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Abstract—Object tracking has been one of the most important and active research areas in the field of computer vision. A large

number of tracking algorithms have been proposed in recent years with demonstrated success. However, the set of sequences used

for evaluation is often not sufficient or is sometimes biased for certain types of algorithms. Many datasets do not have common

ground-truth object positions or extents, and this makes comparisons among the reported quantitative results difficult. In addition, the

initial conditions or parameters of the evaluated tracking algorithms are not the same, and thus, the quantitative results reported in

literature are incomparable or sometimes contradictory. To address these issues, we carry out an extensive evaluation of the

state-of-the-art online object-tracking algorithms with various evaluation criteria to understand how these methods perform within the

same framework. In this work, we first construct a large dataset with ground-truth object positions and extents for tracking and

introduce the sequence attributes for the performance analysis. Second, we integrate most of the publicly available trackers into one

code library with uniform input and output formats to facilitate large-scale performance evaluation. Third, we extensively evaluate the

performance of 31 algorithms on 100 sequences with different initialization settings. By analyzing the quantitative results, we identify

effective approaches for robust tracking and provide potential future research directions in this field.

Index Terms—Object tracking, benchmark dataset, performance evaluation
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1 INTRODUCTION

OBJECT tracking is one of the most important problems in
the field of computer vision with applications ranging

from surveillance and human-computer interactions to
medical imaging [13], [89]. Given the initial state (e.g., posi-
tion and extent) of a target object in the first image, the goal
of tracking is to estimate the states of the target in the subse-
quent frames. Although object tracking has been studied for
several decades and considerable progress has been made
in recent years [5], [17], [32], [35], [36], [54], [65], it remains a
challenging problem. Numerous factors affect the perfor-
mance of a tracking algorithm, including illumination varia-
tion, occlusion, and background clutters, and there exists no
single approach that successfully handles all scenarios.
Therefore, it is crucial to thoroughly evaluate the state-of-
the-art tracking algorithms to demonstrate their strength
and weakness, thereby identifying future research direc-
tions in this field for more robust algorithms.

For a comprehensive performance evaluation, it is critical
to collect a representative dataset. There exist several data-
sets for object tracking in surveillance scenarios, such as the
VIVID [14], CAVIAR [24], and PETS [23] databases. How-
ever, in these surveillance sequences, the target objects are
usually humans or small cars and the background is usually

static. For generic scenes with various types of tracking tar-
gets, many of the available sequences do not provide the
ground-truth target locations except a few datasets [5], [43],
[65]. The reported tracking results on these unlabeled data-
sets are not directly comparable since different ground-
truth annotations are used.

Recently, significant efforts have been made to make
tracking code available for evaluation, e.g., OAB [27], IVT
[65], MIL [5], L1 [53], and TLD [39] algorithms. These track-
ing algorithms accommodate different input formats (e.g.,
avi videos or raw image sequences) and motion models
(e.g., 2D translation, similarity or affine transforms) with
various output formats (e.g., position or extent). Therefore,
to evaluate the performance of these algorithms on a large
number of image sequences, it is necessary to integrate
them in a library for evaluation on a common platform. In
this work, we integrate most of the publicly available track-
ers in a code library with uniform input and output formats
for a performance evaluation. In addition, we provide a
large benchmark dataset with ground-truth annotations
and attributes (e.g., occlusion, fast motion, or illumination
variation) such that the performance of the evaluated track-
ing algorithms can be better analyzed.

One common issue in assessing tracking algorithms is
that the reported results are often based on a few sequences
with different initializations or parameters. Inaccurate local-
ization of the target occurs frequently as an object detector
may be used for locating the object in the first frame. In
addition, an object detector may be used to recover from
tracking failures by re-initializing the tracker. For a fair and
comprehensive evaluation, we propose to perturb the initial
object states spatially and temporally on the basis of the
ground-truth target locations. With this evaluation method-
ology, the sensitivity of a tracking algorithm to initialization
(i.e., robustness) can be better analyzed. While the robust-
ness to initialization is a known problem in other fields, it
has not been well addressed in the literature of object
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tracking. To the best of our knowledge, this is the first work
to comprehensively address and analyze the initialization
problem of object tracking.

The contributions of this work are three-fold:
Benchmark dataset. We construct a benchmark dataset

with 100 fully annotated sequences1 to facilitate the perfor-
mance evaluation.

Code library. We integrate most of the publicly available
trackers in one code library with unified input and output
formats to facilitate a large-scale performance evaluation.

Performance evaluation. We propose novel metrics to eval-
uate tracking algorithms where the initial object states are
perturbed spatially and temporally for the robustness anal-
ysis. Each algorithm is extensively evaluated by analyzing
more than millions of tracking outputs.

This work2 mainly focuses on the performance evalua-
tion of online3 tracking algorithms for single targets. The
code library, annotated dataset, and all the tracking results
are available at http://pami.visual-tracking.net.

2 BRIEF REVIEW OF OBJECT TRACKING

Considerable progress in the field of object tracking has
been made in the past few decades. In this section, we
review some recent algorithms for object tracking in terms
of target representation scheme, search mechanism, and
model update. In addition, several methods that build upon
combing some trackers or mining context information have
been proposed. Here, we discuss the relevant performance
evaluation work on object tracking and challenging factors
in object tracking.

2.1 Representation Scheme

Object representation is one of the major components in any
visual tracking algorithm, and numerous schemes have
been proposed [46]. Since the early work of Lucas and
Kanade (LK) [50], holistic templates (based on raw intensity
values) have been widely used for tracking [2], [52]. The LK
approaches [7], [50] do not take large appearance variability
into account and thus, do not perform well when the visual
properties of a target object change significantly. Matthews
et al. [52] developed a template update method by exploit-
ing the information of the first frame to correct drifts. To bet-
ter account for appearance changes, subspace-based
tracking approaches [12], [30], [54], [65] have been pro-
posed. In [30], Hager and Belhumeur proposed an efficient
LK algorithm and used low-dimensional representations
for tracking under varying illumination conditions. For
enhancing the tracking robustness, Black and Jepson [12]
adopted a robust error norm and proposed an algorithm
using a pre-trained view-based eigenbasis representation.
In [65], a low-dimensional subspace representation was
learned incrementally to account for target appearance vari-
ation for object tracking [36].

Recently, numerous tracking methods based on sparse
representations have been proposed [38], [53], [55], [79],

[94], [95]. Mei and Ling [53], [54] used a dictionary of holis-
tic intensity templates composed of target and trivial tem-
plates, and determined the target location by solving
multiple ‘1 minimization problems. To better handle occlu-
sion and improve run-time performance, local sparse repre-
sentations and collaborative representations have also been
introduced for object tracking [9], [38], [94], [95]. For run-
time efficiency, a minimal error bounding strategy was
introduced [55] to reduce the number of ‘1 minimization
problems to solve. Bao et al. [9] introduced the accelerated
proximal gradient approach to efficiently solve ‘1 minimiza-
tion problems. To enhance tracking robustness, a local
sparse appearance model was proposed in [48] with the
mean shift (MS) algorithm to locate objects. By assuming
the representation of particles as jointly sparse, Zhang et al.
[94] formulated object tracking as a multi-task sparse learn-
ing problem. Zhong et al. [95] proposed a collaborative
tracking algorithm that combined a sparsity-based discrimi-
native classifier and a sparsity-based generative model. In
[38], sparse codes of local image patches with spatial layout
in an object were used for modeling the object appearance
for tracking. To deal with outliers for object tracking, Wang
et al. [78] proposed a least soft-threshold squares algorithm
by modeling image noise with the Gaussian-Laplacian dis-
tribution other than the trivial templates used in [53].

A number of tracking methods based on color histo-
grams [17], [60] have been developed. Comaniciu et al. [17]
applied the mean shift algorithm to object tracking on the
basis of a color histogram. Collins [15] extended the mean
shift tracking algorithm to deal with the scale variation of
target objects. In [60], Perez et al. embedded a color histo-
gram in a particle filter [36] for object tracking. Instead of
relying on pixel-wise statistics, Birchfield and Rangarajan
[11] proposed the spatiogram to capture both the statistical
properties of pixels and their spatial relationships. A local-
ity sensitive histogram [33] was developed by considering
the contribution of local regions at each pixel to better
describe the visual appearance for object tracking. To
exploit local directional edge information, histograms of ori-
ented gradients (HOGs) [18] have been adopted for tracking
[73] with the integral histogram [62]. To fuse different types
of features, representations based on covariance region
descriptors [74] were introduced for object tracking. In
covariance descriptors, the spatial and statistical properties
as well as their correlations are characterized within the
same representation. In addition, the local binary patterns
(LBP) [57] and Haar-like features [75] have also been uti-
lized to model the object appearance for tracking [5], [27],
[32], [92].

Recently, discriminative models have been developed in
the field of object tracking [3], [4], where a binary classifier
is learned online to separate the target from the background.
Numerous classifiers have been adapted for object tracking,
such as support vector machine (SVM) [3], structured out-
put SVM [32], ranking SVM [6], boosting [27], semi-boosting
[28], and online multi-instance boosting [5]. To handle
appearance changes, Avidan [3] integrated a trained SVM
classifier in an optical flow framework for tracking. In [16],
the most discriminative feature combination was learned
online to build a confidence map in each frame for separat-
ing a target object from the background. In [4], an ensemble

1. Each sequence denotes a trajectory of one target object. If one
video contains two target objects, it is considered two sequences.

2. Preliminary results of this work are presented in [83].
3. For online tracking algorithms, only the information of the previ-

ous few frames is used for inference at any time instance.
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of online learned weak classifiers was used to determine
whether a pixel belonged to the target region or the back-
ground. Grabner et al. [27] proposed an online boosting
method to select discriminative features for the separation
of a foreground object and the background. To balance
between tracking adaptivity and drifting, Stalder et al. [71]
combined multiple supervised and semi-supervised classi-
fiers for tracking. In [6], object tracking is posed as a weakly
supervised ranking problem by capturing the relative prox-
imity relationships between samples toward the true target
samples. To alleviate the drifting problem, a semi-online
boosting algorithm has been developed for tracking [28]. In
[39], Kalal et al. presented a learning method guided by pos-
itive and negative constraints to distinguish a target object
from the background. Multiple instance learning (MIL) has
also been applied to tracking [5], where all ambiguous posi-
tive and negative samples are put into bags to learn a dis-
criminative model. Hare et al. [32] designed a tracking
algorithm based on a kernelized structured SVM, which
exploits the constraints of the predicted outputs.

To account for an appearance change caused by a large
pose variation and heavy occlusion, an object can be repre-
sented by parts with descriptors or histograms. In [1], local
histograms were used for representing a target object in a
defined grid structure. Kwon and Lee [42] have proposed a
tracking method that updates the topology of local patches
to handle large pose changes.

Several approaches based on multiple representation
schemes have been developed [43], [72] to better handle
appearance variations. Stenger et al. [72] fused multiple
observation models online in a parallel or cascaded manner.
Recently, Kwon and Lee [43] have developed an object-
tracking decomposition algorithm that used multiple obser-
vation and motion models to account for a relatively large
appearance variation caused by drastic lighting changes
and fast motion. This approach has been further extended
to search for appropriate trackers by Markov Chain Monte
Carlo sampling [44].

2.2 Search Mechanism

Deterministic and stochastic search methods have been
developed to estimate the object states. When the tracking
problem is posed within an optimization framework with
an objective function differentiable with respect to motion
parameters, gradient descent methods can be used for locat-
ing the target efficiently [17], [22], [50], [69]. In [50], the first-
order Taylor expansion is used to linearize the nonlinear
cost function, and the motion parameters are estimated iter-
atively. Further, a mean shift estimation is used for search-
ing the target locally by using the Bhattacharyya coefficient
as the similarity metric for kernel-regularized color histo-
grams [17]. In [22], Fan et al. adopted a discriminative
approach to identify spatial attentional regions with a gradi-
ent-based formulation to locate objects. In [69], Sevilla-Lara
and Learned-Miller proposed a tracking algorithm based on
distribution fields, which allow smoothing the objective
function without blurring the image, and the target is
located by searching for the local minimum by using a
coarse-to-fine strategy.

However, objective functions for object tracking are usu-
ally nonlinear with many local minima. To alleviate this

problem, dense sampling methods have been adopted [5],
[27], [32] at the expense of a high computational load. On
the other hand, stochastic search algorithms such as particle
filters [36], [60] have been widely used since they are rela-
tively insensitive to the local minimum and are computa-
tionally efficient. Recent methods based on particle filters
have been developed using effective observation models
[38], [53], [65] with demonstrated success.

2.3 Model Update

It has been shown that online update of target representa-
tion to account for appearance variations plays an impor-
tant role for robust object tracking [27], [32], [37], [38], [65].
Matthews et al. [52] addressed the template update problem
for the LK algorithm [50], where the template was updated
with the combination of the fixed reference template
extracted from the first frame and the result from the most
recent frame. Effective update algorithms have also been
proposed in the form of the online mixture model [37],
online boosting [27], and incremental subspace update [65].

For the discriminative model, recently, considerable
attention has been paid to draw samples effective for train-
ing online classifiers [5], [28], [32], [39]. In contrast to super-
vised discriminative object tracking, Grabner et al. [28]
formulated the update problem as a semi-supervised task
where the classifier was updated with both labeled and
unlabeled data. To handle ambiguously labeled positive
and negative samples obtained online, Babenko et al. [5]
focused on the tracking problem within the multiple
instance learning framework and developed an online algo-
rithm. To exploit the underlying structure of the unlabeled
data, Kalal et al. [39] developed a tracking algorithm within
the semi-supervised learning framework to select positive
and negative samples for model update. In [32], the pro-
posed tracking algorithm directly predicts the target loca-
tion change between frames on the basis of structured
learning. Yu et al. [91] presented a tracking method based
on co-training to combine generative and discriminative
models. While considerable progress has been made, it is
still difficult to develop an adaptive appearance model
without drifts.

2.4 Context and Fusion of Trackers

Context information facilitates object tracking by providing
distinct visual properties of the immediate surroundings of
the targets. Numerous approaches have been developed by
mining auxiliary or local visual information surrounding
the target objects to assist tracking [20], [29], [88]. In [88],
auxiliary objects were automatically discovered and tracked
for the verification of the target. Dinh et al. [20] exploited
distractors and supporters around a target object by using a
sequential randomized forest. The context information is
useful when the target objects are fully occluded or out of
the camera views [29].

To improve the tracking performance, some fusion meth-
ods have been developed. Santner et al. [68] proposed an
approach that combines static, moderately and highly adap-
tive trackers to account for appearance changes. In [44],
tracking modules sampled from a predefined tracker space
interact with each other to deal with appearance variations
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caused by lighting changes and fast motion. Multiple fea-
ture sets [90] were maintained and selected in a Bayesian
framework to account for the appearance changes.

2.5 Performance Evaluation

Evaluation of tracking approaches is of critical importance,
and efforts have been made to assess the performance of dif-
ferent tracking algorithms [80]. In [81], Wu et al. proposed
an approach using a time-reversed Markov chain to evalu-
ate tracking algorithms in the absence of annotations. Fur-
ther, a number of tracking approaches based on sparse
representation were compared in [93]. To evaluate the
appearance model of tracking algorithms, Salti et al. [67]
introduced a unified conceptual framework and presented
an experimental analysis. However, the number of evalu-
ated tracking algorithms and image sequences in the above-
mentioned work are quite limited.

Most recently, Smeulders et al. [70] have evaluated 19
trackers on 315 videos. Although it has been noted that
poor initialization of a tracker significantly decreases the
tracking accuracy, further analysis based on comprehensive
experimental evaluations is necessary and important to bet-
ter understand the state-of-the-art algorithms. In [59], Pang
and Ling used a ranking approach to analyze the reported
results of object tracking methods. The main shortcoming of
this approach is that it is not appropriate to rank the
recently published trackers due to a lack of sufficient experi-
mental evaluations in terms of trackers, sequences, and met-
rics. In [40], 27 trackers were evaluated on 16 sequences,
where the ranking of trackers were obtained by averaging
the performance on image sequences using different met-
rics. The failure rate of a tracking method was computed by
counting the number of frames in which a method fails to
follow a target object. A tracker was re-initialized several
frames after a failure occurs (when the overlap ratio is
zero). If a different overlap threshold is used, each tracker
needs to be re-evaluated on the entire dataset. In this work,
we propose a virtual run to compute failure rates with dif-
ferent overlap thresholds.

2.6 Challenging Factors

We discuss some main tracking challenges in this section.
Occlusion. Numerous approaches including part-based

local representations have been proposed in recent years to
handle the appearance changes caused by heavy occlusion.
By adopting a sparse representation of the target and trivial
templates, Mei et al. [55] developed a method to detect
object occlusion by analyzing coefficients for appropriate
template update in order to reduce the tracking drift. In
[39], Kalal et al. developed a re-initialization module to
detect whether a target object is completely occluded or
missing for robust tracking.

Deformation. To model non-rigid appearance changes,
histogram representations of color and intensity have
been used for object tracking [17], [26], [31], [42], [56]. In
[56], Nejhum et al. modeled the target appearance by
using a small number of rectangular blocks from which
histograms were extracted. The positions of these blocks
within an object were adaptively determined for object
tracking. In [42], a target object was represented by a
patch-based appearance model and the topology between

local patches was updated online. Another effective
approach to address the deformation problem is based on
segmentation techniques to describe object shape. In [26],
Godec et al. presented a tracking-by-detection approach
based on a generalized Hough transform and used seg-
mentation based on the GrabCut method [66] to better
describe the foreground objects.

Scale variation. To estimate the scale of a target object, one
common approach is to search at multiple scales and use
the one with the maximum likelihood for tracking [17].
Collins [15] used the scale space theory [47] to improve the
mean-shift tracking method [17]. Another approach is to
include object scale as one state in the motion model (e.g.,
similarity or affine transformation). In the tracking methods
based on particle filters, object states are often estimated by
the average of a few particles with large weights (likeli-
hoods) [36], [65].

Fast motion. Most tracking methods operate on the
implicit assumption that objects move without abrupt or
sudden movements. In [63], Porikli and Tuzel extended the
mean-shift tracking method by using multiple kernels cen-
tered around fast motion areas. In [41], Kwon and Lee intro-
duced the Wang-Landau Monte Carlo sampling method to
handle fast motion by alleviating motion smoothness con-
straints with both the likelihood functions and the density of
states. To cope with abrupt motion and large appearance
changes, multiple trackerswith differentmotion and appear-
ance models were used where the best one was selected
usingMarkov ChainMonte Carlo sampling [43], [44].

3 EVALUATED TRACKING ALGORITHMS

We evaluated 31 representative tracking algorithms in this
work (see Table 1). As all implementations inevitably
involve technical details and specific parameter settings, we
included the algorithms only if the original source or binary
code was publicly available.4 While some algorithms are
not included due to accessibility issues, the set of evaluated
trackers is representative for an accurate assessment of the
state-of-the-art in object tracking. For large-scale evalua-
tions, we built a tracker library by modifying the interface
of the source code with unified input and output formats.
This code library provides a platform for evaluating the
state-of-the-art trackers.

For fair comparisons, the parameters of each tracker were
fixed for all the considered sequences. In most cases, we
used the default parameters provided in the source code.5 It
was difficult, if not impossible, to tune the parameters of
each tracker in this large-scale evaluation. The evaluation
results in this work could be viewed as the average or lower
bound of the tracking performance. While numerous
diverse trackers have been proposed, the best performing
approaches share similar components. Table 1 lists the main
characteristics of the evaluated tracking algorithms.

4. In addition, we implemented the tracking algorithms [17], [60].
We evaluated the trackers in the VIVID dataset [14], including the
mean shift, template matching (TM), ratio shift (RS), and peak differ-
ence (PD) methods.

5. Some trackers (e.g., IVT) provide different parameters for differ-
ent sequences in the source code. In such a case, one default parameter
setting was selected for all the experiments.
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4 DATASETS

Recently, numerous benchmark datasets have been devel-
oped for various vision problems, such as the Berkeley seg-
mentation [51], FERET face recognition [61], and optical
flow dataset [8]. There exist a few benchmark datasets for
tracking in the surveillance scenarios, such as the VIVID
[14] and CAVIAR [24] databases. For generic object track-
ing, several sequences have been used for the evaluation
[5], [43], [65]. However, most image sequences are not
appropriately provided with the ground-truth annotations,
and thus, the reported quantitative results in the literature
are different or inconsistent since the trackers are not initial-
ized and evaluated on the same platform. To facilitate a fair
performance evaluation, we collected and annotated most
of the commonly used tracking sequences. This work
expands the sequences that we collected in [83] to include
100 target objects in the tracking benchmark TB-100 data-
set.6 Since some of the target objects are similar or less chal-
lenging, we also selected 50 difficult and representative
ones in the TB-50 dataset for an in-depth analysis. Note that

as humans are the most important target objects in practice,
the TB-100 dataset contains more sequences of this category
(36 body and 26 face/head videos) than of the other types.

Attributes of a test sequence. An evaluation of tracking
algorithms is challenging as many factors affect the exper-
imental results. For a better analysis of the strength and
the weakness of the tracking algorithms, we categorized
the sequences according to the 11 attributes defined in
Table 2. Each attribute represents a specific challenging
factor in object tracking. One sequence may be annotated
with many attributes, and some attributes occur more fre-
quently than others.

In addition to the performance evaluation on the TB-100
dataset, we report tracking results of sequences with spe-
cific attributes. The characteristics of tracking algorithms
can be better understood from the sequences with the same
attributes. For example, to evaluate how well the tracker
handles occlusion, one may use 49 sequences (29 in TB-50)
annotated with the OCC attribute. Fig. 1 shows the first
frames of all 100 targets with ground-truth bounding boxes
and attributes where the target objects of the TB-50 dataset
are marked with green rectangles. The attribute distribution
of the TB-100 dataset is shown in Table 3.

TABLE 1
Evaluated Tracking Algorithms
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ASLA [38] @ @ @ @ @ @ @ @ @ 8.5 ’12
BSBT [71] H @ @ @ @ 7.0 ’09
CPF [60] @ @ @ @ @ 109 ’02
CSK [34] @ @ @ @ @ 362 ’12
CT [92] H @ @ @ @ @ 64.4 ’12
CXT [20] B @ @ @ @ 15.3 ’11
DFT [69] @ @ @ @ @ @ 13.2 ’12
FOT [76] @ @ @ @ @ @ 244 ’11
FRAG [1] @ @ @ @ @ 6.3 ’06
IVT [65] @ @ @ @ @ @ @ 33.4 ’08
KMS [17] @ @ @ @ @ @ 3,159 ’03
L1APG [9] @ @ @ @ @ @ @ @ 2.0 ’12
LOT [58] @ @ @ @ @ @ 0.7 ’12
LSHT [33] @ @ @ H @ @ @ @ 20 ’13
LSK [48] @ @ @ @ @ @ @ 5.5 ’11
LSS [78] @ @ @ @ @ @ @ @ 15 ’13
MIL [5] H @ @ @ @ 38.1 ’09
MTT [94] @ @ @ @ @ @ @ 1.0 ’12
OAB [27] H @ @ @ @ 22.4 ’06
ORIA [85] @ @ H @ @ @ @ 20.2 ’11
PCOM [77] @ @ @ @ @ @ @ 20 ’14
SCM [95] @ @ @ @ @ @ @ @ @ @ @ 0.51 ’12
SMS [15] @ @ @ @ @ 19.2 ’03
SBT [28] H @ @ @ @ 11.2 ’08
STRUCK [32] H @ @ @ @ 20.2 ’11
TLD [39] @ B @ @ @ @ @ 28.1 ’10
VR [16] @ @ @ @ @ 109 ’05
VTD [43] @ @ @ @ @ @ @ @ 5.7 ’10
VTS [44] @ @ @ @ @ @ @ @ @ 5.7 ’11

6. The number of videos is less than 100 since a few sequences have
multiple targets in them.
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5 EVALUATION METHODOLOGY

It is a challenging task to assess the performance of a
tracking algorithm with quantitative metrics. Many fac-
tors such as position accuracy, robustness over a certain
type of appearance changes, tracking speed, memory
requirement, and ease of use can be considered. Even in
one frame with the tracking output and ground-truth
object state, there can be several metrics to measure accu-
racy. When an algorithm loses track of the target object, it
may resume to track after failure if there exists a re-detec-
tion module, or if it fortuitously locates the target object
again as the object reappears at the position where the
tracking bounding box is. If we simply average the evalu-
ated values of all frames in an image sequence, the evalu-
ation may not be fair since a tracker may have lost the
target in the beginning but could have tracked the target
successfully if it were initialized in a object state or frame.
We first discuss a few performance measures that are
commonly used and then, propose new metrics to evalu-
ate whether tracking algorithms perform robustly under
different conditions.

Precision plot. One widely used evaluation metric for
object tracking is the center location error, which computes
the average euclidean distance between the center locations
of the tracked targets and the manually labeled ground-
truth positions of all the frames. When a tracking algorithm
loses track of a target object, the output location can be ran-
dom, and thus, the average error value does not measure
the tracking performance correctly [5]. Instead, the percent-
age of frames in which the estimated locations are within a
given threshold distance of the ground-truth positions is a
better metric to measure tracking performance [5], [34].

However, the center location error only measures the
pixel difference and does not reflect the size and scale of the
target object. For completeness, in the supplementary docu-
ment, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/

TPAMI.2014.2388226, we present the representative preci-
sion plots of the trackers averaged over all sequences using
the threshold of 20 pixels [5] despite the above-mentioned
issues.

Success plot. Another commonly used evaluation metric
is the overlap score [21]. Given a tracked bounding box rt
and the ground-truth bounding extent r0 of a target

object, the overlap score is defined as S ¼ j rt
T

r0 j
j rt

S
r0 j

, where
T

and
S

represent the intersection and union operators,
respectively, and j � j denotes the number of pixels in a
region. The average overlap score (AOS) can be used as
the performance measure. In addition, the overlap scores
can be used for determining whether an algorithm suc-
cessfully tracks a target object in one frame, by testing
whether S is larger than a certain threshold to (e.g., to ¼
0.5). As the threshold varies between 0 and 1, the success
rate changes and the resultant curve is presented in this
work. In addition, the average success rate with a fixed
threshold to ¼ 0:5, is often used for the performance eval-
uation. Another measure for ranking trackers is the area
under curve (AUC) of each success plot, which is the
average of the success rates corresponding to the sampled
overlap thresholds.

As shown in the supplementary document, available
online, with sufficient uniformly sampled thresholds, the
AUC score of one sequence is equal to the AOS across
the sequence. This can be understood as the average of the
frame ratios whose overlap scores are larger than the thresh-
olds is the same as the average of the overlap scores, if there
are infinitely many thresholds in the success plot. In the fol-
lowing sections, we interchangeably use the AOS or AUC
score to summarize the performance of the trackingmethods
on the same sequence.

5.1 Robustness Evaluation

The most common evaluation method is to initialize an
algorithm with the ground-truth object state in the first
frame and report the average precision or success rate of all
the results. This straightforward approach is referred to as a
one-pass evaluation (OPE). While it is simple, this metric
has two major drawbacks. First, a tracking algorithm may
be sensitive to initialization in the first frame, and its perfor-
mance with different initial states or frames may vary sig-
nificantly. Second, most algorithms do not have re-
initialization mechanisms and the tracking results after
tracking failures do not provide meaningful information.

We propose two metrics to analyze whether a tracking
algorithm is robust to different object states by perturbing
them temporally (i.e., starting at different frames) or spa-
tially (i.e., starting with different bounding boxes), as illus-
trated in Fig. 2. These evaluation metrics are referred as
temporal robustness evaluation (TRE) and spatial robust-
ness evaluation (SRE) in this work.

Temporal robustness evaluation. Each tracking algorithm is
evaluated numerous times from different starting frames
across an image sequence. In each test, an algorithm is eval-
uated from a particular starting frame, with the initializa-
tion of the corresponding ground-truth object state, until
the end of an image sequence. The tracking results of all the
tests are averaged to generate the TRE score. Unlike OPE

TABLE 2
Annotated Sequence Attributes with the Threshold Values in the

Performance Evaluation

Attr Description

IV Illumination Variation—The illumination in the target
region is significantly changed.

SV Scale Variation—The ratio of the bounding boxes of the
first frame and the current frame is out of range. 1=ts; ts½ �,
ts > 1 (ts ¼ 2).

OCC Occlusion—The target is partially or fully occluded.
DEF Deformation—Non-rigid object deformation.
MB Motion Blur—The target region is blurred due to the

motion of the target or the camera.
FM Fast Motion—The motion of the ground truth is larger

than tm pixels (tm ¼ 20).
IPR In-Plane Rotation—The target rotates in the image plane.
OPR Out-of-Plane Rotation—The target rotates out of the

image plane.
OV Out-of-View—Some portion of the target leaves the view.
BC Background Clutters—The background near the target

has similar color or texture as the target.
LR Low Resolution—The number of pixels inside the

ground-truth bounding box is less than tr (tr ¼ 400).
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where the earlier part of a sequence is more important since
the results from the frames after one tracking failure are not
informative, TRE addresses this issue.

Spatial robustness evaluation. Accurate initialization of a
target object is often important for tracking algorithms, but
in practice, it is difficult to achieve this due to errors caused
by the detectors or by manual labeling. To evaluate whether
a tracking method is sensitive to initialization errors, we

generate the object states by slightly shifting or scaling the
ground-truth bounding box of a target object. In this work,
we use eight spatial shifts (four center shifts and four corner
shifts), and four scale variations (see Fig. 2). The amount for
shift is 10 percent of the target size, and the scale ratio varies
from 80 to 120 percent of the ground truth at the increment
of 10 percent. The SRE score is the average of these 12
evaluations.

Fig. 1. Annotated image sequences for performance evaluation. The first frame of each sequence is shown with the initial bounding box of the target
object. The 50 targets marked with green bounding boxes are selected for extensive evaluations. The newly added sequences compared to [83] are
denoted by a red cross at the upper right corner of each image. Some frames are cropped for better illustration.
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5.2 Robustness Evaluation with Restart

For challenging sequences, a tracking algorithm may fail
and lose track of the target when the appearance changes
drastically or some distractors appear in the scenes. Once a
method fails, it is unlikely to recover and track the target
without any external input (e.g., re-detection by an object
detector or manual re-initialization). While the TRE score is
designed to mitigate this effect, different metrics are neces-
sary to better measure the tracking performance.

One-pass evaluation with restart (OPER). The OPER metric
constantly measures how a tracking method performs and
re-initializes it at the next frame with the corresponding
ground-truth position throughout an image sequence. The
average overlap score and the total number of failures show
the accuracy and the stability of a tracking algorithm. A
tracking failure is defined as when the average overlap
score of the frames in a moving window is lower than the
given threshold, as illustrated in Fig. 2. The averaging win-
dow size v controls the sensitivity to instantaneous failure,
and its effect is shown in Fig. 6.

Spatial robustness evaluation with restart (SRER). As in the
case of OPER, we evaluate whether a tracking method is
sensitive to spatial perturbation with restarts such that the
tracking performance in challenging sequences can be better
analyzed (see Fig. 2 for an example).

Approximation using virtual runs. Ideally, a tracking
method should be restarted at the frame when a failure
occurs. However, a few potential issues need to be consid-
ered. First, to analyze the behavior of a tracker, we vary the
overlap threshold; consequently, the tracking failures occur

at different frames. However, it is impractical to evaluate all
possible scenarios with different thresholds and parameters
(and spatial perturbations in SRER) for every image
sequence of the TB-50 or TB-100 benchmark datasets.
Second, numerous tracking algorithms are distributed with
binary code, and it is not possible to detect a failure and
restart a tracker at some particular frames. As such, we use
virtual runs to approximate specific parameter settings gen-
erated from a set of actual experiments. For each spatial per-
turbation d, each tracker is evaluated from every tth frame
to the end of a sequence with N frames, and the set of

results is frddkgbN=tc
k¼0 , where each run rddk is a sequence of track-

ing outputs from frame ðtkþ 1Þ toN .
A virtual run r̂ddv;u for the perturbation d, averaging win-

dow size v, and failure threshold u can be generated from

frddkg, as shown in Algorithm 1 in the supplementary file and
Fig. 3, available online. Basically, when a failure is detected
at frame t, there exists a run rd;bt=tc, which is initialized

within v frames from t. Thus, we can approximate the
restart by replacing the frames from tþ 1 with the corre-
sponding frames in this run.

In this work, each SRER consists of seven spatial pertur-
bations (one ground-truth, four center shifts, and two scale
variations: 0.9 and 1.1) and v ¼ 90 frames. We only evaluate
on the TB-50 dataset with SRER due to the large number of
experiments: for a sequence of 600 frames, one tracker
requires 140 runs (7 variations � 20 runs), processing 44,100
(7� ð600þ 570þ � � � þ 30)) frames.

6 EVALUATION RESULTS

For each tracking algorithm, the default parameters with the
source or binary code are used in all evaluations. Table 1
lists the average frame per second (FPS) of each method in
OPE on a desktop computer with Intel i7 3770 CPU
(3.4 GHz). For a tracking method with a re-detection mod-
ule (e.g., TLD), no tracking results are returned after the
algorithm determines that it loses track of a target object. In
such cases, the last tracked position is used for the evalua-
tion. Note that in this benchmark, we annotate each target
object in every frame even when it is fully occluded. In the

TABLE 3
Attribute Distribution

TB-100 IV OPR SV OCC DEF MB FM IPR OV BC LR

(a) Attribute distribution for TB-100
IV 38 24 24 20 15 12 12 17 5 17 2
OPR 24 63 45 38 29 16 24 42 11 19 7
SV 24 45 64 33 29 21 28 35 11 17 9
OCC 20 38 33 49 25 14 19 25 12 14 5
DEF 15 29 29 25 44 10 15 17 5 12 3
MB 12 16 21 14 10 29 24 16 8 8 1
FM 12 24 28 19 15 24 39 22 11 10 2
IPR 17 42 35 25 17 16 22 51 8 14 6
OV 5 11 11 12 5 8 11 8 14 6 2
BC 17 19 17 14 12 8 10 14 6 31 1
LR 2 7 9 5 3 1 2 6 2 1 9

TB-50 IV OPR SV OCC DEF MB FM IPR OV BC LR

(b) Attribute distribution for TB-50
IV 22 15 16 11 10 9 8 12 4 14 2
OPR 15 32 26 25 16 10 15 22 9 14 6
SV 16 26 38 25 17 15 20 22 9 14 8
OCC 11 25 25 29 15 11 14 17 10 11 5
DEF 10 16 17 15 23 6 10 10 5 7 3
MB 9 10 15 11 6 19 16 13 7 7 1
FM 8 15 20 14 10 16 25 14 9 9 2
IPR 12 22 22 17 10 13 14 29 7 12 5
OV 4 9 9 10 5 7 9 7 11 5 2
BC 14 14 14 11 7 7 9 12 5 20 1
LR 2 6 8 5 3 1 2 5 2 1 8

The diagonal corresponds to the distribution over the entire dataset, and each
row or column presents the distribution for the attribute subset.

Fig. 2. Evaluation methods for trackers. In each image, the green box
represents the ground-truth target location, and the other colors denote
the tracker outputs. Dotted boxes represent the initialization of the
tracker. OPE is the simplest—initialize the tracker in the first frame and
let it track the target until the end of the sequence. In TRE, a tracker
starts at different starting frames initialized with the ground-truth bound-
ing box. In SRE, each tracker runs several times with spatially shifted
and scaled initializations. The OPER and SRER metrics are used for
restarting a tracker for the rest of the sequence if it fails (based on an
overlap threshold) at some frame.
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following, we use SRE and SRER as the most representative
metrics for the performance evaluation.

6.1 Overall Performance

Each tracker is evaluated on 58,897 frames of the entire TB-
100 dataset for OPE. For SRE, each tracking algorithm is
evaluated on each sequence with 12 initial object states,
where more than 700,000 tracking results per tracker are
generated. For TRE, each sequence is partitioned into 20
segments and each method is tested with more than 610,000
frames per tracker. In terms of SRER, more than 80 million
tracking results from the TB-50 sequences are generated. To
the best of our knowledge, this is the largest-scale perfor-
mance evaluation of object tracking. We report the most
important findings in this manuscript, and further details
can be found at http://pami.visual-tracking.net.

The experimental results of OPE, SRE, and TRE on the
TB-100 and TB-50 datasets are shown in Fig. 4. The scores
from the TB-50 dataset are lower than those from the TB-100
set as the TB-50 set consists of more challenging sequences.
For the sake of presentation clarity, the plots of the top-10
performing trackers, ordered by the AUC scores, are shown
in color (plots of the other trackers are shown in gray).

The average TRE scores from both datasets are higher
than those of OPE in that the number of frames decreases
from the first to the last segment of TRE. As tracking algo-
rithms tend to perform well in shorter sequences, the aver-
age scores of all the results in TRE tend to be higher. On the
other hand, the average SRE scores are lower than those of
OPE. As a result of imprecise initial appearance models
induced in SRE, tracking methods tend to drift away from
target objects at a faster pace than those in OPE.

The evaluation results show that OPE is not the best
performance indicator as it is one trial of SRE or TRE and
does not take the initialization noise into account. The
OPE, SRE, and TRE results are mostly consistent in the
sense that the top few performing tracking methods
according to one criterion also perform well in the other
evaluations. However, these tracking methods are effec-
tive in different aspects. In the success plots for evalua-
tions based on the TB-100 dataset, the SCM method in
OPE outperforms the ASLA approach (by 3.65 percent)
but is slightly worse in SRE (by 0.57 percent), which sug-
gests that one of the considered algorithms is more robust
to the spatial perturbation of the initial object states. The
ranking of the TLD method in TRE is lower than that in

Fig. 3. An OPER virtual run is created from a set of TRE results. From the first frame, it takes parts of the first run in TRE until the average overlap in
the test window is less than a given threshold. If a failure is detected, the last run containing the next frame is used, and this process is repeated until
the end. It can also be easily extended to SRER virtual runs. Refer to the text and Algorithm 1 in the supplementary material for more details, avail-
able online. In the illustrated example, the window size v is 4 and the temporal initialization sampling interval t is 5.

Fig. 4. Plots of OPE, SRE, and TRE on TB-100 (first row) and TB-50 (second row). The score for each tracker is shown in the legend. The top 10
trackers are presented for the sake of clarity, and the rest are shown as gray dashed curves.
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OPE and SRE. This can be attributed to the fact that the
TLD algorithm performs well in long sequences with a
re-detection module while there are numerous short seg-
ments in TRE. The success plots of the Struck method in
TRE and SRE show that its success rate is higher than
those of the SCM and ALSA methods when the overlap
threshold is low, but lower when the overlap threshold is
higher. This is because the Struck method only estimates
the object location but not scale or rotation.

Sparse representations are used in the SCM, ASLA, LSK,
MTT, and L1APGmethods. These tracking approaches per-
form well in SRE and TRE, which suggests that sparse rep-
resentations are effective models to account for appearance
changes (e.g., occlusion). We note that the SCM, ASLA, and
LSK algorithms outperform the MTT and L1APG methods.
The results suggest that local sparse representations are
more effective than the ones with holistic sparse templates.
The AUC score of the ASLA method decreases slowly as
compared to that of the other top five trackers in SRE
(when compared with OPE), which indicates that the used
pooling method is more robust to alignment errors and
background clutters.

Among the top 10 trackers, the CSK method achieves the
highest frame rate where the formulation based on a circu-
lant structure plays a key role. The VTD and VTS methods
use multiple models to account for appearance changes and
fast motion. Compared with the top-performing tracking
methods, the performance bottleneck of these two methods
may be the representations based on the sparse principal
component analysis of holistic templates.

6.2 Performance of SRER

To evaluate how each tracking algorithm performs under
spatial and temporal perturbations of initial object states,
we carry out experiments using the spatial robustness eval-
uation with restart metric.

In the SRER plot (shown in Fig. 5), the y-axis denotes the
average success rate of all frames, and the x-axis represents
the average number of failures (the moment at which the
tracker restarts) in 1,000 frames. Each tracker is evaluated
with 11 different overlap thresholds from 0.0 to 1.0, and the
success rates and the number of failures are shown as solid
dots in the plot. The plots can be interpreted in a way simi-
lar to the receiver operator curve (ROC). As the overlap
threshold increases, the number of failures increases and
the success rate increases at first and then decreases slightly.
When the overlap threshold is low, a tracker is not restarted
even when it actually loses track of a target object and the
model of a tracker is likely to be incorrect. The average suc-
cess rate increases when the threshold values are low since
re-initialization significantly helps the object tracking. How-
ever, an SRER plot saturates around the threshold value of
0.5 or 0.6 and decreases in higher thresholds where a tracker
is restarted too frequently and fails to learn effective repre-
sentations to account for appearance changes. Ideal trackers
should achieve high success rates and a low number of
restarts, which corresponds to the top left corner of the plot.
To rank the tracking performance, we use the average suc-
cess rate at the overlap threshold of 0.5 (denoted by a black
circle), and the values are also shown in the legend. The
upper left plot of Fig. 5 shows the overall performance of

the considered trackers on the TB-50 dataset. The top-five
tracking methods in SRER perform significantly better than
the others in terms of both the average success rate and the
average number of failures.

Table 4 shows the average success rates and the average
number of failures for all the trackers with respect to all
attributes at the overlap threshold of 0.5. The tracking algo-
rithms are sorted by the average success rates, and the top-
five methods denoted by different colors. We present the
effect of window size that determines the interval for testing
the tracking failure in Fig. 6. The original runs are generated
at every 30 frames from the beginning, and the virtual runs
are constructed for the given test windows and thresholds.
As the test window size increases, both the average success
rate and the number of failures decrease as momentary fail-
ures have less effect in tests with longer averaging win-
dows. Overall, the performance of the evaluated trackers is
consistent over large variations of the time window, and the
window size of 90 is used for all other SRER results.

6.3 Performance Analysis by Attributes

By annotating each sequence, we construct subsets with dif-
ferent dominant attributes that facilitate the analysis of the
performance of trackers for each challenging factor. Fig. 5
shows the SRER plots of 11 attributes on the TB-50 dataset.
These plots show the different performance characteristics
of the tracking algorithms.

When an object moves fast, dense sampling based track-
ers (e.g., Struck) perform much better than the others. This
can be attributed to the fact that methods based on optimal
prediction or relatively sparse samples do not perform well
as the true object state is not included in the search region.
However, stochastic search-based trackers with a high over-
all performance (e.g., SCM and ASLA) do not perform well
in this subset due to the simple motion models and small
search regions. If the search region is large, more particles
need to be drawn. These trackers can be further improved
with more effective motion models and particle filters.

On the OCC subset, the Struck, SCM, and ASLAmethods
outperform the others. These results suggest that structured
learning and local sparse representations are effective in
dealing with occlusion. On the SV subset, the ASLA, SCM,
and Struck methods perform well. The results show that
trackers with affine motion models (e.g., ASLA and SCM)
often handle scale variation better than the others that are
designed to account for only translational motion with a
few exceptions such as the Struck method.

6.4 Tracking Speed

The speed of tracking methods is affected by different fac-
tors despite the different implementation platforms. These
factors include the bounding box size, representation
scheme, state space, number of particles, number of fea-
tures, and number of iterations. For example, the L1 track-
ing method requires solving one ‘1 minimization problem
for each drawn particle. The MIL tracking method has a
lower frame rate and more robust results when the number
of Haar-like features is larger. The ASLA and SCM methods
solve several ‘1 minimization problems with small image
patches. On the other hand, the time for Markov chains to
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converge in the VTD and VTS algorithms is significant.
Table 1 lists the average speed of each method in OPE.7

More detailed speed statistics, such as the minimum and
the maximum values, are available on the above-mentioned
web page.

7 CONCLUSIONS

In this work, we performed large-scale experiments to eval-
uate the performance of recent object-tracking algorithms.
Based on the benchmark experiments, we highlighted some
tracking components that are essential for improving the
tracking performance. First, background information is

important for effective tracking, which can be exploited in
discriminative approaches implicitly (e.g., Struck) or used
as the tracking context explicitly (e.g., CXT). Second, local
models are effective for object tracking as shown by the per-
formance improvement of methods based on the local
sparse representation (e.g., ASLA and SCM) than those
based on holistic sparse approaches (e.g., MTT and
L1APG). These models are particularly useful when the tar-
get appearance changes under partial occlusion or deforma-
tion. Third, motion models are crucial for object tracking,
particularly when the target movement is large or abrupt.
Effective state prediction models significantly reduce the
search range and thus improve the tracking efficiency and
robustness. It is of great interest to develop tracking meth-
ods to take these factors into account. The evaluation results
show that significant progress in the field of object tracking

Fig. 5. SRER plots of the overall performance (upper left) and sequences with different attributes. A curve in an SRER plot shows the average over-
lap scores (y-axis) and the average number of failures (x-axis) for the overlap thresholds (dots on the curve), which are varied from 0 to 1. The black
circle represents the score when the overlap threshold is 0.5. The values in the legend are the average overlap scores at the threshold of 0.5.

7. The average FPS of the VIVID trackers, MS, TM, RS, and PD is
125, 106, 130, and 109, respectively.
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has been made in the last decade. We propose and demon-
strate evaluation metrics for an in-depth analysis of object-
tracking algorithms from several perspectives.

We note that considerable progress has recently been
made [19], [25], [49] to improve the state-of-the-art. In [19],
Danelljan et al. extended the CSK method [34] by using
many color attributes/features and 41 color sequences were
selected from the benchmark dataset [83] for the evaluation.

On the other hand, the CSK method was extended by using
multi-channel features [35]. A hierarchical and composi-
tional and-or graph representation was used for simulta-
neously tracking, learning, and parsing objects [49]. A
Gaussian process regressor was used for estimating the
probability of target appearance, and two types of labeled
samples were used for improving the tracking performance
[25], and some promising results have been demonstrated

TABLE 4
SRER Evaluation Results on the TB-50 Dataset

Each entry contains the average overlap in percentage and the average number of failures in 1,000 frames at the overlap threshold of 0.5. The trackers are ordered
by the average overlap scores, and the top five methods in each attribute are denoted by different colors: red, green, blue, cyan, and magenta.

Fig. 6. SRER plots with different averaging window sizes for failure detection. As the window size for failure detection increases, the average overlap
scores and the number of failures decrease. However, the trends and ranks of the trackers remain similar.
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on the benchmark dataset [83]. These trackers will be added
to the library and made available on the evaluation website.

In this work, the large-scale performance evaluation
facilitated a better understanding of the state-of-the-art
object tracking approaches, and provided a platform for
gauging new algorithms. Our future work focuses on
extending the datasets and code library to include more
fully annotated sequences and trackers.
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