
trajectory. Visual cues including appearance, motion and
trajectory smoothness are used for measuring affinity. For
computational efficiency, we propose a hypothesize-and-
test algorithm to approximate a hypergraph with a common
graph from which the dense structures are exploited. Exper-
imental evaluations on both multi-pedestrian and multi-
face tracking demonstrate the proposed algorithms perform
favorably against the state-of-the-art tracking methods.
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