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Abstract—Numerous approaches on object tracking have been proposed during the past decade with demonstrated success.
However, most tracking algorithms are evaluated on limited video sequences and annotations. For thorough performance evaluation,
we propose a large-scale database which contains 365 challenging image sequences of pedestrians and rigid objects. The database
covers 12 kinds of objects, and most of the sequences are captured from moving cameras. Each sequence is annotated with target
location and occlusion level for evaluation. A thorough experimental evaluation of 20 state-of-the-art tracking algorithms is presented
with detailed analysis using different metrics. The database is publicly available and evaluation can be carried out online for fair
assessments of visual tracking algorithms.

Index Terms—Object tracking, performance evaluation, benchmark database.
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1 INTRODUCTION

O BJECT tracking is one of the most important tasks
in computer vision [1], and a considerable number

of approaches have been proposed in the past few
decades. To demonstrate the merits and effectiveness
of these methods, experimental evaluations have often
been carried out on a few datasets. In most cases, these
datasets are constructed for specific goals, and thereby
limited in terms of variability, scale and annotations.
All these factors affect soundness and completeness of
performance evaluations on different object tracking al-
gorithms.

Existing image sequences commonly used in object
tracking are generally collected in two ways. Image
sequences are collected from surveillance cameras, such
as the CAVIAR [2], TRECVID [3] and PETS [4] datasets
where objects typically appear at a distance in static
background. However, only humans or pedestrians are
annotated in these datasets. In addition to surveillance
videos, image sequences are collected from consumer
cameras where typically one or a few objects appear in
the scenes [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15]. In [16], experimental comparisons of 11 tracking
algorithms on 15 sequences are presented. Nevertheless,
the number of widely used sequences is limited (less
than 30) and most existing algorithms use a subset of
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them for experimental validation. As different subset
selection makes it difficult to have fair comparisons of
tracking algorithms [17], [18], it is of critical importance
to construct a large and challenging database for thor-
ough performance evaluation. To address the above-
mentioned issues, we collect a large-scale database con-
taining 365 image sequences, most of which are captured
with moving cameras. The proposed NUS People and
Rigid Objects (NUS-PRO) database is constructed for
thorough performance evaluation on single object track-
ing. In addition, we notice an issue regarding parameter
overfitting for specific sequences commonly occurred in
the tracking literature. This problem is addressed in this
work by using an online evaluation system which pro-
vides experimental results by withholding the ground-
truth annotations of test sequences.

The remainder of this paper is organized as fol-
lows. Section 2 gives technical details of the NUS-
PRO database. In Section 3, we elaborate the evaluation
metrics for the NUS-PRO database. Section 4 describes
the online evaluation system. A thorough experimental
evaluation of state-of-the-art object tracking algorithms
on the NUS-PRO database is presented in Section 5. We
conclude this paper and discuss future work in Section 6.

2 THE NUS-PRO DATABASE

We describe the details of the NUS-PRO database in this
section including characteristics and annotation issues
of the collected image sequences. As a key feature of
the NUS-PRO database, the occlusion level annotation
is discussed for thorough evaluation.

2.1 Database Characteristics

The NUS-PRO database consists of 365 image sequences
collected from YouTube. The frame number of a se-
quence ranges from 146 to 5,040, and the median number
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helicopter_007 frame # 1 motorcycle_006 frame # 1 basketball_006 frame # 1  

airplane_006 frame # 1 boat_006 frame # 1 car_016 frame # 1 

gymnastics_006 frame # 1 handball_006 frame # 1 racing_006 frame # 1 

soccer_006 frame # 1 tennis_006 frame # 1 pedestrian_006 frame # 1 

hat_006 frame # 1 interview_006 frame # 1 mask_006 frame # 1 

politician_006 frame # 1 sunglasses_006 frame # 1 long_seq_001 frame # 1 

Fig. 1. Exemplar frames of the airplane, boat, car, helicopter, motorcycle, basketball, gymnastics, handball, racing, soccer,
tennis and pedestrian, hat, interview, mask, politician, sunglasses and long seq sequences of the NUS-PRO database.

of frames is 300. The image sequences of the NUS-
PRO database are divided into 5 categories including
face, pedestrian, sportsman, rigid object and long sequences.
The rigid object category is further divided into 5 sub-
categories including airplane, boat, car, helicopter and
motorcycle 1. The sportsman category is divided into 6
subcategories, including basketball, gymnastics, handball,
racing, soccer and tennis. The face category is further di-

1. These objects are considered based on the holistic appearance
despite some local deformation change such as rotating propellers.

vided into 5 subcategories including hat, mask, interview,
politician and sunglasses. Consequently, there are 17 kinds
of objects in the NUS-PRO database, of which exemplar
images and characteristics are shown in Figure 1 and
Table 1.

Various factors affect the performance of a tracking al-
gorithm. For the NUS-PRO database, we summarize and
divide these factors into 12 categories, as shown in Fig-
ure 2, in which 2 categories, namely camera shake and full
occlusion, are less addressed in the literature. There are
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pedestrian 098 #108 pedestrian 098 #200 basketball 036 #262 basketball 036 #263 

car 002  #076 

helicopter 018 #088 helicopter 018 #272 
(h) Scale Change 

(d) Dim Light 

(a) Shadow Change (b) Flash 

airplane 016 #020 airplane 016 #116 
(f) Rotation 

gymnastics 002 #130 gymnastics 002 #286 
(g) Shape Deformation 

(i) Partial Occlusion 

pedestrian 044 #200 
(d) Clutter Background 

basketball 010 #137 

(k) Similar Objects 

car 016 #200 car 016 #210 
(e) Fast Background Change 

pedestrian 076 #030, 051, 070 

pedestrian 016 #331 pedestrian 016 #335 Bounding boxes 
in #331-335 (l) Camera Shake 

(j) Full Occlusion 

Fig. 2. The NUS-PRO database is challenging due to 12 factors including shadow change, flash, dim light, clutter
background, fast background change, rotation, shape deformation, scale change, partial occlusion, full occlusion,
similar objects and camera shake.

mainly two differences between the NUS-PRO database
and existing datasets. First, many image sequences in the
NUS-PRO database are recorded by hand-held cameras,
and thus contain sudden object movements caused by
hand shake. Second, we annotate sequences with partial
or full occlusions for further analysis in this work.

Figure 3 shows sequence statistics of challenging fac-
tors where there are more videos with scale change, shape
deformation, partial occlusion and clutter background. For a
specific challenging factor, the proportions of each type
of object are illustrated in different colors. Typically, there
are several challenging factors in one image sequence.
In the NUS-PRO database, the number of challenging
factors in a single image sequence ranges from 0 to 6 as
shown in Figure 4.

In the NUS-PRO database, all images are of the same
size, i.e., 1280×720 pixels. Due to diversity of shape,
we compare the size of target objects by the bounding
box areas. The bounding box sizes are computed from
the whole 365 sequences, while the target sizes based

0 

50 

100 

150 

200 

250 Long Sequence 

Face 

Tennis 

Soccer 

Racing 

Handball 

Gymnastics 

Basketball 

Motorcycle 

Helicopter 

Car 

Boat 

Airplane 

Pedestrian 

Fig. 3. Number of sequence for each factor.

on contour masks are measured from 305 sequences
excluding the face class. Figure 5 shows the statistics
of the target size by the square root of the target area,
which roughly corresponds to the side length of a target
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TABLE 1
Statistics of the NUS-PRO database.

Category Sequence Frame Number
Number Min Max Mean

rigid object

airplane 20 200 300 250
boat 20 280 300 299
car 20 233 600 383

helicopter 20 280 360 307
motorcycle 20 190 360 268

sportsman

basketball 40 172 360 237
gymnastics 20 220 1960 551

handball 10 180 503 292
racing 10 220 460 331
soccer 10 210 400 295
tennis 10 223 683 436

pedestrian 100 200 460 269

face

hat 10 146 300 266
interview 20 500 500 500

mask 10 200 500 382.7
politician 10 460 500 494

sunglasses 10 167 500 364.7
long seq 5 2133 5040 3834.6
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Fig. 4. Challenging factors in an image sequence.

object. A few bounding boxes of objects with large shape
variation are presented in Figure 7. The median target
size of the first frame and the whole sequence are both
around 98 pixels.

2.2 Bounding Box Annotation

While the fine foreground mask of a target object should
ideally be annotated for accurate evaluation, it entails
time-consuming pixel-level segmentation tasks. On the
other hand, the position of a target for object tracking
is usually represented by a rectangle bounding box
for convenience. We note that most publicly available
datasets do not clearly define the bounding box of a
target object [6], [5], [7], [8], [9], [10], [13], [14], [15], which
may significantly affect evaluation results of tracking
algorithms.

A bounding box is defined as the boundary of a target
object in the CAVIAR dataset [2], which is refereed as
boundary based bounding box in this work. Such annotation
is effective for those objects with compact shapes. How-
ever, the bounding box may contain a significant amount
of background pixels if the shape of the object cannot
be described compactly by a rectangle as illustrated in
Figure 7.
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Fig. 5. Statistics of target size. The size of a target is
measured by the square root of the area of its bounding
box, which roughly corresponds to the side length of a
target object.

Bounding Box Eye-Mouth Distance 

Fig. 6. A bounding box of an image, illustrated by white
solid lines, is obtained by expanding the bounding box of
four facial fiducial points (eye centers and mouth corners)
by 40% of the eye-mouth distance (the black dashed line
in the right image).

In the NUS-PRO database, some objects (e.g., airplane,
boat, car and motorcycle) have compact shapes, but
many others (e.g., helicopter, sportsman and pedestrian)
have more complex variations. Thus, the annotated
boundary based bounding boxes are less effective. To
obtain more accurate annotations, one trade-off is to
enclosing most foreground parts of a target object (e.g.,
torso) without considering its entirety via pixel-based
segmentation process. In this work, we annotate the
bounding box of an object with torso based bounding box
using the following rules:

• For a face image sequence, the bounding box is
obtained by expanding an inner bounding (See Fig-
ure 6). The inner bounding box is defined by the
boundary of 4 fiducial points, i.e., eye centers and
mouth corners. The horizontal and vertical expan-
sions are both 40% of the eye-mouth distance which
is between the middle points of eye centers and
mouth corners.
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helicopter_007 frame # 1 
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frame # 1 
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Fig. 7. Sample annotated boundary (dotted line) and torso
(solid line) based bounding boxes. For a non-rigid object,
the torso based annotation contains fewer background
pixels, which helps increase the overlap ratio [19].
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Fig. 8. Overlap ratio for the boundary based and torso
based bounding box in the first frames of helicopter,
sportsman and pedestrian sequences.

• For a helicopter sequence, the top and bottom ex-
tents of the bounding box are defined as the top
and bottom horizontal boundaries of the main body
excluding the propeller. If the helicopter has one
propeller, the left and right extents of the bounding
box are defined by the head and the engine vents
(See Figure 7). Otherwise, the left and right extents
are defined by the helicopter head and tail.

• For a sportsman or pedestrian sequence, the top
extent of the bounding box is defined by the top
of head, and torso refers to the body excluding the
arms and calves (See Figure 7). The bottom extent of
a bounding box is defined as the sole or the lowest
position of the torso if it is lower than the feet. For
the left and right extents, they are defined by the
left-most (or right-most) one of the three positions:
the shoulder boundary, the knee position, and the
torso boundary.

Figure 7 shows that torso based bounding boxes
significantly reduce the amount of background pixels
included in these annotations. The torso based bounding
boxes overlap with the ground truth contour masks
better and provide higher quality annotations. For quan-
titative comparisons based on two types of bounding

boxes, we manually label the fine foreground mask of
the target in the first frames of each sequence (See
Figure 7). Evaluations are carried out based on the
overlap ratio, Ro, between the bounding box B and the
ground truth mask G, which is used in the PASCAL VOC
challenge [19]:

Ro =
area(B ∩G)

area(B ∪G)
. (1)

As a trade-off between accuracy and convenience,
220 sequences (helicopter, basketball, gymnastics, rac-
ing, soccer, tennis and pedestrian) in the NUS-PRO
database are annotated by torso based bounding boxes.
The airplane, boat, car and motorcycle sequences are
labeled by boundary based bounding boxes. Figure 8
shows the distribution of the overlap ratios computed
based on the first frames of 220 sequences. With fixed
overlap ratio higher than 0.5 (which is often used in
the tracking literature), the number of images by the
the torso annotation (white bars) is higher than that of
images with boundary annotation (shaded bars). That is,
the torso based bounding boxes provide more accurate
annotations than the boundary based bounding boxes.
The mean and standard variation of the overlap ratios
obtained by torso based bounding box are 0.5679 and
0.0889 respectively, while those of the boundary based
bounding box are 0.4875 and 0.1092. It should be noted
that we do not annotate the rotation angle of a bound-
ing box as the target position and extent are the most
important factor for object tracking.

2.3 Occlusion Annotation

Occlusion is one of the main challenges for object track-
ing, and consequently how occluded objects is annotated
are important for performance evaluation. For objects
that are fully occluded for some frames, it is not clear
whether the tracking results in that period should be
included in performance evaluation. Therefore, the oc-
clusion level in such frames should be annotated for dif-
ferent evaluation criteria. To the best of our knowledge,
little attention has been paid to consider this factor in the
tracking literature. For example, the girl sequence [20]
contains frames with full occlusion, but this factor is not
considered in the reported results. Recently, benchmarks
for pedestrian detection [21] and stereo matching [22]
use occlusion labels for assessment. In the NUS-PRO
database, we annotate the occlusion level of each image
sequence for more detailed performance evaluation.

In the NUS-PRO database, the occlusion level of each
frame is annotated and classified into 3 categories: no oc-
clusion, partial occlusion and full occlusion. In addition,
it is necessary to consider the visible and invisible parts
of an occluded object for evaluation. One approach is to
label only the visible parts, while the other is to annotate
the entire object by inferring the occluded parts. For each
target in the NUS-PRO database, we annotate the full ex-
tent which includes both the visible and invisible parts.
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frame # 41 frame # 51 frame # 61 frame # 66 frame # 71 

frame # 81 frame # 91 frame # 101 frame # 111 frame # 106 

Fig. 9. Sample frames of partial occlusion (cyan rect-
angles), full occlusion (red rectangles) and no occlusion
(green rectangles).

The invisible parts are inferred (by visual inspection)
and annotated according to the movement of the objects
(i.e., forward and backward prediction). Figure 9 shows
some annotated examples of the sequence pedestrian 076
in which the pedestrian is occluded by a passing taxi.
Since most target objects have stable motion patterns
during the transient occluded period, the annotations of
their full extents are usually good approximates of the
ground truth data. The annotated occlusion level pro-
vides additional information for performance evaluation.

3 EVALUATION METHODOLOGY

Two evaluation metrics have been widely used for per-
formance evaluation of object tracking algorithms. One
is the center location error, in which tracking methods
are assessed by the Euclidean distances between the
predicted and annotated target centers. The other metric
is the overlap ratio [19], which is computed based on
Equation 1. An object is usually considered as being
successfully tracked if the ratio is above 0.5, and tracking
algorithms are evaluated by the number of successes.

The center location error metric does not consider the
scale difference among image sequences, thereby making
it less effective for performance evaluation. Furthermore,
the center location is only effective to describe object
position for certain compact and convex objects (e.g.,
squares and circles). It has been shown that the center
location error is not a good metric for evaluating object
tracking algorithms especially for contour based meth-
ods [23].

For the aforementioned two reasons, we evaluate
tracking algorithms using the overlap ratio with the
NUS-PRO database in this work. Table 2 shows three cri-
teria based on the overlap ratio and level of occlusion in
which only Criterion I includes fully occluded frames in
evaluation. For objects that are partially occluded, there
are two ways to predict the target location (bounding
box), i.e., estimating the full extent and only the visible
parts. Since each annotation in the NUS-PRO database is
based on the whole object, the overlap ratio defined in
Equation 1 is modified for performance evaluation based

on the visible parts. That is, the union area is replaced
by the predicted area in Criterion III for compensa-
tion, which is similar to the evaluation methodology of
excluding ambiguous regions in recent benchmark on
pedestrian detection algorithms [21].

TABLE 2
Three criteria for computing the overlap ratio.

Criterion No occlusion Partial occlusion Full occlusion
I area(B∩G)

area(B∪G)
area(B∩G)
area(B∪G)

area(B∩G)
area(B∪G)

II area(B∩G)
area(B∪G)

area(B∩G)
area(B∪G)

-

III area(B∩G)
area(B∪G)

area(B∩G)
area(B)

-

Based on the overlap ratio of each frame, the per-
centage of successfully tracked frames is computed for
evaluation. In addition to different criteria for comput-
ing the overlap ratio, we use different thresholds to
determine whether a frame is successfully tracked or
not. Consequently, the performance of an object tracking
method is better analyzed with curves based on the
dose-response relationship [44]. In this work, we refer
such plots as the threshold-response relationship (TRR)
curves.

4 ONLINE PERFORMANCE EVALUATION

Performance evaluation of a tracking algorithm using the
NUS-PRO database is carried out via an online system.
Once the tracking results are submitted, the overlap
ratios defined in Table 2 for each frame will be computed
and reported. As described in Section 1, most commonly
used datasets for object tracking are composed of image
sequences with publicly available annotations, which
may lead to parameter overfitting. Similar to the PAS-
CAL VOC challenges [19], this problem is alleviated by
withholding most of the annotations of the test data with
a small portion for public use. In the NUS-PRO database,
the sequence number of each category is the multiples of
10, and one tenth of the annotations that cover all kinds
of objects are provided. The publicly available subsets of
the NUS-PRO database are summarized as below:

• The whole database contains 365 image sequences.
• The bounding boxes and occlusion level annotations

of the first frame of each sequence are provided.
• The challenging factor label of each sequence is

presented.
• The foreground masks of non-face objects and the

fiducial points of face images in the first frames are
annotated.

• The complete bounding boxes and occlusion level
annotations of 73 sequences are available for algo-
rithm development purpose.

The NUS-PRO database and the online evaluation
system can be accessed at http://www.lv-nus.org/pro/
nus pro.html. The evaluation is carried out by the com-
plete database including the one tenth with publicly
available annotations. When a zip archive with the
bounding box locations (the coordinates of 4 corner
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TABLE 3
Evaluated tracking algorithms.

Method Representation Search Model
Color-Based Probabilistic Tracking (CPF) [24] L, IH PF

Locally Orderless Tracking (LOT) [25] L,color PF
Incremental Visual Tracking (IVT) [26] H, PCA, GM PF

Adaptive Structural Local Appearance model (ASLA) [27] L, SR, GM PF
Sparsity-based Collaborative Model (SCM) [28] L, SR, GM+DM PF
L1 Accelerated Proximal Gradient (L1APG) [29] H, SR, GM PF

Multi-Task Tracking (MTT) [30] H, SR, GM PF
Local Sparse appearance model with K-Selection (LSK) [31] L, SR, GM LOS

Online Robust Image Alignment (ORIA) [32] H, T, GM LOS
Distribution Fields Tracking (DFT) [33] L, T LOS

Kernel-based Mean-Shift (KMS) [34] H, IH LOS
Fragments-based tracking (Frag) [35] L, IH DS

On-line AdaBoost (OAB) [36] H, Haar, DM DS
Semi-supervised Tracking (SemiT) [37] H, Haar, DM DS

Semi-supervised Tracking with Adaptive Prior (BSBT) [38] H, Haar, DM DS
Multiple Instance Learning (MIL) [39] H, Haar, DM DS

Compressive Tracking (CT) [40] H, Haar, DM DS
Track-Learning-Detection method (TLD) [41] L, BP, DM DS

Circulant Structure tracking with Kernels (CSK) [42] H, T, DM DS
Context Tracking (CXT) [43] H, BP, DM DS

points) of each tracking result is submitted, the corre-
sponding overlap ratios for all frames defined in Table
2 are returned.

5 EXPERIMENTS

We present the evaluation results of state-of-the-art
tracking algorithms on the NUS-PRO database with
detailed analysis in this section.

5.1 Evaluated Algorithms
We evaluate 20 state-of-the-art tracking methods on the
NUS-PRO database using the publicly available source
codes, a recent code library [23], or executable files.
Table 3 summarizes the differences of the evaluated
object tracking algorithms in terms of the representa-
tion and search models. For the representation model,
L and H stand for local and holistic; T, IH and BP
are template, intensity histogram and binary pattern;
Haar, PCA, SPCA, SR, DM and GM represent Haar-
like features, principal component analysis (PCA), sparse
PCA, sparse representation, discriminative model and
generative model respectively. For the search model, PF,
LOS and DS denote particle filter, local optimum search
and dense sampling.

For fair assessments of tracking algorithms, we use the
default parameters from the original implementations
and fix them for all the 300 image sequences in our
experiments. For the tracker with a re-detection module
(e.g., TLD), no tracking results are returned if it loses
track of the target object. In such scenarios, the tracking
result of last tracked position is used for the frames that
the tracker loses track of the target object.

5.2 Evaluation by Challenging Factors
We first present the TRR curves of the evaluated tracking
algorithms based on the criteria defined in Table 2 and

the area under the curve (AUC) which is also used in
the PASCAL VOC challenge [19].

As a tracking algorithm can be categorized by its
representation and search model, it is of great interest
to analyze the effects of these modules especially for the
top performing methods. To analyze whether a method
is robust to each challenging factor discussed in Section
2.1, we plot the TRR curves using the corresponding
sequences in Figure 10-12 and the corresponding AUCs
in Figure 13. The top three tracking methods with the
largest AUCs are summarized in Table 4.

The best performing 7 tracking algorithms for han-
dling each challenging factor are as shown in Table 4
including the CPF [24], LOT [25], ASLA [27], SCM [28],
KMS [34], TLD [41] and CXT [43] methods. Since there
are 12 challenging factors and 3 criteria, a tracking
approach can appear at most 36 times in Table 4, and the
top performing 7 methods appear 24, 9, 22, 24, 9, 5 and
15 times respectively. The results also show that no single
tracking algorithm outperforms all the other methods in
dealing with all types of challenging scenarios. Overall,
the CPF, ASLA and SCM methods, which appear 24, 22
and 24 times respectively, perform well in dealing with
various challenging factors.

The CPF, ASLA and SCM methods perform well in
handling image sequences with scale change, partial
occlusion, full occlusion and clutter background. For
challenging videos containing flash and similar objects,
the KMS, LOT and CPF methods rank among the top.
The correlations can be explained from two aspects,
namely, the image data and similarities in algorithmic
properties. All the sequences with the challenging flash
factor and two thirds of the videos containing similar
objects are in the basketball category. Thus, the reasons
why some methods perform well in dealing with flash
and similar objects can be better accounted for by data
correlation. On the other hand, scale change, occlusions
and clutter background are common challenging fac-
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Fig. 10. TRR curves of sequences containing shadow change, flash, dim light and camera shake challenges (best
viewed on high resolution displays).

tors in various categories of the NUS-PRO database.
Therefore, the tracking results may be accounted by the
similar algorithmic properties of the CPF, ASLA and
SCM methods.

As illustrated in Table 3, the CPF, ASLA and SCM
methods have two similar components, i.e., a local
(L) appearance representation and a particle filter (PF)
search model. Table 5 shows the top 3 performing
methods in terms of the adopted representation and
search models (where × indicates that there is no con-

sistent component can be found among the tracking
methods). Overall, there is no representation or search
model can be consistently found in all the evaluation
results except that the combination of L and PF appear
frequently, which suggests tracking algorithms with this
combination tend to better handle sequences with scale
change, shape deformation, occlusions and cluttered
background.
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Fig. 11. TRR curves of sequences with scale change, rotation, shape deformation and partial occlusion challenges
(best viewed on high resolution displays).

5.3 Evaluation by Object Categories

In this section, we present how the tracking algorithms
perform for different object categories in the NUS-PRO
database. Figure 14 shows the TRR curves of the 4
main object categories from the whole database. The
corresponding AUC plots are presented in Figure 15
and Table 6. Overall, the SCM [28], CXT [43], CPF
[24] and CXT methods perform well in the pedestrian,
rigid object, sportsman and face sequences, while the
ASLA algorithm achieves the best results on the entire
database. The results are consistent with the findings of

Section 5.2 (in which the ASLA method performs well in
several categories) as the NUS-PRO database consists of
a large number of sequences with challenging factors of
scale change, shape deformation, partial occlusion and
clutter background.

The AUCs of the TRR curves in Figure 15 show that
the sportsman category is the most challenging among 4
main object types in the NUS-PRO database, followed
by the classes of pedestrians, rigid objects and faces. The
results can be accounted by large appearance variation
due to shape deformations in the sportsman sequences.
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Fig. 12. TRR curves of sequences containing temporal full occlusion, clutter background, similar objects and fast
background change challenges (best viewed on high resolution displays).

5.4 Analysis of Temporal Full Occlusion

We analyze the evaluation results based on the annotated
occlusion level available in the NUS-PRO database. For
each of the 83 sequences with temporal full occlusion,
we split it into two subsequences based on the frame
in which the first full occlusion occurs. Figure 16 shows
the TRR curves of the subsequence before and after the
first full occlusion. The performance of all the algorithms
drops significantly, which indicates that existing meth-
ods are not effective in handling temporal full occlusion.
Although this problem may be alleviated with off-line

forward-backward motion prediction, the focus of this
work is on methods without resorting to offline inference
(e.g., graph matching of tracklets [45]).

We note that most of the evaluated methods are not
equipped with schemes of detecting as well as handling
full occlusion. However, the motion or search models
of the evaluated trackers provide some temporal and
spatial information, which help alleviate the short-term
drift problems caused by full occlusion. The results sug-
gest that the evaluated trackers may have drifted away
before full occlusion occurs. Figure 16 (right) shows that
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Fig. 13. Area under the curve (AUC) for different challenging factors (best viewed on high resolution displays).

TABLE 4
Top 3 methods with the largest AUCs for 12 factors.

Challenge Criterion Approaches

shadow change
I SCM, ASLA, CXT
II SCM, ASLA, CXT
III SCM, ASLA, CXT

flash
I KMS, CPF, LOT
II KMS, CPF, LOT
III KMS, CPF, LOT

dim light
I SCM, CXT, ASLA
II SCM, CXT, TLD
III SCM, CXT, TLD

camera shake
I CXT, ASLA, SCM
II CXT, ASLA, SCM
III CXT, ASLA, SCM

scale change
I ASLA, SCM, CPF
II ASLA, SCM, CPF
III SCM, ASLA, CPF

rotation
I CXT, CPF, KMS
II CPF, CXT, KMS
III CPF, CXT, KMS

shape deformation
I CPF, LOT, SCM
II CPF, LOT, SCM
III CPF, LOT, SCM

partial occlusion
I SCM, ASLA, CPF
II SCM, ASLA, CPF
III SCM, ASLA, CPF

full occlusion
I SCM, CPF, ASLA
II SCM, CPF, ASLA
III SCM, CPF, ASLA

clutter background
I SCM, CPF, ASLA
II SCM, CPF, ASLA
III SCM, CPF, ASLA

similar objects
I KMS, LOT, CPF
II KMS, LOT, CPF
III LOT, KMS, CPF

fast background change
I CXT, TLD, ASLA
II CXT, TLD, ASLA
III CXT, TLD, ASLA

the mean overlap ratios of the first frame where full
occlusion occurs. In most scenarios, the target objects are
usually partially occluded before full occlusions happen.
The overlap ratios drop fast before full occlusions, while
after the full occlusions they drop slowly and approach
to some low values. The experimental results confirm
that heavy occlusions have greater effect on tracking
performance.

TABLE 5
Representation and search models of the top 3

algorithms. (where × indicates that there is no consistent
component can be found among the tracking methods).

Challenge/Category Representation Search Model
shadow change × ×

flash × ×
dim light × ×

camera shake × ×
scale change L PF

rotation × ×
shape deformation L PF

partial occlusion L PF
full occlusion L PF

clutter background L PF
similar objects × ×

fast background change × ×
pedestrian L PF
sportsman × ×

rigid objects × ×
all L PF

TABLE 6
Top 3 approaches with the largest AUCs obtained on the

4 main object categories and the whole database.
Category Criterion Approaches

all
I ASLA, SCM, LOT
II ASLA, SCM, LOT
III ASLA, SCM, LOT

pedestrian
I SCM, CPF, ASLA
II SCM, CPF, ASLA
III SCM, CPF, ASLA

rigid object
I CXT, ASLA, CPF
II CXT, ASLA, CPF
III CXT, ASLA, CPF

sportsman
I CPF, LOT, KMS
II CPF, LOT, KMS
III CPF, LOT, KMS

face
I CXT, ORIA, SCM
II CXT, ORIA, SCM
III CXT, ORIA, ORIA

These results also explain why the TRR curves based
on three criteria defined in Table 2 are similar (See
Figure 10, 11, 12 and 14) as most trackers drift away
quickly when partial occlusions occur. The performance
differences in the following frames are not significant
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Fig. 14. TRR curves of pedestrian, rigid object, sportsman, face categories and the whole database (best viewed on
high resolution displays).

as the overlap ratios are low. Consequently, the per-
formance of each evaluated tracking method is mainly
determined by the period before occlusions occur. As the
three criteria are the same for the case without occlusion
(first column of Table 2), the corresponding TRR curves
are similar.

5.5 Analysis of Long-Term Tracking
In addition to performance assessment discussed above,
long-term tracking is another important evaluation cri-

terion. For certain vision tasks such as surveillance
and video analysis, performance evaluation of long se-
quences is important as objects are likely to appear in
the scene for a long period of time. Toward this end, 5
long sequences whose mean length is 3,835 frames are
included in the proposed dataset. The TRR curves of the
20 trackers on these sequences are shown in Figure 17
(a)-(c), and the corresponding AUCs are illustrated in
Figure 17 (d). Overall, the AUCs of the ASLA, SCM and
OAB methods are larger than those of the other trackers.
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Fig. 16. Effects of full occlusions. The left and middle plots show the TRR curves computed from the subsequences
before and after full occlusions occur, while the right plot illustrates the mean overlap ratios around the first time when
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Fig. 15. AUC for the TRR curves calculated on pedes-
trian, sportsman, rigid objects sequences and the whole
database.

In addition to TRR and AUC, another mesure for
long-term performance is the duration for an object
being tracked successfully, i.e., the frame number from
the beginning to where a tracker fails. An object is
considered to be successfully tracked in one frame if
the overlap ratio is above 0.5. To avoid bias caused
by sudden change, we use the average overlap ratio
of a short duration instead of the overlap ratio of a
single frame (i.e., 21 frames including this frame and
the 10 frames before and after it in this work). Using
the criteria defined Table 2, three overlap ratios for
successful tracking are computed and the longest one
is used for evaluation.

Figure 17 (e) shows the mean and median length
of successful tracking on the 5 long sequences. The
ASLA, SCM and IVT methods perform well with mean
length of 1,147.2, 1,109.0, and 829.8 frames,and median
length of 414.0, 413.0, and 308.0, respectively. We also
present the length of successful tracking in the 360 short
sequences in Figure 17 (f). The ASLA, SCM and CXT
algorithms perform well with mean length of 122.5, 113.9
and 112.1 frames respectively. In addition, the ASLA,
SCM and MIL methods outperform the other approaches
in terms of median length (61.5, 61.0, and 53.0 frames,
respectively).

6 CONCLUSIONS

In this paper, we present a large-scale video database
and evaluation metrics for object tracking. In the NUS-
PRO database, we annotate each sequence with object
location, occlusion level and challenging factors. We pro-
pose three criteria for detailed performance evaluation,
and carry out experiments using 20 state-of-the-art track-
ing algorithms on the NUS-PRO database. Extensive
experimental evaluation for each challenging factor, full
occlusions and object size are presented with detailed
analyses. While the NUS-PRO database is developed for
performance evaluation of object tracking, it can be used
for other tasks such as optic flow, object detection, and
object classification, as it contains image sequences of
various object categories with ground-truth annotations.
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