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Abstract—A robust algorithm is proposed for tracking a target object in dynamic conditions including motion blurs, illumination

changes, pose variations, and occlusions. To cope with these challenging factors, multiple trackers based on different feature

representations are integrated within a probabilistic framework. Each view of the proposed multiview (multi-channel) feature learning

algorithm is concerned with one particular feature representation of a target object from which a tracker is developed with different

levels of reliability. With the multiple trackers, the proposed algorithm exploits tracker interaction and selection for robust tracking

performance. In the tracker interaction, a transition probability matrix is used to estimate dependencies between trackers. Multiple

trackers communicate with each other by sharing information of sample distributions. The tracker selection process determines the

most reliable tracker with the highest probability. To account for object appearance changes, the transition probability matrix and tracker

probability are updated in a recursive Bayesian framework by reflecting the tracker reliability measured by a robust tracker likelihood

function that learns to account for both transient and stable appearance changes. Experimental results on benchmark datasets

demonstrate that the proposed interacting multiview algorithm performs robustly and favorably against state-of-the-art methods in

terms of several quantitative metrics.

Index Terms—Object tracking, multiview representations, transition probability matrix, tracker interaction, multiple features

Ç

1 INTRODUCTION

VISUAL tracking is a fundamental problem in computer
vision, which finds a wide range of applications. For

practical applications, it is essential for tracking algorithms
to account for large appearance changes caused by illumina-
tion, pose variations, occlusions, and motion blurs [34] as
shown in Fig. 1. To cope with large appearance changes,
numerous methods based on multiple features have been
proposed for robust visual tracking where different types of
features are used complementarily for different scenarios.
However, although significant progress has been made in
the past decade, it remains a difficult problem to exploit
and integrate multiple features for robust visual tracking.
The most essential task is how to combine features adap-
tively to account for appearance changes. Here, it should be
noted that each feature has different characteristics against
appearance changes. For instance, representations based on
histogram of oriented gradients (HOG) [7] are robust to
pose variations, and appearance models based on Haar-like
features [11] are effective to deal with occlusion.

In this paper, we propose a novel visual tracking algo-
rithm that exploits and integrates multiple feature represen-
tations by considering their distinct characteristics to
better account for appearance changes for robust tracking.

Features with different and complementary representation
strengths are exploited, and multiple feature representa-
tions are used by trackers to describe object appearance.
Each view (channel) of the multiview (multi-channel) fea-
ture learning framework is concerned with one particular
representation of a target object [32]. Since each feature is
defined in a different space, the likelihood probabilities by
multiple trackers are computed at different scales. Conse-
quently, the posterior distribution of each tracker is differ-
ent even though the object state is defined in the same state
space, as illustrated in Fig. 2. Hence, the scale difference
should be taken into account when these posterior probabil-
ities are used together for object state estimation. Neverthe-
less, it is difficult to assign the weights or to project different
features to the same space. In this work, instead of combin-
ing multiple posterior distributions in mixture form
directly, we select the most reliable tracker at each instance.
In addition, to prevent unreliable trackers from drifts, the
trackers are designed to share their sample distribution
information via interaction. Consequently, unreliable track-
ers receive more reliable samples from reliable ones.

The main components of the proposed algorithm are
shown in Fig. 3. At its core, a multiview feature representa-
tion [32] of a target object is proposed to account for appear-
ance variations. Each tracker is developed based on one
view (representation) of the target object. In addition, these
trackers actively interact with each other to provide essen-
tial information of samples for effective visual tracking. To
integrate multiple trackers for robust visual tracking, we
propose the tracker selection and tracker interaction modules
within a Bayesian framework. The tracker selection process
determines the most reliable one in terms of tracker proba-
bilities. The trackers share information of sample distribu-
tions through interaction based on a transition probability
matrix (TPM) and a resampling method to remove unreli-
able samples. Through this interaction, the visual drifting
problem can be alleviated. In the proposed algorithm, we

� J. H. Yoon was with the School of Information and Communications,
Gwangju Institute of Science and Technology, and he is currently with
the Multimedia IP Center, Korea Electronics and Technology Institute,
Seongnam-si, Gyeonggido, Republic of Korea. E-mail: jhyoon@keti.re.kr.

� M.-H. Yang is with in the School of Engineering, University of California,
Merced, USA. E-mail: mhyang@ucmerced.edu.

� K.-J. Yoon is with the School of Information and Communications,
Gwangju Institute of Science and Technology, Gwangju, Republic of
Korea. E-mail: kjyoon@gist.ac.kr.

Manuscript received 27 May 2014; revised 15 Feb. 2015; accepted 4 May
2015. Date of publication 26 Aug. 2015; date of current version 8 Apr. 2016.
Recommended for acceptance by S. Avidan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2015.2473862

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 5, MAY 2016 903

0162-8828� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



approximate the posterior distribution of each tracker by a
set of samples. The interaction between trackers is imple-
mented by two operations: retaining its own samples and
receiving samples from other trackers. The objective of the
transition probability matrix is to determine the number of
samples for the aforementioned operations of each tracker.

In addition, to account for object appearance changes, we
compute the tracker reliability and update the transition
probability matrix to integrate trackers. The update of the
transition probability matrix is formulated in a recursive
Bayesian framework with a tracker likelihood function
(TLF) measuring each tracker reliability at each frame. The
reliability of each tracker is used in the tracker interaction
and selection processes. Both abrupt and stable appearance
changes are considered in the tracker likelihood function.
Abrupt appearance changes are modelled by multiple fea-
ture representations. On the other hand, stable appearance
chances are described by a set of representative templates.

The contributions of the proposed interacting multiview
tracking algorithm are as follows. First, we propose a novel
tracking algorithm that integrates multiple trackers con-
structed by different feature representations via selection
and interaction. Second, a robust likelihood function is pro-
posed to measure tracker reliability, which is of great
importance for robust tracking. Third, a novel tracker inter-
action scheme is proposed by using the transition probabil-
ity matrix with a resampling technique. Experimental
results on large-scale benchmark datasets show that the pro-
posed tracking algorithm performs favorably against state-
of-the-art methods.

Preliminary results of this work were presented in [35].
In this paper, we provide more detailed descriptions and
analysis of the proposed interacting multiview tracking
algorithm with full derivation and detailed implementation.
We compare the proposed algorithm with 10 top perform-
ing trackers on 51 benchmark sequences from [31]. In

Fig. 1. Tracking results from videos with low contrast, drastic lighting
changes, and pose variations (best viewed on high-resolution displays).
The proposed algorithm (IMT) performs favorably against three top-
ranked trackers (i.e., Struck [13], SCM [37], and ASLA [16]) from a
recent benchmark study [31]. Quantitative results are presented in
Table 3 and Fig. 7.

Fig. 2. As trackers are constructed using different features, correspond-
ing posterior distributions (pðxjzÞ) are of different scales. su denotes the
standard deviation of u.

Fig. 3. Components of the proposed tracking algorithm.
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addition, the three most related methods (CVT [22], MCS
[4], and FCT [15]) are compared with detailed analysis. Fur-
thermore, additional analysis is presented to demonstrate
the effectiveness of the proposed interacting algorithm.

2 RELATED WORK AND PROBLEM CONTEXT

Numerous tracking methods have been proposed using
multiple features over the past decade. In this section, we
discuss the approaches that are closely related to our work,
where appearance models are constructed based on differ-
ent features. The tracking algorithms that use multiple fea-
tures can be categorized as a single tracker with multiple
observations [6], [30], [36], cascade trackers [10], [26], and
parallel trackers [3], [4], [20], [22].

2.1 Multiple Observations

Assuming that features are conditionally independent, mul-
tiple observations are combined in product form for visual
tracking [6], [30], [36]. However, the reliability of each
observation model (based on one different feature) in these
approaches is not estimated for combination, which is of
crucial importance as each feature is effective for describing
certain appearance changes (e.g., pose, illumination, and
blur). In contrast, the reliability of each tracker in this work
is measured by the tracker likelihood function and reflected
in the tracker integration process.

2.2 Cascade Trackers

In [10], a visual tracking method based on a coupled hid-
den Markov model to combine particle filters and visual
cues is proposed. The approach in [26] sequentially esti-
mates object states using the Kalman and particle filters
with multiple features including rectangular shape, dis-
criminative cues between the foreground and background,
color distribution, and object contour. The state predic-
tions from Kalman filter based on rectangular shape are
passed to the other particle filters for sequential process-
ing. These estimated states are combined in a Bayesian fil-
ter to determine the object location in each frame. In [26],
the adopted features are dependent and the sequential
state predictions from early stages are forwarded to the
next stage for processing and integration. Thus, it is diffi-
cult to add new trackers using other features for different
tasks. In the proposed algorithm, all trackers operate in
parallel and interact with others, thereby facilitating the
addition of other trackers when necessary.

2.3 Parallel Trackers

In [22] and [4], two trackers with different features are com-
bined and target locations are estimated by fusing tracking
outputs [22] or selecting the most reliable one [4] based on
covariance matrices of posterior distributions. However, a
covariance matrix is not effective for measuring the reliabil-
ity of a tracker when each posterior distribution is com-
puted using observation models with different features (See
Fig. 2). Different from [22] and [4], the proposed algorithm
selects the most reliable tracker via the proposed tracker
likelihood function rather than covariance matrices. The
tracker likelihood function is designed to deal with both
abrupt and stable appearance changes. Furthermore, the

proposed method provides a more general framework that
accommodates more than two feature representations. In
[20], multiple trackers constructed from four observation
models (based on hue, saturation, intensity, and edge fea-
tures) and two motion models are used to account for
appearance and motion changes. While all trackers operate
in parallel, the interaction among trackers is based on heu-
ristics as uniform sampling is carried out with a threshold
computed by a normalized likelihood ratio. In contrast, the
proposed interaction scheme utilizes the transition probabil-
ity matrix which represents probabilistic dependencies
between trackers. Since the transition probability matrix is
recursively updated by measuring the reliability of each
tracker, unreliable trackers become more dependent on reli-
able ones to draw samples. As a result, the drifting problem
with unreliable trackers is alleviated.

3 ALGORITHMIC OVERVIEW

In the proposed algorithm, multiple interacting trackers
based on different feature representations are used as
shown in Fig. 3. The reliability of trackers as well as their
inter-dependencies are taken into account, and in turn so
are the drawn samples from an individual tracker. First,
each tracker estimates the object state independently, and
then the reliability of each estimated object state is mea-
sured by the robust tracker likelihood function. These likeli-
hoods are used to update the tracker probabilities to select
the most reliable one. In addition, the result from the most
reliable tracker is used to update the object appearance in
the representation update. To compute the current depen-
dencies of each tracker on other trackers, the transition
probability matrix is also updated by using the likelihoods
from the TLF. By using the TPM, the tracker interaction
makes unreliable trackers to depend more on the reliable
ones to prevent the unreliable trackers from drifting. These
interacted trackers are used to estimate the object state for
the next frame.

4 STATE ESTIMATION BY TRACKERS

The goal of visual tracking is to estimate an object state
given the observations z1:t ¼ fz1; . . . ; ztg up to time t. In this

work, the object state is defined as xt ¼ ½ut; vt; ut; st;at;ft�>
where ðut; vtÞ, ut, st, at, and ft denote the position, rotation
angle, scale, aspect ratio, and skew direction, respectively,
to account for affine motion. To robustly handle different
kinds of appearance changes, we exploit multiple features
for observation models of multiple trackers. Let mt 2
f1; . . . ;Mg denote the index of M trackers constructed from
M different features. For simplicity, we denote the ith

tracker index as mi
t , hmt ¼ ii. We propose algorithms for

the interaction and selection of M trackers. The tracker
selection process determines the most reliable tracker at
each frame. On the other hand, the drifting problem for the
other M-1 trackers is alleviated via tracker interaction. Dif-
ferent from the method based on multiple models [5] where
several motion predictions are used for feature point track-
ing, we exploit a number of representations in the proposed
algorithm. Furthermore, we propose a novel tracker interac-
tion approach using a particle filter.
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The reliability of the ith tracker is represented by the

tracker probability Pfmi
tjz1:tg. The posterior distribution of

object state xt by the ith tracker is computed by

pðxtjz1:t;mi
tÞ ¼

pðzkjxt;mi
tÞpðxtjz1:t�1;m

i
tÞR

pðztjxt;mi
tÞpðxtjz1:t�1;m

i
tÞdxt

; (1)

where pðztjxt;mi
tÞ is the observation model of the ith tracker

and pðxtjz1:t�1;m
i
tÞ is a sample distribution by the ith tracker

given the observations up to time t-1 computed via
interaction.

4.1 Tracker Interaction

The predicted distribution is computed with mixing proba-
bilities Pfmj

t�1jmi
t; z1:t�1g by

pðxtjz1:t�1;m
i
tÞ

¼
Z

pðxtjxt�1;m
i
tÞ~pðxt�1jz1:t�1;m

i
tÞdxt�1; and

~pðxt�1jz1:t�1;m
i
tÞ

¼
XM
j¼1

pðxt�1jz1:t�1;m
j
t�1ÞPfmj

t�1jmi
t; z1:t�1g;

(2)

where pðxtjxt�1; m
i
tÞ is a motion model and ~pðxt�1jz1:t�1;m

i
tÞ

is an interacted prior distribution. The mixing probability is
computed by

Pfmj
t�1jmi

t; z1:t�1g

¼ Pfmi
tjmj

t�1; z1:t�1gPfmj
t�1jz1:t�1gPM

l¼1 Pfmi
tjml

t�1; z1:t�1gPfml
t�1jz1:t�1g

:
(3)

Note that both the tracker probability and interaction proba-
bility are defined by the discrete probability Pf�g as the
number of the trackers is finite, and they satisfyX

i

Pfmi
tjz1:tg ¼ 1;

X
j

Pfmj
t�1jmi

t; z1:t�1g ¼ 1:

Motion smoothness is a constraint often considered in fea-
ture point tracking [5] and, thus, model probabilities

Pfmj
t�1jz1:t�1g at time t-1 are useful. However, in visual

tracking, it is not effective to use previous model (tracker)
probabilities to compute an interacted prior distribution, as
occlusion, abrupt pose variations, or significant motion blurs
scan cause abrupt appearance changes. Thus, we assume that
all tracker probabilities are equal in the interaction scheme
and then approximate themixing probability in (3) by

Pfmj
t�1jmi

t; z1:t�1g � Pfmi
tjmj

t�1; z1:t�1g; (4)

where Pfmi
tjmj

t�1; z1:t�1g is an interaction probability.

4.2 Tracker Selection

We obtain the tracking result x̂t by selecting the most reli-
able tracker that has the highest tracker probability by

x̂t ¼ argmax
xt

pðxtjz1:t; m̂tÞ;
m̂t ¼ argmax

mi
t

Pfmi
tjz1:tg; i ¼ 1; . . . ;M:

(5)

From (2), (4), and (5), both the tracker and interaction proba-
bilities are utilized to estimate the object state and integrate

multiple trackers. In addition, both tracker and interaction
probabilities are updated.

5 ONLINE UPDATE

In contrast to existing methods based on multiple trackers
[4], [22], we estimate not only object states but also the tracker
and interaction probabilities for efficient and effective inte-
gration. Since different features are effective in accounting
for certain appearance changes, multiple representations are
used to construct trackers. In addition, the reliability of each
tracker varies since each one is designed in a different feature
space. To achieve robust integration, we consider the reliabil-
ity of each trackers in the interaction and selection processes.

For notation simplicity, we denote the tracker likelihood
function of the ith tracker as

pðztjmi
t; z1:t�1Þ , Li

t: (6)

Similarly, the notations of the tracker and interaction proba-
bilities are denoted by

Pfmi
tjz1:tg , T i

t ;

Pfmi
tjmj

t�1; z1:t�1g , �vj;i
t :

(7)

These notations are used in the following sections for updat-
ing the tracker and interaction probabilities based on TLF.

5.1 Tracker Probability Update

The tracker probability is updated as

Pfmi
tjz1:tg ¼ pðztjmi

t; z1:t�1Þ
pðztjz1:t�1Þ Pfmi

tjz1:t�1g

¼ pðzkjmi
t; z1:t�1Þ

pðztjz1:t�1Þ �
XM
j¼1

Pfmi
tjmj

t�1; z1:t�1gPfmj
t�1jz1:t�1g;

(8)

where the total probability pðztjz1:t�1Þ is expressed by

pðztjz1:t�1Þ ¼
XM
i¼1

pðztjmi
t; z1:t�1Þ�

XM
j¼1

Pfmi
tjmj

t�1; z1:t�1gPfmj
t�1jz1:t�1g:

(9)

Based on (8) with the notations in (6) and (7), the sequen-
tial tracker probability update is described by

T i
t ¼

Li
t

PM
l¼1 �v

l;i
t�1T

l
t�1PM

j¼1L
j
t

PM
l¼1 �v

l;j
t�1T

l
t�1

: (10)

5.2 Transition Probability Matrix Update

Fig. 4 shows the graphical model of the proposed algorithm
based on multiple interacting trackers. A set of interaction
probabilities is expressed in a transition probability matrix
VV that describes how trackers affect each other as

VVVV¼ vj;i
� �

M�M
¼

v1;1 � � � v1;M

..

. . .
. ..

.

vM;1 � � � vM;M

2
64

3
75; (11)
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where VVVV is an unknown matrix from some given prior dis-

tributions. The estimated �VVt is computed by the minimum
mean squared error based on its posterior distribution,

�VV t ¼ �vj;i
t

h i
M�M

, E½VVjz1:t� ¼
Z

VVpðVVjz1:tÞdVV: (12)

The goal is to estimate the posterior distribution of the TPM
within the Bayesian framework [17],

pðVVjz1:tÞ ¼ pðztjVV; z1:t�1Þ
pVVðztjz1:t�1Þ pðVVjz1:t�1Þ; (13)

where the TPM observation model pðztjVV; z1:t�1Þ is derived
in (16) by approximating the unknown VV with �VVt�1, and
�VVt�1 is the best estimate of the unknown VV at time t-1 [17].
Thus, the TLF with the unknown VV is equal to the TLF in (6)
and the tracker probability with the unknown VV is equal to
the tracker probability in (7) as follows:

pðztjmi
t;VV; z1:t�1Þ � pðztjmi

t; z1:t�1Þ ¼ Li
t;

Pfmi
t�1jVV; z1:t�1g � Pfmi

t�1jz1:t�1g ¼ T i
t�1:

(14)

With these approximations for pðztjVV; z1:t�1Þ in (16), the total
probability pVVðztjz1:t�1Þ is also approximated as described in
(17). Based on (16) and (17), the sequential update of the
TPMposterior distribution in (13) is expressed by

pðVVjz1:tÞ � T>
t�1VVLLt

T>
t�1

�VVt�1LLt

pðVVjz1:t�1Þ; (15)

where LLt ¼ ½L1
t ; . . . ;L

M
t �> and Tt�1 ¼ ½T 1

t�1; . . . ; T
M
t�1�>.

pðztjVV; z1:t�1Þ ¼
XM
i¼1

pðztjmi
t;VV; z1:t�1ÞPfmi

tjVV; z1:t�1g

¼
XM
i¼1

pðztjmi
t;VV; z1:t�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Li

tXM
j¼1

Pfmi
tjmj

t�1;VV; z1:t�1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
, vj;i

Pfmj
t�1jVV; z1:t�1g|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�T

j
t�1

�
XM
i¼1

Li
t

XM
j¼1

vj;iT j
t�1 ¼ LL>

t VV
>Tt�1 ¼ T>

t�1VVLLt;

(16)

where

LLt ¼ ½L1
t ; . . . ;L

M
t �>; Tt�1 ¼ ½T 1

t�1; . . . ; T
M
t�1�>:

pVVðztjz1:t�1Þ ¼
Z

pðztjVV; z1:t�1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�T>

t�1
VVLLtinð16Þ

pðVVjz1:t�1ÞdVV

� T>
t�1

Z
VVpðVVjz1:t�1ÞdVV

� �
LLt ¼ T>

t�1
�VVt�1LLt:

(17)

5.2.1 Sample Approximation

For practical implementations, the TPM posterior distribu-
tion in (15) is approximated by first or second order numeri-
cal integration methods as they are shown to be more robust
and accurate than other approaches [17]. In numerical inte-
gration, since the prior information of probabilistic interac-
tions between trackers is not usually given, the interaction
probabilities are defined on a finite grid. Thus, the TPM
prior distribution is approximated by a set of samples
fVVqjq ¼ 1; . . . ; NVVg with corresponding weights fpðVVq

jz1:t�1Þjq ¼ 1; . . . ; NVVg, and the TPM posterior distribution
in (15) is described by

pðVVqjz1:tÞ ¼ T>
t�1VV

qLLt

T>
t�1

�VVt�1LtLt

pðVVqjz1:t�1Þ: (18)

We obtain the updated TPM �VVt at time t as

�VVt ¼ 1
C

XNVV

q¼1

VVqpðVVqjz1:tÞ; (19)

where C ¼ PNVV
q¼1 pðVVqjz1:tÞ is a normalization term and each

TPM sample is expressed by VVq ¼ vj;i
q

h i
M�M

: The interac-

tion probabilities are chosen as 0 � vj;i
q � 1 and satisfy the

condition
PM

j¼1 v
j;i
q ¼ 1.

6 ROBUST TRACKER LIKELIHOOD FUNCTION

The reliability of each tracker is used to update the tracker
probability and TPM within the Bayesian framework. The
tracker likelihood function computes the reliability of each
one by measuring the tracking results individually. The esti-
mated object state from the ith tracker at time t is

x̂it ¼ argmax
xt

pðxtjz1:t;mi
tÞ: (20)

Since x̂it is obtained from the ith tracker, the accuracy of x̂it is
considered as the reliability of the ith tracker. Hence, the
TLF is expressed by

pðztjmi
t; z1:t�1Þ ¼ pTLFðztjx̂itÞ: (21)

For measuring the tracker reliability, we use instantaneous
and reconstruction features to account for transient and sta-
ble appearance changes. These two representations are
assumed to be independent and all M features (fk; k ¼ 1;
. . . ;M) are used for computing the TLF to measure the reli-
ability of each tracker. Thus, the TLF is formulated by

Fig. 4. Graphical model: Hidden variable (object state xt, a selected
tracker index mt, TPM VVt) and observation (observed image zt). 1) The
TPM is updated using the current observation. 2) The tracker selection
is conducted by updating the tracker probability based on the current
observation and the TPM. 3) Each object state is estimated based on
current observation, tracker selection, tracker interaction, and TPM.
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pTLFðztjx̂itÞ � pIðztjx̂itÞpRðztjx̂i
tÞ

¼
YM
k¼1

pðztjx̂it; fkI;tÞpðztjx̂it; fkR;tÞ;
(22)

where k is the feature index, pIðztjx̂itÞ is the TLF based on the

instantaneous appearance model (IAM), and pRðztjx̂itÞ is the
TLF based on the reconstruction appearance model (RAM).

The instantaneous object appearance �fkI;t is obtained from a

set of recent observations fkI;t. The reconstructed object

appearance �fi;kR;t is computed from the stable appearance fkR;t

using the kth feature and the tracking result zi;kt from the ith
tracker. Each TLF is computed by

pðztjx̂it; fkI;tÞ ¼ expð�rk�fkI;t � zi;kt k2Þ; (23)

pðztjx̂it; fkR;tÞ ¼ expð�rk�fi;kR;t � zi;kt k2Þ; (24)

where r is a control parameter and

zi;kt ¼ VecðFkðIðx̂itÞÞÞ
kVecðFkðIðx̂itÞÞÞk

; (25)

where Vecð�Þ represents vectorization, IðxtÞ denotes an

image region based on a state vector xt, F
kð�Þ denotes the

kth feature extraction, and zi;kt 2 Rdk where dk is the dimen-
sion of the kth feature. The IAM and RAM are computed as
follows.

6.1 Transient Object Appearance

The short-term object appearance changes are model by a
set of recent object observations fkI;t ¼ ½fkI;t�l; . . . ; f

k
I;t�1�. The

instantaneous appearance model �fkI;t is obtained by averag-

ing the recent L appearances as

�fkI;t ¼
1

L

XL
l¼1

fkI;t�l: (26)

6.2 Stable Object Appearance

The long-term object appearance zi;kt can be represented by a

linear combination of stable features fkR;t that are r represen-

tative features,

zi;kt � fkR;taa
i;k
t ¼ fk1;ta

i;k
1;t þ fk2;ta

i;k
2;t þ . . .þ fkr;ta

i;k
r;t ; (27)

where fkR;t¼½fk1;t; . . . ; fkr;t� 2 Rdk�r, aai;k
t ¼½ai;k

1;t; . . . ;a
i;k
r;t �> 2 Rr is

an coefficient vector. By including the noise vector ��i;k, we
have

zi;kt ¼ fkR;taa
i;k
t þ ��i;k ¼ fkR;t Ik

h i
aai;k
t

bb
i;k
t

� �
: (28)

We use a set of non-target (trivial) templates from a

dk-dimensional identity matrix Ik 2 Rdk�dk [24] with a non-

target coefficient vector bbi;k
t ¼ ½bi;k

1;t;b
i;k
2;t; . . . ;b

i;k

dk;t
�> 2 Rdk . If

the observation contains little noise, then the non-target

coefficient vector has only a few nonzero coefficients in bb
i;k
t .

In the proposed tracking algorithm, we obtain M track-

ing results at each frame, fx̂itji ¼ 1; . . . ;Mg. Based on the
result of the ith tracker, the candidate image region

represented by the kth feature is denoted as zi;kt in (25). The

reconstructed appearance for zi;kt is denoted as fkR;taa
i;k
t . We

obtain the coefficient vector aai;k
t by using ‘1 sparse coding as

it is robust to wide range of image corruptions, especially

occlusions, [19], [24]. The coefficient vector ci;kt is computed
by

min
c
i;k
t

kci;kt k1; s:t: kzi;kt �Dk
t c

i;k
t k22 � �; (29)

where � ¼ 0:01, and

Dk
t ¼ ½fkR;t; Ik�; ci;kt ¼ ½ðaai;k

t Þ>; ðbbi;k
t Þ>�>: (30)

The reconstructed object appearance �fi;kR;t for z
i;k
t is computed

as �fi;kR;t ¼ fi;kR;ta
i;k
t .

7 REPRESENTATION UPDATE

In this section, we present the update mechanisms for tran-
sient and stable object appearance as well as observation
models for trackers based on M feature representations

ff̂kt ¼ zm̂t;k
t jk ¼ 1; . . . ;Mg where zi;kt is from (25) and m̂t is

the index of the selected tracker in (5).

7.1 Transient Features

We use transient features to account for abrupt appearance
changes of a target object. Each transient feature consists of
the recently estimated observation as fkI;tþ1 ¼ fkI;t�u;

h
. . . ; fkI;t�,

where fkI;t ¼ f̂kt and u is a variable that determines the

duration.

7.2 Stable Features

Each stable feature fkR;t is updated based on whether it can
be sparsely represented by the current templates. Similar to
[25], each feature is updated by analyzing the non-zero ele-

ments in the non-target coefficient vector bbi;kt . When occlu-
sion occurs, a target object cannot be sparsely represented
by the target template set. Consequently, numerous non-
zero coefficients correspond to the non-target templates,

and noise is measured by bb
m̂t;k
t 2 Rdk in (29) where m̂t is the

index of the selected tracker. We count non-zero elements

in bb
m̂t;k
t and compute a noise ratio Rk

noise as Rk
noise ¼ Bk=dk

where Bk is the number of non-zero elements in bb
m̂t;k
t . If the

noise ratio Rk
noise is smaller than a threshold, one feature

fki;t 2 fkR;t with the lowest value is replaced by the feature of

the estimated observation f̂kt .

7.3 Observation Model

In this work, the observation model for each tracker (i.e.,

pðztjxt;mi
tÞ in (1)) is based on the incremental subspace

model [27] for its computational efficiency over ‘1 sparse
coding. For online tracking, it is known that error accumula-
tion is inevitable when an appearance model is updated
with new observations [12], [28]. Note that not every obser-
vation model is updated at every frame. For the selected
tracker of a given frame, the corresponding appearance
model is not updated since it describes the target object
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well. On the other hand, the observation models of all the
other trackers are updated with the new observation.

Examples of representation updates (i.e., transient and
stable features as well as observation model discussed in
Section 7) are shown in Fig. 5. To show difference of each
representation, we only show the intensity features for com-
parisons. In the Coke sequence, partial occlusions with illu-
mination changes occur frequently. As introduced in
Section 7, the transient features better account for frequent
appearance changes of the object in such cases while the sta-
ble features are rarely updated. The principal components
of the object appearance from an observation model are
shown in green boxes. These principal components are
incrementally updated in each observation model to
account for appearance changes.

8 INTERACTING MULTIVIEW TRACKER

The main components of the proposed interacting multi-
view tracker (IMT) are described in Fig. 3 and Algorithm 1.
We present the algorithmic details in this section.

8.1 Estimated Object States of Multiple Trackers

We use a particle filter for state prediction. The prior distri-
bution of each tracker pðxt�1jz1:t�1;m

i
t�1Þ in (2) is approxi-

mated by a set ofN samples as

pðxt�1jz1:t�1;m
i
t�1Þ �

XN
q¼1

siq;t�1d
	
xiq;t�1 � xt�1



; (31)

where dð�Þ is a delta function centered at sample xiq;t�1, and

siq;t�1 is a sample weight.

8.1.1 Interacted Prior via Tracker Interaction

At each frame, multiple trackers interact with each other by
mixing their posterior distributions described in (2) based
on the TPM. The interaction is efficiently carried out via the
proposed interaction method by Algorithm 2, i.e.,

~X1
t�1; . . . ;

~XM
t�1

� � ¼ Tracker Interaction �VVt�1;X1
t�1; . . . ;XM

t�1

� �
;

(32)

where X i
t�1 ¼ fxiq;t�1; s

i
q;t�1gNq¼1 is the sample approximation

of the prior distribution of the ith tracker and ~X i
t�1 is the inter-

acted prior distribution. The tracker interaction approach in
this work is similar in spirit to [1], [4] where the posterior

distribution of the unreliable tracker is replaced by the most
reliable one. In addition, the reliability of the tracker is mea-
sured by exploring the covariance of the posterior distribution
at each frame. However, the proposed interaction method
forces trackers to interact with each other via the TPM. Hence,
not all samples are transfered to other trackers.

Algorithm 1. Proposed Interacting Multiview Tracker
(IMT)

1: (Initial Step)
2: at time t ¼ 0
3: The initial states of multiple trackers are set to

fxi0 ¼ x0ji ¼ 1; . . . ;Mg.
4: The initial set of samples for the particle filter

fX i
0 ¼ fxiq;0; siq;0 ¼ 1

NgNq¼1ji ¼ 1; . . . ;Mg.
5: The initial TPM is given by �VV0 ¼ 1

NVV

P
q V

q "Section 9.2.

6: The initial tracker probability is set to

fT i
0 ¼ 1

M ji ¼ 1; . . . ;Mg.
7: (Tracking Step)
8: for t 	 1 do
9: for i ¼ 1 : M do "i is a tracker index
10: 1) Compute the interacted prior distribution

~X i
t�1 ¼ f~xiq;t�1; ~s

i
q;t�1gNq¼1 using fX i

t�1ji ¼ 1; . . . ;Mg
with the TPM �VVt�1 and the tracker probability

fT i
t�1ji ¼ 1; . . . ;Mg using Algorithm 2.

11: 2) Predict state samples fxiq;t; siq;tjt�1gNq¼1 using (34).

12: 3) Update state samples fxiq;t; siq;tgNq¼1 using (37).

13: 4) Obtain the estimated state x̂it from the ith tracker
using (39).

14: end for
15: 5) Compute the TLFs fLi

tji ¼ 1; . . . ;Mg using (22) and the

set ofM estimated object states fx̂itji ¼ 1; . . . ;Mg.
16: 6) The tracker probability update with the TLFs

fLi
tji ¼ 1; . . . ;Mg using (10).

17: 7) The TPM update with the tracker probabilities

fT i
t ji ¼ 1; . . . ;Mg and TLFs fLi

tji ¼ 1; . . . ;Mg using
(18) and (19).

18: 8) Compute the tracking result x̂t using (5).
19: 9) Update representations as described in Section 7.
20: end for

The interacted prior distribution in (2) can be expressed
by a sample representation as

~pðxt�1jz1:t�1;m
i
t�1Þ �

XN
q¼1

~siq;t�1dð~xiq;t�1 � xt�1Þ: (33)

By tracker interaction, we first remove the samples far from
the selected tracking result x̂t�1 based on a kernel. As
described in Algorithm 2, a uniform kernel is defined in
terms of position with respect to range R with standard
deviations ðqu; qvÞ along u and v image coordinates. In addi-
tion, H is a transformation matrix that returns position

parameters as from a previous state by ½pu;t�1; pv;t�1�> ¼
Hx̂t�1. Second, multiple trackers interact with each other
based on the TPM and a resampling technique [9]. The TPM
contains information of how samples are transferred or

retained. For instance, N � �vi;i
t�1 represents that the number

Fig. 5. Representation update examples. The transient and stable fea-
tures are shown in the red and blue boxes, respectively. The learned
principal components are shown in the green boxes. The yellow circles
demonstrate the updated stable features at different frames.
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of samples is retained in the ith tracker sample set after inter-

action, and N � �vj;i
t�1 represents that the number of samples

from the jth tracker is transferred to the ith tracker. If the

i-tracker is effective for some frames, then �vi;i
t�1 becomes

greater than �vj;i
t�1 (j 6¼ i) due to an update of the TPM. Hence,

most samples of the ith are retained, and the ith tracker
obtains a few samples from other trackers. Finally, we select

samples according to the interaction probabilities, �vj;i
t�1 of the

TPM by resampling such that reliable samples with large
weights in each tracker are retained.

Algorithm 2. Tracker Interaction: ~X 1
t�1; . . . ;

~XM
t�1

� � ¼
Tracker Interaction �VVt�1;X1

t�1; . . . ;XM
t�1

� �
1: Input
2: Given fX i

t�1 ¼ fxiq;t�1; s
i
q;t�1gNq¼1ji ¼ 1; . . . ;Mg

3: "Sample representation of a posterior distribution of i the
tracker

4:
5: for i ¼ 1 : M do
6: for q ¼ 1 : N do

7: s
iq;t�1 ¼ siq;t�1KernelðHxiq;t�1 �Hxt�1;RÞ
8: end for
9: s
iq;t�1 :¼ s
iq;t�1=

P
q s


i
q;t�1; q ¼ 1; . . . ; N

10: end for
11:
12: Given �vj;i

t�1 2 �VVt�1 "TPM
13: for i ¼ 1 : M do
14: ~X i

t�1 ¼ f

15: for j ¼ 1 : M do
16: X ¼ Resamplingðfxjq;t�1; s


j
q;t�1gNq¼1; N � �vj;i

t�1Þ
17: ~X i

t�1 :¼ ~X i
t�1 [ X

18: end for
19: end for
20: 21: Output
22: f ~X i

t�1 ¼ f~xiq;t�1; ~s
i
q;t�1 ¼ 1

NgNq¼1ji ¼ 1; . . . ;Mg
23: "Sample representation of an interacted prior of ith

tracker
24:
25: Given parameters

26: H ¼ 1 0 0 0 0 0
0 1 0 0 0 0

� �
"position conversion matrix

27: R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� qvÞ2 þ ð2� quÞ2

q
"kernel range

8.1.2 Sampling via Motion Models

We draw new state samples from the interacted prior distri-
bution ~pðxt�1jz1:t�1;m

i
t�1Þ. In this work, we use the zero and

first order motion models for state prediction pðxtjxt�1;m
i
tÞ.

The zero-order motion is identical to the random walk
motion, and the first-order motion utilizes the prior transla-

tion Dxt¼½Du;Dv; 0; 0; 0; 0�> by computing the difference
between estimated positions at time t� 1 and t� 2. Thus,
samples are drawn based on

xiq;t � pðxtjxt�1;m
i
tÞ

¼ N ðxiq;t�1;Q0Þ if t < 0:5

Nðxiq;t�1 þ Dxt;Q1Þ otherwise;

(
(34)

where Q0 and Q1 denote the zero-and first-order motion
covariances, respectively, as given in Section 9.1. We use a
uniform random variable t distributed within ½0; 1� to select
the motion model for drawing each sample. The set of the

predicted samples is fxiq;t; siq;tjt�1gNq¼1 where siq;tjt�1 ¼ ~siq;t�1.

8.1.3 Sample Update via Observation Models

An observation for the ith tracker is expressed by

zit ¼ VecðFiðIðxtÞÞÞ þ vit; i ¼ 1; . . . ;M; (35)

where IðxtÞ denotes an image template based on a state vec-

tor xt, F
ið�Þ represents the ith feature extraction, and vit is

noise. In the incremental subspace based observation model
[27], we compute the mean and principal eigenvectors with
updates for the appearance model in each tracker. Based on

the template mean �Oi and L principal eigenvectors gil ,

l ¼ 1; . . . ; L, the ith observation model based on the ith fea-
ture is given by

pðztjxt;mi
tÞ ¼ expð�rTkzit �

X
l

clg
i
lk2Þ;

cl ¼ ðgilÞ>ðzit � �OiÞ; l ¼ 1; . . . ; L;

(36)

where rT is a control parameter and cl is the coefficient from
the projection of the template onto each principal eigenvec-
tor (16 eigenvectors are used for each observation model).

We note that the TLF in (22) is not related to the observa-
tion model in (36). The TLF is only used to update the
tracker probability and TPM because it is time-consuming
to measure all particle samples if we use TLF instead of
(36). For efficient implementation, we use (36) as an obser-
vation model to measure particle samples of a single tracker
as it can be computed efficiently to adapt object appearance
changes. Based on (35) and (36), the weight of each sample
is updated by

siq;t ¼
pðztjxiq;t;mi

tÞsiq;tjt�1PN
q¼1 pðztjxiq;t;mi

tÞsiq;tjt�1

: (37)

With the samples and weights in (34) and (37), we obtain the
sample representation of the posterior distribution pðxtj
z1:t;m

i
tÞ in (1) as

pðxtjz1:t;mi
tÞ �

XN
q¼1

siq;tdðxiq;t � xtÞ; (38)

which is described by a set of samples with weights

fxiq;t; siq;tgNq¼1.

8.1.4 Estimated Object States

From the updated posterior distributions, we obtain a set of
M estimated states using the maximum a posterior esti-
mates (i ¼ 1; . . . ;M),

x̂it ¼ xiq̂;t; q̂ ¼ argmax
q

ðfsiq;tjq ¼ 1; . . . ; NgÞ: (39)

8.2 Tracker Selection and TPM Update

To select the most reliable tracker and update the TPM,
we compute the reliability of trackers using the TLF
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pTLFðztj x̂itÞ ¼ Li
t in (22) and M estimated states, as well as

fx̂itji ¼ 1; . . . ;Mg from M multiple trackers. With the TLFs

fLi
tji ¼ 1; . . . ;Mg, we update the tracker probability using

(10) and obtain updated tracker probabilities fT i
t ji ¼

1; . . . ;Mg. By selecting the highest tracker probability, we
obtain the tracking result x̂t as described in (5). The tracking
result x̂t is then used for a representation update (See
Section 7). After computing the set of the updated tracker

probabilities fT i
t ji ¼ 1; . . . ;Mg and the set of TLFs fLi

tji ¼ 1

; . . . ;Mg, we update the TPM �VVt using (18) and (19).

9 EXPERIMENTS

We evaluate the proposed IMT algorithm with the state-
of-the-art methods using several benchmark datasets
[2] (http://vision.ucsd.edu/�bbabenko/project_miltrack.
shtml) and [31] (http://visual-tracking.net), as well as our
own sequences (i.e., Startrek and Starwars). In this work, we
use three trackers with different feature representations based
on HOG, intensity, and Haar-like features, which have been
shown to be effective for handling occlusions, motion blurs,
pose variations, and illumination changes. We discuss motion
parameter settings in Section 9.1, the sampling scheme for the
TPM in Section 9.2, and feature extraction in Section 9.3. We
analyze the TPMand show how it is used bymultiple trackers
in Section 9.4. In Section 9.5, we demonstrate the effects of the
proposed TLF, and in Section 9.6, we compare the proposed
IMT algorithmwith other trackingmethods based on one sin-
gle feature representation of HOG, intensity, and Haar-like
features (denoted as SHOG, SI, and SHaarmethods).We eval-
uate the proposed algorithm in Section 9.7 with methods
based on multiple trackers or representations including the
approaches with combination of visual trackers (CVT) [22],
themulti-cue switching tracker (MCS) [4], and a single tracker
withmultiple observationmodels (SMO) similar to [29]where
the tracker reliability is not measured. For fair comparisons,
each single tracker of the proposed IMT algorithmandparam-
eters are the same as those used in the CVT, MCS, SMO,
SHOG, SI, and SHaar methods. Furthermore, in Section 9.8,
we compare the IMT algorithm with state-of-the-art trackers
including the MIL [2], TLD [18], VTD [20], VTS [21], Struck
[13], ASLA [16], SCM [37], CXT [8], LSK [23], CSK [14], and
KCF [15]methods.

FOR quantitative comparisons, we present the success rate
rather than center location error as it is not fully reflected,
especially after tracking drifting [31]. The code and datasets
are available at https://cvl.gist.ac.kr/project/imt.html.

9.1 Motion Parameters

In this work, an object state is expressed by six parameters
of the affine transformation [27] based on a diagonal covari-
ance matrix Q ¼ diagðq2u; q2v; q2u ; q2s ; q2a; q2fÞ with the following
variables qu and qv are standard deviations of position and
qu, qs, qa, and qf are standard deviations of rotation angle,
scale, aspect ratio, and skew, respectively. For all the experi-
ments, we fix four parameters as qu ¼ 0:02, qs ¼ 0:01, qa ¼ 0,
qf ¼ 0:001. The translation standard deviation of the zero-
order motion Q0 are fixed as qu ¼ qv ¼ 6. The translation
standard deviation of the first-order motion Q1 are fixed as
qu ¼ qv ¼ 3. Since the SI, SHOG, SHaar, SMO, MCS, CVT,

and IMT methods are based on the same single tracker [27],
we use the same parameter settings as mentioned above.
We note that the results in [35] are based on optimized
parameters for each sequence, whereas in this work the
parameters are fixed for all experiments.

9.2 TPM Setting for Three Trackers

As discussed in Section 5.2, we approximate the TPM poste-
rior distribution by a set of TPM samples fVVqjq ¼
1; . . . ; NVVg. To construct the TPM, we use the interaction
probability basis defined on a finite grid in Table 1 where
each vector represents the interaction probabilities describ-
ing how samples are retained and transferred. For instance,
if we use 600 state samples for each tracker, the interaction

probability basis vv1
1 represents that vv1

1 � 600 ¼ ½420; 90;

90�> where the first tracker retains its own 420 samples and
receives 90 samples from the second and 90 samples from
the third trackers, respectively. In this work, we only set the
maximum and minimum values for the diagonal entries of

the TPM. The diagonal values are set to vi;i
s 2 f0:2; 0:3;

0:4; 0:5; 0:6; 0:7g to make each tracker retain, at most, 70 per-
cent of its own samples and at least 20 percent of its own
samples. The off-diagonal values of the TPM are set with a

given diagonal value by vj;i
s ¼ 1�v

i;i
s

2 (See Table 1). Using the

interaction probability basis in Table 1, we obtain a TPM
sample as

VVq ¼ vv1
s1
;vv2

s2
;vv3

s3

h i
; s1; s2; s3 ¼ 1; . . . ; 6:

Consequently, 216 TPM samples {VVqjq ¼ 1; . . . ; 216} are gen-
erated by considering all combinations of the basis in
Table 1. These TPM samples are fixed in all experiments.

The initial TPM �VV0 is obtained by averaging all of TPM sam-
ples. Note that the TPM method is not sensitive to initial
values as it is updated at each frame. To demonstrate this,
we compare the performance of the IMT method with two
different initial TPMs (TPMave and TPMnaive) as shown in
Table 2, where TPMave is obtained by averaging all of TPM

TABLE 1
Interaction Probability Basis of the ith Tracker

vvi
s ¼ ½v1;i

s ;v2;i
s ;v3;i

s �Where s Denotes the Basis Index

Tracker 1 Tracker 2

vv1
1 ¼ ½0:7; 0:15; 0:15�> vv2

1 ¼ ½0:15; 0:7; 0:15�>
vv1
2 ¼ ½0:6; 0:20; 0:20�> vv2

2 ¼ ½0:20; 0:6; 0:20�>
vv1
3 ¼ ½0:5; 0:25; 0:25�> vv2

3 ¼ ½0:25; 0:5; 0:25�>
vv1
4 ¼ ½0:4; 0:30; 0:30�> vv2

4 ¼ ½0:30; 0:4; 0:30�>
vv1
5 ¼ ½0:3; 0:35; 0:35�> vv2

5 ¼ ½0:35; 0:3; 0:35�>
vv1
6 ¼ ½0:2; 0:40; 0:40�> vv2

6 ¼ ½0:40; 0:2; 0:40�>
Tracker 3

vv3
1 ¼ ½0:15; 0:15; 0:7�>

vv3
2 ¼ ½0:20; 0:20; 0:6�>

vv3
3 ¼ ½0:25; 0:25; 0:5�>

vv3
4 ¼ ½0:30; 0:30; 0:4�>

vv3
5 ¼ ½0:35; 0:35; 0:3�>

vv3
6 ¼ ½0:40; 0:40; 0:2�>
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samples as discussed above, and TPMnaive is a matrix whose

elements are equally set to 1
3.

9.3 Feature Extraction

In this work, the size of an image template is 32-by-32
pixels, from which a 1,024-dimensional intensity feature
vector is formed. To generate HOG features, we use
36 blocks, each block has four cells within an image tem-
plate, and the dimensions of HOG feature for each block
is 36 (i.e., each HOG feature vector has 1,296 dimensions).
The Haar-like features are generated with two horizontal
and vertical edge filters within a 32-by-32 template to
1,760-dimensional vectors.

9.4 Analysis of TPM and Tracker Probability

We analyze how TPM is used among multiple trackers to
account for different object appearance changes. In Fig. 6,
the diagonal interaction probabilities (�vi;i

t ) of the TPM and
tracker probabilities are shown according to object appear-

ance changes over time. When the diagonal entry �vi;i
t

decreases, then the off-diagonal entries �vj;i
t ; j 6¼ i increases

(as
PM

j¼1 �v
j;i
t ¼ 1). The increase of the off-diagonal entries

represent that the ith tracker becomes more dependent on
other trackers. It also shows that when the ith tracker proba-
bility continues to be the highest, the diagonal interaction

probability �vi;i
t of the TPM tends to increase. The increase of

the diagonal entry represents that the ith tracker becomes
less dependent on other trackers.

In the Startrek sequence (See Fig. 6a), both object and
background appearances are drastically changed due to
abrupt illumination variations. In such scenarios, the
tracker based on intensity features is not reliable; hence,
its tracker probability is usually low, and likewise, its
interaction probability is consistently low. In the David
sequence, the tracker based on HOG features is more
robust than others when large pose variations occur,
which can be explained by that face contour is more effec-
tive for tracking in such scenarios (See Fig. 6b). On the
other hand, trackers based on all the other features per-
form well when moderate appearance changes occur. In
the Lemming sequence (See Fig. 6c), when the target object
undergoes partial occlusions, the interaction probability
for the tracker with Haar-like feature increases and its
tracker probability is greater than that of other trackers.
When the motion blurs suddenly occur, the interaction
probability for the tracker based on HOG features
increases and the interaction probabilities of other track-
ers decrease. Similarly, the tracker probability of the
tracker based on HOG features is greater than that of
other trackers as the shape of the object is consistent. The

tracker based on Haar-like features adaptively learns the
appearance changes. As a result, its interaction and
tracker probabilities increase after a few frames.

TABLE 2
Average Tracking Success Rate on 16 Benchmark

Sequences in Table 3

IMT with TPMave IMT with TPMnaive

average success rate 92 90

The IMTs with different initial TPM settings show similar performance.

Fig. 6. Changes of interaction probabilities on the diagonal of the TPM
and tracker probabilities. Each color line represents one type of trackers.
Each color box represents one type of appearance changes. The results
are obtained by running the IMT 10 times.
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9.5 Analysis of TLF

To show the effectiveness of the combination of the
instantaneous and reconstruction appearance models in
the TLF (See Section 6), we evaluate the tracking results
using three combinations. The first one is the IMT-all,
which uses both IAM and RAM together, as proposed in
this work; the second one is the IMT-IAM which uses
only the instantaneous appearance model; and the third
one is the IMT-RAM, which utilizes only the reconstruc-
tion appearance model. As shown in Table 3, the IMT-all
achieves more robust and consistent performance than
the other two alternatives.

9.6 Comparison with Single-Feature Trackers

Table 3 shows the results of three trackers based on one sin-
gle feature (i.e., SI, SHOG, and SHaar). These trackers are
the same as the single tracker used in the IMT, and their
observation models are described in (36). Overall, the pro-
posed multiview tracking algorithm performs better than
these trackers with a single feature. In addition, the trackers
based on multiple features (i.e., SMC, MCS, and CVT) per-
form better than the SI, SHOG, and SHaar methods. These
results demonstrate the merits of using multiple features for
robust object tracking.

9.7 Comparison with Most Related Trackers

The SMO, CVT [22], and MCS [4] methods are related to the
proposed method, but the integration approach of multiple
features are different, as discussed in Section 2. As shown in
Table 3, the proposed IMT algorithm performs favorably
against these tracking algorithms.

The SMO tracker exploitsmultiple observationmodels in a
particle filter framework. However, it does not perform well,
as all observation models contribute equally to the estimation
of object states without considering their reliability. Hence,
posterior distributions and tracking performance may be
affected by one trackerwith an unreliable observationmodel.

The CVT method fuses tracking results from multiple
trackers with their reliability weight where each one is
determined solely by the covariance information of its pos-
terior distribution. As discussed in Section 2 and shown in
Fig. 2, the covariance-based approach may not achieve reli-
able results as the covariance of each posterior distribution
does not accurately represent tracker reliability because
each one is constructed from a different feature space (i.e.,
no calibration of tracking results). In addition, similar to
SMO, it does not consider the reliability information in the
interaction step, which has the interaction scheme in com-
puting the likelihood.

Fig. 7. The area under curve (AUC) of each success plot [31]. OPE: Running the trackers throughout each sequence with initializations of the ground
truth positions. TRE: Running the trackers with initialization from the ground truth position at different frames. SRE: Running the trackers with initiali-
zation from the different bounding boxes at the first frame. In all evaluation metrics, the IMT performs well against the other state-of-the-art methods.

TABLE 3
Success Rate Using the Same Default Parameters

IMT IMT IMT SI SHOG SHaar SMO MCS CVT Struck ASLA SCM KCF MIL TLD VTD

-RAM -IAM -All [4] [22] [13] [16] [37] [15] [2] [18] [20]

Startrek 91 47 86 1 12 36 44 56 76 78 1 56 74 36 3 89
Starwars 86 83 90 2 75 13 20 19 79 40 85 68 92 45 1 40
David 98 100 99 34 99 34 99 62 100 67 97 95 75 62 96 68
Girl 97 80 98 28 87 85 73 73 81 100 74 99 84 68 46 98
Football 86 79 87 64 76 59 73 57 64 66 65 57 70 73 41 76
CAVIAR 100 99 100 49 44 89 100 100 100 41 97 100 38 38 19 41
Woman 98 93 100 16 9 100 92 97 67 100 100 100 100 16 31 15
Singer1 100 66 100 39 50 98 94 63 70 29 99 100 29 27 99 43
Sylv 68 81 77 45 72 44 45 63 75 92 74 88 81 54 92 80
Trellis 93 99 98 36 68 82 90 62 89 78 85 85 84 24 47 50
Deer 100 100 100 32 98 98 77 33 2 100 2 2 82 12 73 4
Jumping 96 92 95 21 28 7 70 17 10 79 16 12 28 47 84 11
Board 80 89 86 10 77 70 65 50 52 70 71 89 86 51 11 34
Lemming 72 68 85 23 52 17 46 39 38 80 69 30 44 83 4 52
Tiger1 90 87 96 10 50 47 35 42 43 84 83 52 69 62 45 85
Coke 75 59 75 3 44 48 68 58 57 78 69 69 69 32 48 7

The top and second best results are denoted by red and blue.
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In contrast, the MCS method selects the most reliable
tracker at each frame where the reliability is determined by
the acceptance ratio using the covariance of the posterior and
prior distributions. If the acceptance ratio is below the thresh-
old (e.g., 0.2 in the experiments), the tracker is considered to
be unreliable. In the sampling stage, the MCSmethod simply
replaces the probability distribution of unreliable trackers by
that of the most reliable tracker. However, the covariance
information is not reliable, as discussed above. This sampling
process is likely to cause tracking failure as it does consider
all information of unreliable trackers, which can be incor-
rectly selected due to inaccurate covariance information.

Different from the MCS, CVT, and SMO methods, each
tracker of the proposed IMT algorithm generates tracking
results independently, and the most reliable one is selected
using the TLF, which measures the tracker reliability
robustly at each frame as shown in Fig. 6, by considering
stability and effectiveness of feature representations (See
also Fig. 5). In addition, the reliability information is effec-
tively utilized in the tracker interaction process. Thus, the
IMT algorithm performs favorably against these methods
based on multiple trackers.

9.8 Comparison with State-the-of-Art Trackers

9.8.1 Benchmark Dataset

We compare the proposed IMT algorithm with 29 state-of-
the-art trackers using a large benchmark dataset [31] that
contains 51 sequences. Three evaluation metrics are used to
evaluate whether the tracking algorithms are sensitive to
different initial settings. For the one-pass evaluation (OPE),
we use a ground truth bounding box in the first frame for
initialization. For the temporal robustness evaluation (TRE),
we initialize each tracker with ground truth locations at dif-
ferent frames. For the spatial robustness evaluation (SRE),
we use the perturbed ground truth locations in the first
frames for experiments. The top 10 tracking algorithms are
shown in Fig. 7 for presentation clarity. Fig. 7 shows that
the IMT algorithm performs robustly and favorably against
the top nine trackers using all the evaluation metrics (OPE,
TRE, and SRE).

9.8.2 Startrek and Starwars

The target objects undergo drastic illumination changes and
motion blurs in low resolution and contrast image sequen-
ces. As shown in Table 3, Figs. 8a and 8b, most of the track-
ers do not perform well. On the other hand, the IMT
algorithm tracks the objects well in both sequences due to
the use of tracker reliability to weigh less on the unreliable
tracker (i.e., a tracker with intensity feature) and more on
reliable trackers in the tracker integration scheme (via
tracker selection and interaction), as shown in Fig. 6a.

9.8.3 David, Girl, and Football

The objects in these sequences undergo large pose varia-
tions with occlusions. The VTD method drifts away from
the target objects when large appearance changes occur
(e.g., #167 in Fig. 8c). When the target object is partially
occluded by other similar objects (e.g., #441 in Fig. 8d and
#297 in Fig. 8e), the VTD, MIL, and TLD methods do not

perform well. Although the KCF tracks the object center
location well, it cannot estimate the size of the objects. The
IMT algorithm tracks the target objects reliably as different
trackers are selected to handle different tracking scenarios,
as shown in Fig. 6b.

9.8.4 Woman and CAVIAR

The objects in both sequences undergo heavy occlusions. In
addition, the scale of the object in the CAVIAR sequence
changes significantly, as shown in Fig. 8f. The Struck and
TLD methods do not perform well when large-scale change
occurs. Due to significant scale changes in the CAVIAR
sequence, the KCF shows limited tracking performance.
When heavy occlusions occur in the Woman sequence (#60
in Fig. 8g), the MIL and VTD methods start to drift away
from the target object. On the other hand, the IMT algorithm
tracks the target objects well by efficiently using Haar-like
features, which are more robust for handling occlusion than
other features, as shown in Table 3.

9.8.5 Singer1, Sylv, and Trellis

The objects in these sequence undergo large appearance
changes due to illumination and pose variations. As shown
in Figs. 8h, 8i, the MIL methods do not perform well. The
VTD, ASLA, TLD, and Struck approaches do not track the
object reliably when illumination and pose variations occur
together (#248 and #398 in Fig. 8i). In addition, the Struck
and VTD methods do not perform well when scale and
large illumination changes occur simultaneously (#54 and
#190 in Fig. 8h). The KCF does not deal with large-scale
changes well, as shown in the Singer1 sequence. Different
from other tracking methods, the IMT algorithm tracks the
object favorably by using complementary features for vari-
ous appearance changes.

9.8.6 Jumping and Deer

The object appearances change significantly due to fast
motion and blurs with noise in both sequences. Except for
the IMT, Struck, and TLD methods, other trackers do not
handle drastic motion blurs well, as shown in Table 3,
Figs. 8j, and 8k. The IMT algorithm effectively uses shape
features (HOG) to deal with motion blurs. Table 3 shows
that better results are obtained by trackers based on SHOG
features. Furthermore, by using stable features in the TLF,
large noise caused by motion blurs is well handled by the
IMT algorithm, especially in the Jumping sequence.

9.8.7 Tiger1, Coke, Board, and Lemming

The target objects in these sequences undergo various
appearance changes including motion blurs, illumination
changes, occlusions, and pose variations. When the target
object undergoes motion blurs and illumination changes
simultaneously in the Coke sequence (#190 and #216 in
Fig. 8p), the ASLA, SCM, and KCF methods do not perform
well. When frequent partial occlusions occur (e.g., #316 in
Fig. 8o and #190 in Fig. 8p), the ASLA, TLD, KCF, and MIL
methods drift away from the target objects. On the other
hand, the TLD, VTD, and MIL methods fail to track the
objects well (#68 and #249 in Fig. 8m and #383 and #709 in
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Fig. 8n) when motion blurs occur. The ASLA and Struck
methods do not performwell when large pose changes occur
(#540 in the Board sequence and #1128 in the Lemming video).
In contrast, the IMT algorithm performs well, which can be
attributed to adaptive use of HOG features to handle motion
blurs and Haar-like features to deal with occlusions, as
shown in Fig. 6c. As the IMT algorithm utilizes transient and
stable features for tracker selection and interaction, it is more
robust in dealingwith large object appearance changes.

9.9 Run Time Performance

We implement the proposed and evaluated methods (i.e.,
IMT, MCS, and CVT) using MATLAB. For each method, we
use 600 samples for every tracker. The most time-consum-
ing part of the proposed IMT algorithm is to extract multi-
ple features. As the MCS and CVT methods use the same
features (HOG, Haar-like, and intensity), the run time per-
formance is comparable to that of the IMT algorithm (0.8
seconds versus 1.4 seconds per frame). The run time of the

IMT is higher as it entails solving an ‘1 minimization prob-
lem for computing the TLF using (29), which can be further
reduced by recent efficient ‘1 solvers [33].

10 CONCLUSIONS

In this paper, we propose a robust visual tracking algo-
rithm that integrates multiple trackers based on different
feature representations via tracker interaction and selec-
tion. The tracker interaction is carried out based on the
transition probability matrix, which is designed to allevi-
ate the drifting problems of less reliable tracking meth-
ods. The update of the transition probability matrix and
tracker selection are computed based on the reliability of
each tracker via the proposed tracker likelihood function.
To better account for abrupt and gradual appearance
changes, each likelihood function is formulated based on
transient and stable features. The proposed tracking algo-
rithm selects the best one among multiple trackers to

Fig. 8. Experimental results of state-of-the-art tracking methods.
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account for object appearance changes. Experimental
results on benchmark datasets demonstrate that the pro-
posed tracking algorithm performs favorably against
state-of-the-art methods.
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