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Interacting Multiview Tracker
Ju Hong Yoon, Ming-Hsuan Yang, and Kuk-Jin Yoon

Abstract—A robust algorithm is proposed for tracking a target object in dynamic conditions including motion blurs, illumination changes,

pose variations, and occlusions. To cope with these challenging factors, multiple trackers based on different feature representations are

integrated within a probabilistic framework. Each view of the proposed multiview (multi-channel) feature learning algorithm is concerned

with one particular feature representation of a target object from which a tracker is developed with different level of reliability. With the

multiple trackers, the proposed algorithm exploits tracker interaction and selection for robust tracking performance. In the tracker

interaction, a transition probability matrix is used to estimate dependencies between trackers. Multiple trackers communicate with each

other by sharing information of sample distributions. The tracker selection process determines the most reliable one with the highest

probability. To account for object appearance changes, the transition probability matrix and tracker probability are updated in a recursive

Bayesian framework by reflecting the tracker reliability measured by a robust tracker likelihood function that learns to account for both

transient and stable appearance changes. Experimental results on benchmark datasets demonstrate that the proposed interacting

multiview algorithm performs robustly and favorably against state-of-the-art methods in terms of several quantitative metrics.

Index Terms—Object tracking, multiview representations, transition probability matrix, tracker interaction, multiple features.
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1 INTRODUCTION

V ISUAL tracking is an important and fundamental problem

in computer vision, which finds a wide range of appli-

cations. For practical applications, it is essential for tracking

algorithms to account for large appearance changes caused

by illumination, pose variations, occlusions, and motion blurs

[34] as shown in Figure 1. To cope with large appearance

changes, numerous methods based on multiple features have

been proposed for robust visual tracking where different types

of features are used complementarily for different scenarios.

However, although significant progress has been made in the

past decade, it remains a difficult problem to exploit and

integrate multiple features for robust visual tracking. The

most essential task is how to combine features adaptively to

account for appearance changes. Here, it should be noted that

each feature has different characteristics against appearance

changes. For instance, representations based on histogram of

oriented gradients (HOG) [7] are robust to pose variations

and appearance models based on Haar-like features [11] are

effective to deal with occlusion.

In this paper, we propose a novel visual tracking algorithm

that exploits and integrates multiple feature representations by

considering their distinct characteristics to better account for

appearance changes for robust tracking. Features with different

and complementary representation strength are exploited, and

multiple feature representations are used by trackers to de-

scribe object appearance. Each view (channel) of the multiview
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(a) Startrek sequence

(b) Starwars sequence

Fig. 1. Tracking results from videos with low contrast,

drastic lighting changes, and pose variations (best viewed

on high-resolution displays). The proposed algorithm

(IMT) performs favorably against three top-ranked track-

ers (i.e., Struck [13], SCM [37], and ASLA [16]) from

a recent benchmark study [31]. Quantitative results are

presented in Table 3 and Figure 7.

(multi-channel) feature learning framework is concerned with

one particular representation of a target object [32]. Since

each feature is defined in the different space, the likelihood

probabilities by multiple trackers are computed at different

scales. Consequently, the posterior distribution of each tracker

is different even though the object state is defined in the

same state space as illustrated in Figure 2. Hence, the scale

difference should be taken into account when these posterior

probabilities are used for object state estimation together.

Nevertheless, it is difficult to assign the weights or to project

different features to the same space. In this work, instead of
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(a) Tiger1 sequence

(b) David sequence

Fig. 2. As trackers are constructed using different fea-

tures, corresponding posterior distributions (p(x|z)) are of

different scales. σu denotes the standard deviation of u.

combining multiple posterior distributions in a mixture form

directly, we select the most reliable tracker at each instance. In

addition, to prevent unreliable trackers from drifts, the trackers

are designed to share their sample distribution information

via interaction. Consequently, unreliable trackers receive more

reliable samples from reliable ones.

The main components of the proposed algorithm are shown

in Figure 3. At its core, a multiview feature representation [32]

of a target object is proposed to account for appearance varia-

tions. Each tracker is developed based on one view (represen-

tation) of the target object. In addition, these trackers actively

interact with each other to provide essential information of

samples for effective visual tracking. To integrate multiple

trackers for robust visual tracking, we propose the tracker

selection and tracker interaction modules within a Bayesian

framework. The tracker selection process determines the most

reliable one in terms of tracker probabilities. The trackers share

information of sample distributions through interaction based

on a transition probability matrix and a resampling method

to remove unreliable samples. Through this interaction, the

visual drifting problem can be alleviated. In the proposed

algorithm, we approximate the posterior distribution of each

tracker by a set of samples. The interaction between trackers

are implemented by two operations: retaining its own samples

and receiving samples from other trackers. The objective of

the transition probability matrix is to determine the number of

samples for the aforementioned operations of each tracker.

In addition, to account for object appearance changes,

we compute the tracker reliability and update the transition

probability matrix to integrate trackers. The update of the tran-

sition probability matrix is formulated in a recursive Bayesian

framework with a tracker likelihood function measuring each

tracker reliability at each frame. The reliability of each tracker

is used in the tracker interaction and selection processes. Both

abrupt and stable appearance changes are considered in the

tracker likelihood function. Abrupt appearance changes are

modelled by multiple feature representations. On the other

hand, stable appearance chances are described by a set of

representative templates.

The contributions of the proposed interacting multiview

tracking algorithm are as follows. First, we propose a novel

tracking algorithm that integrates multiple trackers constructed

by different feature representations via selection and inter-

action. Second, a robust likelihood function is proposed to

measure tracker reliability which is of great importance for

robust tracking. Third, a novel tracker interaction scheme

is proposed by using the transition probability matrix with

a resampling technique. Experimental results on large-scale

benchmark datasets show that the proposed tracking algorithm

performs favorably against state-of-the-art methods.

Preliminary results of this work were presented in [35]. In

this paper, we provide more detailed descriptions and analysis

of the proposed interacting multiview tracking algorithm with

full derivation and detailed implementation. We compare with

10 top performing trackers on 51 benchmark sequences from

[31]. In addition, three most related methods (CVT [22],

MCS [4], and FCT [15]) are compared with detailed analysis.

Furthermore, additional analysis is presented to demonstrate

the effectiveness of the proposed interacting algorithm.

2 RELATED WORK AND PROBLEM CONTEXT

Numerous tracking methods have been proposed using mul-

tiple features in the past decade. In this section, we discuss

the approaches that are closely related to our work, where

appearance models are constructed based on different features.

The tracking algorithms that use multiple features can be

categorized as a single tracker with multiple observations [6],

[30], [36], cascade trackers [10], [26], and parallel trackers

[22], [4], [3], [20].

Multiple Observations. Assuming that features are condi-

tionally independent, multiple observations are combined in

a product form for visual tracking [6], [30], [36]. However,

reliability of each observation model (based on one different

feature) in these approaches is not estimated for combination,

which is of crucial importance as each feature is effective for

describing certain appearance change (e.g., pose, illumination,

and blur). In contrast, the reliability of each single tracker in

this work is measured by the tracker likelihood function and

reflected in the tracker integration process.

Cascade Trackers. In [10], a visual tracking method based on

a coupled hidden Markov model to combine particle filters and

visual cues is proposed. The approach in [26] sequentially esti-

mates object states using the Kalman and particle filters with

multiple features including rectangular shape, discriminative

cues between foreground and background, color distribution,

and object contour. The state predictions from the Kalman

filter based on rectangular shape are passed to the other particle

filters for sequential processing. These estimated states are

combined in a Bayesian filter to determine the object location

in each frame. In [26], the adopted features are dependent and
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Fig. 3. Components of the proposed tracking algorithm.

the sequential state predictions from early stages are forwarded

to the next stage for processing and integration. Thus, it is

difficult to add new trackers using other features for different

tasks. In the proposed algorithm, all trackers operate in parallel

and interact with others, thereby facilitating addition of other

trackers when necessary.

Parallel Trackers. In [22] and [4], two trackers with different

features are combined and target locations are estimated by

fusing tracking outputs [22] or selecting the most reliable one

[4] based on covariance matrices of posterior distributions.

However, a covariance matrix is not effective for measuring

the reliability of a tracker when each posterior distributions

are computed using observation models with different features

(See Figure 2). Different from [22] and [4], the proposed

algorithm selects the most reliable tracker via the proposed

tracker likelihood function rather than covariance matrices.

The tracker likelihood function is designed to deals with

both abrupt and stable appearance changes. Furthermore, the

proposed method provides a more general framework that

accommodates more than two feature representations. In [20],

multiple trackers constructed from four observation models

(based on hue, saturation, intensity, and edge features) and two

motion models are used to account for appearance and motion

changes. While all trackers operate in parallel, the interaction

among trackers is based on heuristics as uniform sampling

is carried out with a threshold computed by a normalized

likelihood ratio. In contrast, the proposed interaction scheme

utilizes the transition probability matrix which represents prob-

abilistic dependencies between trackers. Since the transition

probability matrix is recursively updated by measuring the

reliability of each tracker, unreliable trackers become more

dependent on reliable ones to draw samples. As a result, the

drifting problem with unreliable trackers is alleviated.

3 ALGORITHMIC OVERVIEW

In the proposed algorithm, multiple interacting trackers based

on different feature representations are used as shown in Figure

3. The reliability of trackers as well as their inter-dependencies

are taken into account, and in turn the drawn samples from

an individual tracker. First, each tracker estimates the object

state independently, and then the reliability of each estimated

object state is measured by the robust tracker likelihood

function (TLF). These likelihoods are used to update the

tracker probabilities to select the most reliable one. In addition,

the result from the most reliable tracker is used to update the

object appearance in the representation update. To compute

the current dependencies of each tracker on other trackers, the

transition probability matrix (TPM) is also updated by using

the likelihoods from the TLF. By using the TPM, the tracker

interaction makes unreliable trackers to depend more on the

reliable ones to prevent the unreliable trackers from drifting.

These interacted trackers are used to estimate the object state

for the next frame.

4 STATE ESTIMATION BY TRACKERS

The goal of visual tracking is to estimate an object state given

the observations z1:t = {z1, . . . , zt} up to time t. In this work,

the object state is defined as xt = [ut, vt, θt, st, αt, φt]
⊤ where

(ut, vt), θt, st, αt, and φt denote the position, rotation angle,

scale, aspect ratio, and skew direction, respectively, to account

for affine motion. To handle different kinds of appearance

changes robustly, we exploit multiple features for observation

models of multiple trackers. Let mt ∈ {1, . . . ,M} denote the

index of M trackers constructed from M different features. For

simplicity, we denote the i-th tracker index as mi
t , 〈mt = i〉.

We propose algorithms for interaction and selection of M
trackers. The tracker selection process determines the most

reliable one at each frame. On the other hand, the drifting

problem for the other M -1 trackers is alleviated via tracker

interaction. Different from the method based on multiple

models [5] where several motion predictions are used for

feature point tracking, we exploit a number of representations

in the proposed algorithm. Furthermore, we propose a novel

tracker interaction approach using a particle filter.
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The reliability of the i-th tracker is represented by the

tracker probability P{mi
t|z1:t}. The posterior distribution of

object state xt by the i-th tracker is computed by

p(xt|z1:t,m
i
t) =

p(zk|xt,m
i
t)p(xt|z1:t−1,m

i
t)∫

p(zt|xt,mi
t)p(xt|z1:t−1,mi

t)dxt

, (1)

where p(zt|xt,m
i
t) is the observation model of the i-th tracker,

and p(xt|z1:t−1,m
i
t) is a sample distribution by the i-th tracker

given the observations up to time t-1 computed via interaction.

4.1 Tracker Interaction

The predicted distribution is computed with mixing probabil-

ities P{mj
t−1|m

i
t, z1:t−1} by

p(xt|z1:t−1,m
i
t)

=

∫

p(xt|xt−1,m
i
t)p̃(xt−1|z1:t−1,m

i
t)dxt−1, and

p̃(xt−1|z1:t−1,m
i
t)

=
M∑

j=1

p(xt−1|z1:t−1,m
j
t−1)P{mj

t−1|m
i
t, z1:t−1},

(2)

where p(xt|xt−1,m
i
t) is a motion model and

p̃(xt−1|z1:t−1,m
i
t) is an interacted prior distribution.

The mixing probability is computed by

P{mj
t−1|m

i
t, z1:t−1}

=
P{mi

t|m
j
t−1, z1:t−1}P{mj

t−1|z1:t−1}
∑M

l=1
P{mi

t|m
l
t−1, z1:t−1}P{ml

t−1|z1:t−1}
.

(3)

Note that both the tracker probability and interaction probabil-

ity are defined by the discrete probability P{·} as the number

of the trackers is finite, and they satisfy
∑

i

P{mi
t|z1:t} = 1,

∑

j

P{mj
t−1|m

i
t, z1:t−1} = 1.

Motion smoothness is a constraint often considered in

feature point tracking [5] and thus model probabilities

P{mj
t−1|z1:t−1} at time t-1 is useful. However, in visual

tracking, it is not effective to use previous model (tracker)

probabilities to compute an interacted prior distribution as

occlusion, abrupt pose variations, or significant motion blurs

scan cause abrupt appearance changes. Thus, we assume that

all tracker probabilities are equal in the interaction scheme,

and then approximate the mixing probability in (3) by

P{mj
t−1|m

i
t, z1:t−1} ≈ P{mi

t|m
j
t−1, z1:t−1}, (4)

where P{mi
t|m

j
t−1, z1:t−1} is an interaction probability.

4.2 Tracker Selection

We obtain the tracking result x̂t by selecting the most reliable

tracker which has the highest tracker probability by

x̂t = argmax
xt

p(xt|z1:t, m̂t),

m̂t = argmax
mi

t

P{mi
t|z1:t}, i = 1, . . . ,M. (5)

From (2), (4), and (5), both the tracker and interaction prob-

abilities are utilized to estimate the object state and integrate

multiple trackers. In addition, both tracker and interaction

probabilities are updated.

Fig. 4. Graphical model: Hidden variable (object state xt,

a selected tracker index mt, TPM Ωt) and observation

(observed image zt). 1) The TPM is updated using the

current observation. 2) The tracker selection is conducted

by updating the tracker probability based on the current

observation and the TPM. 3) Each object state is esti-

mated based on current observation, tracker selection,

tracker interaction, and TPM.

5 ONLINE UPDATE

In contrast to existing methods based on multiple trackers

[22], [4], we estimate not only object states but also the

tracker and interaction probabilities for efficient and effective

integration. Since different features are effective in accounting

for certain appearance changes, multiple representations are

used to construct trackers. In addition, the reliability of each

tracker varies since each one is designed in different feature

space. To achieve robust integration, we consider the reliability

of each trackers in the interaction and selection processes.

For notation simplicity, we denote the tracker likelihood

function of the i-th tracker as

p(zt|m
i
t, z1:t−1) , Λi

t. (6)

Similarly, the notations of the tracker and interaction proba-

bilities are denoted by

P{mi
t|z1:t} , T i

t ,

P{mi
t|m

j
t−1, z1:t−1} , ω̄j,i

t .
(7)

These notations are used in the following sections for update

of tracker and interaction probabilities based on TLF.

5.1 Tracker Probability Update

The tracker probability is update as

P{mi
t|z1:t} =

p(zt|m
i
t, z1:t−1)

p(zt|z1:t−1)
P{mi

t|z1:t−1}

=
p(zk|m

i
t, z1:t−1)

p(zt|z1:t−1)
×

M∑

j=1

P{mi
t|m

j
t−1, z1:t−1}P{mj

t−1|z1:t−1},

(8)

where the total probability p(zt|z1:t−1) is expressed by

p(zt|z1:t−1) =

M∑

i=1

p(zt|m
i
t, z1:t−1)×

M∑

j=1

P{mi
t|m

j
t−1, z1:t−1}P{mj

t−1|z1:t−1}.

(9)
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Based on (8) with the notations in (6) and (7), the sequential

tracker probability update is described by

T i
t =

Λi
t

∑M

l=1
ω̄l,i
t−1T

l
t−1

∑M

j=1
Λj
t

∑M

l=1
ω̄l,j
t−1T

l
t−1

. (10)

5.2 Transition Probability Matrix Update

Figure 4 shows the graphical model of the proposed algorithm

based on multiple interacting trackers. A set of interaction

probabilities is expressed in a transition probability matrix Ω

which describes how trackers affect each other by

Ω =
[
ωj,i

]

M×M
=






ω1,1 · · · ω1,M

...
. . .

...

ωM,1 · · · ωM,M




 , (11)

where Ω is an unknown matrix from some given prior distri-

butions. The estimated Ω̄t is computed by the minimum mean

squared error based on its posterior distribution,

Ω̄t =
[

ω̄j,i
t

]

M×M
, E[Ω|z1:t] =

∫

Ωp(Ω|z1:t)dΩ. (12)

The goal is to estimate the posterior distribution of the TPM

within the Bayesian framework [17],

p(Ω|z1:t) =
p(zt|Ω, z1:t−1)

pΩ(zt|z1:t−1)
p(Ω|z1:t−1), (13)

where the TPM observation model p(zt|Ω, z1:t−1) is derived

in (16) by approximating the unknown Ω with Ω̄t−1, and

Ω̄t−1 is the best estimate of the unknown Ω at time t-1 [17].

Thus, the TLF with the unknown Ω is equal to the TLF in

(6) and the tracker probability with the unknown Ω is equal

to the tracker probability in (7) as follows.

p(zt|m
i
t,Ω, z1:t−1) ≈ p(zt|m

i
t, z1:t−1) = Λi

t,
P{mi

t−1|Ω, z1:t−1} ≈ P{mi
t−1|z1:t−1} = T i

t−1.
(14)

With these approximations for p(zt|Ω, z1:t−1) in (16), the total

probability pΩ(zt|z1:t−1) is also approximated as described in

(17). Based on (16) and (17), the sequential update of the TPM

posterior distribution in (13) is expressed by

p(Ω|z1:t) ≈
T⊤

t−1ΩΛt

T⊤
t−1Ω̄t−1Λt

p(Ω|z1:t−1). (15)

where Λt = [Λ1
t , . . . ,Λ

M
t ]⊤ and Tt−1 = [T 1

t−1, . . . , T
M
t−1]

⊤.

Sample Approximation: For practical implementations, the

TPM posterior distribution in (15) is approximated by first

or second order numerical integration methods as they are

shown to be more robust and accurate than other approaches

[17]. In numerical integration, since prior information of

probabilistic interactions between trackers is usually not given,

the interaction probabilities are defined on a finite grid.

Thus, the TPM prior distribution is approximated by set of

samples {Ωq|q = 1, . . . , NΩ} with corresponding weights

{p(Ωq|z1:t−1)|q = 1, . . . , NΩ}, and the TPM posterior dis-

tribution in (15) is described by

p(Ωq|z1:t) =
T⊤

t−1Ω
qΛt

T⊤
t−1Ω̄t−1Λt

p(Ωq|z1:t−1). (18)

We obtain the updated TPM Ω̄t at time t as

Ω̄t =
1

C

NΩ∑

q=1

Ωqp(Ωq|z1:t), (19)

where C =
∑NΩ

q=1
p(Ωq|z1:t) is a normalization term and

each TPM sample is expressed by Ωq =
[
ωj,i
q

]

M×M
. The

interaction probabilities are chosen as 0 ≤ ωj,i
q ≤ 1 and satisfy

the condition
∑M

j=1
ωj,i
q = 1.

6 ROBUST TRACKER LIKELIHOOD FUNCTION

The reliability of each tracker is used to update the tracker

probability and TPM within the Bayesian framework. The

tracker likelihood function computes the reliability of each one

by measuring the tracking result individually. The estimated

object state from the i-th tracker at time t is

x̂i
t = argmax

xt

p(xt|z1:t,m
i
t). (20)

Since x̂i
t is obtained from the i-th tracker, the accuracy of x̂i

t

is considered as the reliability of the i-th tracker. Hence, the

TLF is expressed by

p(zt|m
i
t, z1:t−1) = pTLF(zt|x̂

i
t). (21)

For measuring the tracker reliability, we use instantaneous

and reconstruction features to account for transient and stable

appearance changes. These two representations are assumed

to be independent and all M features (fk, k = 1, . . . ,M ) are

used for computing the TLF to measure the reliability of each

tracker. Thus, the TLF is formulated by

pTLF(zt|x̂
i
t) ≈ pI(zt|x̂

i
t)pR(zt|x̂

i
t)

=
M∏

k=1

p(zt|x̂
i
t, f

k
I,t)p(zt|x̂

i
t, f

k
R,t),

(22)

where k is the feature index, pI(zt|x̂
i
t) is the TLF based on

the instantaneous appearance model (IAM), and pR(zt|x̂
i
t)

is the TLF based on the reconstruction appearance model

(RAM). The instantaneous object appearance f̄kI,t is obtained

from a set of recent observations fkI,t. The reconstructed object

appearance f̄
i,k
R,t is computed from the stable appearance fkR,t

using the k-th feature and the tracking result z
i,k
t from the i-th

tracker. Each TLF is computed by

p(zt|x̂
i
t, f

k
I,t) = exp(−ρ‖f̄kI,t − z

i,k
t ‖2), (23)

p(zt|x̂
i
t, f

k
R,t) = exp(−ρ‖f̄ i,kR,t − z

i,k
t ‖2), (24)

where ρ is a control parameter and

z
i,k
t =

V ec(F k(I(x̂i
t)))

‖V ec(F k(I(x̂i
t)))‖

, (25)

where V ec(·) represents vectorization; I(xt) denotes an image

region based on a state vector xt; F k(·) denotes the k-th
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p(zt|Ω, z1:t−1) =

M∑

i=1

p(zt|m
i
t,Ω, z1:t−1)P{mi

t|Ω, z1:t−1}

=

M∑

i=1

p(zt|m
i
t,Ω, z1:t−1)

︸ ︷︷ ︸

≈Λi
t

M∑

j=1

P{mi
t|m

j
t−1,Ω, z1:t−1}

︸ ︷︷ ︸

,ωj,i

P{mj
t−1|Ω, z1:t−1}

︸ ︷︷ ︸

≈T
j

t−1

≈
M∑

i=1

Λi
t

M∑

j=1

ωj,iT j
t−1 = Λ⊤

t Ω
⊤Tt−1 = T⊤

t−1ΩΛt,

(16)

where

Λt = [Λ1
t , . . . ,Λ

M
t ]⊤, Tt−1 = [T 1

t−1, . . . , T
M
t−1]

⊤.

pΩ(zt|z1:t−1) =

∫

p(zt|Ω, z1:t−1)
︸ ︷︷ ︸

≈T⊤

t−1
ΩΛtin (16)

p(Ω|z1:t−1)dΩ ≈ T⊤
t−1

(∫

Ωp(Ω|z1:t−1)dΩ

)

Λt = T⊤
t−1Ω̄t−1Λt. (17)

feature extraction; and z
i,k
t ∈ R

dk

where dk is the dimension

of the k-th feature. The IAM and RAM are computed as

follows.

Transient Object Appearance: The short-term object appear-

ance changes are model by a set of recent object observations

fkI,t = [fkI,t−l, . . . , f
k
I,t−1]. The instantaneous appearance model

f̄kI,t is obtained by averaging the recent L appearances as

f̄kI,t =
1

L

L∑

l=1

fkI,t−l. (26)

Stable Object Appearance: The long-term object appearance

z
i,k
t can be represented by a linear combination of stable

features fkR,t which are r representative features,

z
i,k
t ≈ fkR,tα

i,k
t = fk1,tα

i,k
1,t + fk2,tα

i,k
2,t + . . .+ fkr,tα

i,k
r,t , (27)

where fkR,t=[fk1,t, . . . , f
k
r,t] ∈ R

dk×r, α
i,k
t =[αi,k

1,t, . . . , α
i,k
r,t ]

⊤ ∈
R

r is an coefficient vector. By including the noise vector ǫi,k,

we have

z
i,k
t = fkR,tα

i,k
t + ǫi,k =

[
fkR,t Ik

]
[

α
i,k
t

β
i,k
t

]

. (28)

We use a set of non-target (trivial) templates from a dk-

dimensional identity matrix Ik ∈ R
dk×dk

[24] with a non-

target coefficient vector β
i,k
t = [βi,k

1,t , β
i,k
2,t , . . . , β

i,k

dk,t
]⊤ ∈ R

dk

.

If the observation contains little noise, then the non-target

coefficient vector has only a few nonzero coefficients in β
i,k
t .

In the proposed tracking algorithm, we obtain M tracking

results at each frame, {x̂i
t|i = 1, . . . ,M}. Based on the result

of the i-th tracker, the candidate image region represented by

the k-th feature is denoted as z
i,k
t in (25). The reconstructed

appearance for z
i,k
t is denoted as fkR,tα

i,k
t . We obtain the

coefficient vector α
i,k
t by using ℓ1 sparse coding as it is robust

to wide range of image corruption, especially occlusions, [19],

[24]. The coefficient vector c
i,k
t is computed by

min
c
i,k
t

‖ci,kt ‖1, s.t. ‖zi,kt −Dk
t c

i,k
t ‖22 ≤ λ, (29)

where λ = 0.01, and

Dk
t = [fkR,t, I

k], c
i,k
t = [(αi,k

t )⊤, (βi,k
t )⊤]⊤. (30)

The reconstructed object appearance f̄
i,k
R,t for z

i,k
t is computed

as f̄
i,k
R,t = f

i,k
R,tα

i,k
t .

7 REPRESENTATION UPDATE

In this section, we present the update mechanisms for transient

and stable object appearance as well as observation models for

trackers based on M feature representations {f̂kt = z
m̂t,k
t |k =

1, . . . ,M} where z
i,k
t is from (25) and m̂t is the index of the

selected tracker in (5).

Transient Features: We use transient features to account

for abrupt appearance changes of a target object. Each tran-

sient feature consists of the recently estimated observation as

fkI,t+1 =
[

fkI,t−θ, . . . , f
k
I,t

]

, where fkI,t = f̂kt and θ is a variable

that determines the duration.

Stable Features: Each stable feature fkR,t is updated based

on whether it can be sparsely represented by the current

templates. Similar to [25], each feature is updated by analyzing

the non-zero elements in the non-target coefficient vector β
i,k
t .

When occlusion occurs, a target object cannot be sparsely

represented by the target template set. Consequently, there

exist numerous non-zero coefficients corresponding to the non-

target templates, and noise is measured by β
m̂t,k
t ∈ R

dk

in

(29) where m̂t is the index of the selected tracker. We count

non-zero elements in β
m̂t,k
t , and compute a noise ratio Rk

noise

as Rk
noise = Bk/dk where Bk is the number of non-zero

elements in β
m̂t,k
t . If the noise ratio Rk

noise is smaller than

a threshold, one feature fki,t ∈ fkR,t with the lowest value is

replaced by the feature of the estimated observation f̂kt .

Observation Model: In this work, the observation model for

each tracker (i.e., p(zt|xt,m
i
t) in (1)) is based on the incre-

mental subspace model [27] for its computational efficiency

over ℓ1 sparse coding. For online tracking, it is known that

error accumulation is inevitable when an appearance model is

updated with new observations [12], [28]. Note that not every
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Fig. 5. Representation update examples. The transient

and stable features are shown in the red and blue

boxes, respectively. The learned principal components

are shown in the green boxes. The yellow circles demon-

strate the updated stable features at different frames.

observation model is updated at every frame. For the selected

tracker of a given frame, the corresponding appearance model

is not updated since it describes the target object well. On the

other hand, the observation models of all the other trackers

are updated with the new observation.

Examples of representation updates (i.e., transient and

stable features as well as observation model discussed in

Section 7) are shown in Figure 5. To show difference of

each representation, we only show the intensity features for

comparisons. In the Coke sequence, partial occlusions with il-

lumination changes occur frequently. As introduced in Section

7, the transient features better account for frequent appearance

changes of the object in such cases while the stable features

are rarely updated. The principal components of the object

appearance from an observation model are shown in green

boxes. These principal components are incrementally updated

in each observation model to account for appearance changes.

8 INTERACTING MULTIVIEW TRACKER

The main components of the proposed interacting multiview

tracker (IMT) are described in Figure 3 and Algorithm 1. We

present the algorithmic details in this section.

8.1 Estimated Object States of Multiple Trackers

We use a particle filter for state prediction. The prior distri-

bution of each tracker p(xt−1|z1:t−1,m
i
t−1) in (2) is approx-

imated by a set of N samples as

p(xt−1|z1:t−1,m
i
t−1) ≈

N∑

q=1

siq,t−1δ(x
i
q,t−1 − xt−1), (31)

where δ(·) is a delta function centered at a sample xi
q,t−1, and

siq,t−1 is a sample weight.

Interacted Prior via Tracker Interaction: At each frame,

multiple trackers interact with each other by mixing their

posterior distributions described in (2) based on the TPM.

The interaction is efficiently carried out via the proposed

interaction method by Algorithm 2, i.e.,
[

X̃
1

t−1, . . . , X̃
M
t−1

]

= Tracker Interaction
[

Ω̄t−1,X
1

t−1, . . . ,X
M
t−1

]

,

(32)

Algorithm 2 Tracker Interaction:
[

X̃
1

t−1, . . . , X̃
M
t−1

]

= Tracker Interaction
[

Ω̄t−1,X
1

t−1, . . . ,X
M
t−1

]

1: Input

2: Given {X i
t−1

= {xi
q,t−1

, siq,t−1
}Nq=1

|i = 1, . . . ,M}
3: ⊲Sample representation of a posterior distribution of i-the tracker
4:
5: for i = 1 : M do

6: for q = 1 : N do

7: s∗iq,t−1
= siq,t−1

Kernel(Hxi
q,t−1

−Hxt−1,R)
8: end for

9: s∗iq,t−1
:= s∗iq,t−1

/
∑

q s
∗i
q,t−1

, q = 1, . . . , N
10: end for

11:
12: Given ω̄j,i

t−1
∈ Ω̄t−1 ⊲TPM

13: for i = 1 : M do

14: X̃ i
t−1

= φ
15: for j = 1 : M do

16: X = Resampling({xj
q,t−1

, s∗jq,t−1
}Nq=1

, N × ω̄j,i
t−1

)

17: X̃ i
t−1

:= X̃ i
t−1

∪ X
18: end for

19: end for

20:
21: Output

22: {X̃ i
t−1

= {x̃i
q,t−1

, s̃iq,t−1
= 1

N
}Nq=1

|i = 1, . . . ,M}
23: ⊲Sample representation of an interacted prior of i-th tracker
24:
25: Given parameters

26: H =

[

1 0 0 0 0 0
0 1 0 0 0 0

]

⊲position conversion matrix

27: R =
√

(2× qv)2 + (2× qu)2 ⊲kernel range

where X i
t−1 = {xi

q,t−1, s
i
q,t−1}

N
q=1 is the sample approxima-

tion of the prior distribution of the i-th tracker and X̃ i
t−1

is the interacted prior distribution. The tracker interaction

approach in this work is in spirit similar to [4], [1] where the

posterior distribution of the unreliable tracker is replaced by

the most reliable one. In addition, the reliability of the tracker

is measured by exploring the covariance of the posterior

distribution at each frame. However, the proposed interaction

method enforces trackers interact with each other via the TPM.

Hence, not all samples are transfered to other trackers.

The interacted prior distribution in (2) can be expressed by

a sample representation as

p̃(xt−1|z1:t−1,m
i
t−1) ≈

N∑

q=1

s̃iq,t−1δ(x̃
i
q,t−1 − xt−1). (33)

By tracker interaction we first remove the samples far from the

selected tracking result x̂t−1 based on a kernel. As described

in Algorithm 2, a uniform kernel is defined in terms of position

with respect to range R with standard deviations (qu, qv) along

u and v image coordinates. In addition, H is a transformation

matrix that returns position parameters as from a previous

state by [pu,t−1, pv,t−1]
⊤ = Hx̂t−1. Second, multiple trackers

interact with each other based on the TPM and a resampling

technique [9]. The TPM contains information of how samples

are transferred or retained. For instance, N × ω̄i,i
t−1 represents

that the number of samples is retained in the i-th tracker

sample set after interaction, and N × ω̄j,i
t−1 represents that the

number of samples from the j-th tracker is transferred to the

i-th tracker. If the i-tracker is effective for some frames, then

ω̄i,i
t−1 becomes greater than ω̄j,i

t−1 (j 6= i) due to update of the

TPM. Hence, most samples of the i-th are retained, and the i-
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Algorithm 1 Proposed interacting multiview tracker (IMT)

1: (Initial Step)

2: at time t = 0
3: The initial states of multiple trackers are set to {xi

0
= x0|i = 1, . . . ,M}.

4: The initial set of samples for the particle filter {X i
0
= {xi

q,0, s
i
q,0 = 1

N
}Nq=1

|i = 1, . . . ,M}.

5: The initial TPM is given by Ω̄0 = 1

NΩ

∑

q Ω
q ⊲Section 9.2.

6: The initial tracker probability is set to {T i
0
= 1

M
|i = 1, . . . ,M}.

7: (Tracking Step)

8: for t ≥ 1 do

9: for i = 1 : M do ⊲i is a tracker index
10: 1) Compute the interacted prior distribution X̃ i

t−1
= {x̃i

q,t−1
, s̃iq,t−1

}Nq=1
using {X i

t−1
|i = 1, . . . ,M} with the TPM Ω̄t−1 and the tracker

probability {T i
t−1

|i = 1, . . . ,M} using Algorithm 2.

11: 2) Predict state samples {xi
q,t, s

i
q,t|t−1

}Nq=1
using (34).

12: 3) Update state samples {xi
q,t, s

i
q,t}

N
q=1

using (37).

13: 4) Obtain the estimated state x̂i
t from the i-th tracker using (39).

14: end for

15: 5) Compute the TLFs {Λi
t|i = 1, . . . ,M} using (22) using the set of M estimated object states {x̂i

t|i = 1, . . . ,M}.

16: 6) The tracker probability update with the TLFs {Λi
t|i = 1, . . . ,M} using (10).

17: 7) The TPM update with the tracker probabilities {T i
t |i = 1, . . . ,M} and TLFs {Λi

t|i = 1, . . . ,M} using (18) and (19).
18: 8) Compute the tracking result x̂t using (5).
19: 9) Update representations as described in Section 7.
20: end for

th tracker obtains a few samples from other trackers. Finally,

we select samples according to the interaction probabilities,

ω̄j,i
t−1 of the TPM by resampling such that reliable samples

with large weights in each tracker are retained.

Sampling via Motion Models: We draw new state samples

from the interacted prior distribution p̃(xt−1|z1:t−1,m
i
t−1). In

this work, we use the zero and first order motion models

for state prediction p(xt|xt−1,m
i
t). The zero-order motion

is identical to the random walk motion, and the first-order

motion utilizes the prior translation ∆xt=[∆u,∆v, 0, 0, 0, 0]⊤

by computing the difference between estimated positions at

time t− 1 and t− 2. Thus, samples are drawn based on

xi
q,t ∼ p(xt|xt−1,m

i
t)

=

{
N (xi

q,t−1,Q0) if τ < 0.5
N (xi

q,t−1 +∆xt,Q1) otherwise,

(34)

where Q0 and Q1 denotes the zero and first order motion

covariances, respectively and given in Section 9.1. We use a

uniform random variable τ distributed within [0, 1] to select

the motion model for drawing each sample. The set of the pre-

dicted samples is {xi
q,t, s

i
q,t|t−1

}Nq=1 where si
q,t|t−1

= s̃iq,t−1.

Sample Update via Observation Models: An observation for

the i-th tracker is expressed by

zit = V ec(F i(I(xt))) + vi
t, i = 1, . . . ,M, (35)

where I(xt) denotes an image template based on a state vector

xt; F
i(·) represents the i-th feature extraction; and vi

t is noise.

In the incremental subspace based observation model [27], we

compute the mean and principal eigenvectors with updates for

the appearance model in each tracker. Based on the template

mean Ōi and L principal eigenvectors gi
l , l = 1, . . . , L, the

i-th observation model based on the i-th feature is given by

p(zt|xt,m
i
t) = exp(−ρT ‖z

i
t −

∑

l clg
i
l‖

2),
cl = (gi

l)
⊤(zit − Ōi), l = 1, . . . , L,

(36)

where ρT is a control parameter and cl is the coefficient from

the projection of the template onto each principal eigenvector

(16 eigenvectors are used for each observation model).

We note that the TLF in (22) is not related to the observation

model in (36). The TLF is only used to update the tracker prob-

ability and TPM. The reason being that it is time-consuming

to measure all particle samples if we use TLF instead of (36).

For the efficient implementation, we use (36) as an observation

model to measure particle samples of a single tracker as it can

be computed efficiently to adapt object appearance changes.

Based on (35) and (36), the weight of each sample is updated

by

siq,t =
p(zt|x

i
q,t,m

i
t)s

i
q,t|t−1

∑N

q=1
p(zt|xi

q,t,m
i
t)s

i
q,t|t−1

. (37)

With the samples and weights in (34) and (37), we ob-

tain the sample representation of the posterior distribution

p(xt|z1:t,m
i
t) in (1) as

p(xt|z1:t,m
i
t) ≈

N∑

q=1

siq,tδ(x
i
q,t − xt), (38)

which is described by a set of samples with weights

{xi
q,t, s

i
q,t}

N
q=1.

Estimated Object States: From the updated posterior dis-

tributions, we obtain a set of M estimated states using the

maximum a posterior estimates (i = 1, . . . ,M ),

x̂i
t = xi

q̂,t, q̂ = argmax
q

({siq,t|q = 1, . . . , N}). (39)

8.2 Tracker Selection and TPM update

To select the most reliable tracker and update the TPM,

we compute the reliability of trackers using the TLF

pTLF(zt|x̂
i
t) = Λi

t in (22) and M estimated states, {x̂i
t|i =

1, . . . ,M} from M multiple trackers. With the TLFs {Λi
t|i =

1, . . . ,M}, we update the tracker probability using (10) and

obtain updated tracker probabilities {T i
t |i = 1, . . . ,M}. By

selecting the highest tracker probability, we obtain the tracking

result x̂t as described in (5). The tracking result x̂t is then used

for representation update (See Section 7). After computing the
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set of the updated tracker probabilities {T i
t |i = 1, . . . ,M} and

the set of TLFs {Λi
t|i = 1, . . . ,M}, we update the TPM Ω̄t

using (18) and (19).

9 EXPERIMENTS

We evaluate the proposed IMT algorithm with the state-

of-the-art methods using several benchmark datasets [2]

(http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml) and

[31] (http://visual-tracking.net), and our own sequences (i.e.,

Startrek and Starwars). In this work, we use three trackers

with different feature representations based on HOG, intensity,

and Haar-like features, which have been shown to be effective

for handling occlusions, motion blurs, pose variations, and

illumination changes. We discuss motion parameter settings

in Section 9.1, sampling scheme for the TPM in Section 9.2,

and feature extraction in Section 9.3. We analyze the TPM

and show how it is used by multiple trackers in Section 9.4.

In Section 9.5, we demonstrate the effects of the proposed

TLF, and in Section 9.6, we compare the proposed IMT

algorithm with other tracking methods based on one single

feature representation of HOG, intensity, and Haar-like fea-

tures (denoted as SHOG, SI, and SHaar methods). We evaluate

the proposed algorithm in Section 9.7, with methods based on

multiple trackers or representations including the approaches

with combination of visual trackers (CVT) [22], the multi-cue

switching tracker (MCS) [4], and a single tracker with multiple

observation models (SMO) similar to [29] where the tracker

reliability is not measured. For fair comparisons, each single

tracker of the proposed IMT algorithm and parameters are the

same as the ones used in the CVT, MCS, SMO, SHOG, SI,

and SHaar methods. Furthermore, in Section 9.8, we compare

the IMT algorithm with state-of-the-art trackers including the

MIL [2], TLD [18], VTD [20], VTS [21], Struck [13], ASLA

[16], SCM [37], CXT [8], LSK [23], CSK [14], and KCF [15]

methods.

For quantitative comparisons, we present the success rate

rather than center location error as it does not fully reflect

especially after tracking drifting [31]. The code and datasets

are available at https://cvl.gist.ac.kr/project/imt.html and http:

//faculty.ucmerced.edu/mhyang/project/imt.html.

9.1 Motion Parameters

In this work, an object state is expressed by six parameters of

the affine transformation [27] based on a diagonal covariance

matrix Q = diag(q2u, q
2
v , q

2
θ , q

2
s , q

2
α, q

2
φ) where qu and qv are

standard deviations of position; qθ, qs, qα, and qφ are standard

deviations of rotation angle, scale, aspect ratio, and skew,

respectively. For all the experiments, we fix four parameters

as qθ = 0.02, qs = 0.01, qα = 0, qφ = 0.001. The translation

standard deviation of the zero-order motion Q0 are fixed as

qu = qv = 6. The translation standard deviation of the first-

order motion Q1 are fixed as qu = qv = 3. Since the SI,

SHOG, SHaar, SMO, MCS, CVT, and IMT methods are based

on the same single tracker [27], we use the same parameter

settings as mentioned above. We note that the results in [35]

are based on optimized parameters for each sequence, whereas

in this work the parameters are fixed for all experiments.

TABLE 1

Interaction probability basis of the i-th tracker

ωi
s = [ω1,i

s , ω2,i
s , ω3,i

s ] where s denotes the basis index.

Tracker 1 Tracker 2

ω
1

1
= [0.7, 0.15, 0.15]⊤ ω

2

1
= [0.15, 0.7, 0.15]⊤

ω
1

2
= [0.6, 0.20, 0.20]⊤ ω

2

2
= [0.20, 0.6, 0.20]⊤

ω
1

3
= [0.5, 0.25, 0.25]⊤ ω

2

3
= [0.25, 0.5, 0.25]⊤

ω
1

4
= [0.4, 0.30, 0.30]⊤ ω

2

4
= [0.30, 0.4, 0.30]⊤

ω
1

5
= [0.3, 0.35, 0.35]⊤ ω

2

5
= [0.35, 0.3, 0.35]⊤

ω
1

6
= [0.2, 0.40, 0.40]⊤ ω

2

6
= [0.40, 0.2, 0.40]⊤

Tracker 3

ω
3

1
= [0.15, 0.15, 0.7]⊤

ω
3

2
= [0.20, 0.20, 0.6]⊤

ω
3

3
= [0.25, 0.25, 0.5]⊤

ω
3

4
= [0.30, 0.30, 0.4]⊤

ω
3

5
= [0.35, 0.35, 0.3]⊤

ω
3

6
= [0.40, 0.40, 0.2]⊤

TABLE 2

Average tracking success rate on 16 benchmark

sequences in Table 3. The IMTs with different initial TPM

settings show similar performance.

IMT with TPMave IMT with TPMnaive

average success rate 92 90

9.2 TPM Setting for Three Trackers

As discussed in Section 5.2, we approximate the TPM

posterior distribution by a set of TPM samples {Ωq|q =
1, . . . , NΩ}. To construct the TPM, we use the interaction

probability basis defined on a finite grid in Table 1 where each

vector represents the interaction probabilities describing how

samples are retained and transferred. For instance, if we use

600 state samples for each tracker, the interaction probability

basis ω1
1 represents that ω1

1 × 600 = [420, 90, 90]⊤ where

the first tracker retains its own 420 samples and receives

90 samples from the second and 90 samples from the third

trackers, respectively. In this work, we only set the maximum

and minimum values for the diagonal entries of the TPM. The

diagonal values are set to ωi,i
s ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} to

make each tracker retain at most 70% of its own samples and

at least 20% of its own samples. The off-diagonal values of

the TPM are set with a given diagonal value by ωj,i
s =

1−ωi,i
s

2

(See Table 1). Using the interaction probability basis in Table

1, we obtain a TPM sample as

Ω
q
=

[

ω
1

s1
,ω

2

s2
,ω

3

s3

]

, s1, s2, s3 = 1, . . . , 6.

Consequently, 216 TPM samples {Ωq|q = 1, . . . , 216} are

generated by considering all combinations of the basis in Table

1. These TPM samples are fixed in all experiments. The initial

TPM Ω̄0 is obtained by averaging all of TPM samples. Note

that the TPM method is not sensitive to initial values as it

is updated at each frame. To demonstrate this, we compare

the performance of the IMT method with two different initial

TPMs (TPMave and TPMnaive) as shown in Table 2, where

TPMave is the obtained by averaging all of TPM samples as

discussed above, and TPMnaive is a matrix whose elements are

equally set to 1

3
.
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9.3 Feature Extraction

In this work, the size of an image template is 32-by-32 pixels

from which a 1024-dimensional intensity feature vector is

formed. To generate HOG features, we use 36 blocks and

each block has 4 cells within an image template, and the

dimension of HOG feature for each block is 36 (i.e., each

HOG feature vector is of 1296 dimensions). The Haar-like

features are generated with two horizontal and vertical edge

filters within a 32-by-32 template to 1760-dimensional vectors.

9.4 Analysis of TPM and Tracker Probability

We analyze how TPM is used among multiple trackers to

account for different object appearance changes. In Figure

6, the diagonal interaction probabilities (ω̄i,i
t ) of the TPM

and tracker probabilities are shown according to object ap-

pearance changes over time. When the diagonal entry ω̄i,i
t

decreases, then the off-diagonal entries ω̄j,i
t , j 6= i increases

(as
∑M

j=1
ω̄j,i
t = 1). The increase of the off-diagonal entries

represent that the i-th tracker becomes more dependent on

other trackers. It also shows that when the i-th tracker prob-

ability continues to be the highest, the diagonal interaction

probability ω̄i,i
t of the TPM tends to increase. The increase

of the diagonal entry represents that the i-th tracker becomes

less dependent on other trackers.

In the Startrek sequence (See Figure 6(a)), both object and

background appearances are drastically changed due to abrupt

illumination variations. In such scenarios, the tracker based on

intensity features is not reliable and hence its tracker proba-

bility is usually low, and likewise its interaction probability

is consistently low. In the David sequence, the tracker based

on HOG features is more robust than others when large pose

variations occur, which can be explained by that face contour is

more effective for tracking in such scenarios (See Figure 6(b)).

On the other hand, trackers based on all the other features

perform well when moderate appearance changes occur. In the

Lemming sequence (See Figure 6(c)), when the target object

undergoes partial occlusions, the interaction probability for

the tracker with Haar-like feature increases and its tracker

probability is greater than that of other trackers. When the

motion blurs suddenly occur, the interaction probability for the

tracker based on HOG features increases and the interaction

probabilities of other trackers decreases. Similarly, the tracker

probability of the tracker based on HOG features is greater

than that of other trackers as the shape of the object is

consistent. The tracker based on Haar-like features adaptively

learns the appearance changes. As a result, its interaction and

tracker probabilities increase after a few frames.

9.5 Analysis of TLF

To show the effectiveness of combination of the instantaneous

and reconstruction appearance models in the TLF (See Section

6), we evaluate the tracking results using three combinations.

The first one is the IMT-all which uses both IAM and RAM

together as proposed in this work; the second one is the IMT-

IAM which uses only the instantaneous appearance model;

and the third one is the IMT-RAM which utilizes only the

(a) Startrek

(b) David

(c) Lemming

Fig. 6. Changes of interaction probabilities on the diago-

nal of the TPM and tracker probabilities. Each color line

represents one type of trackers. Each color box repre-

sents one type of appearance changes. The results are

obtained by running the IMT 10 times.
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reconstruction appearance model. As shown in Table 3, the

IMT-all achieves more robust and consistent performance than

the other two alternatives.

9.6 Comparison with Single-Feature Trackers

Table 3 shows the results of three trackers based on one

single feature (i.e., SI, SHOG, and SHaar). These trackers

are the same as the single tracker used in the IMT, and their

observation models are described in (36). Overall, the pro-

posed multiview tracking algorithm performs better than these

trackers with a single feature. In addition, the trackers based

on multiple features (i.e., SMC, MCS, and CVT) perform

better than the SI, SHOG and SHaar methods. These results

demonstrate the merits of using multiple features for robust

object tracking.

9.7 Comparison with Most Related Trackers

The SMO, CVT [22], and MCS [4] methods are related to

the proposed method, but the integration approach of multiple

features are different as discussed in Section 2. As shown

in Table 3, the proposed IMT algorithm performs favorably

against these tracking algorithms.

The SMO tracker exploits multiple observation models in a

particle filter framework. However, it does not perform well

as all observation models contribute equally to estimation of

object states without considering their reliability. Hence, pos-

terior distributions and tracking performance may be affected

by one tracker with an unreliable observation model.

The CVT method fuses tracking results from multiple

trackers with their reliability weight where each one is de-

termined solely by covariance information of its posterior

distribution. As discussed in Section 2 and shown in Figure 2,

the covariance-based approach may not achieve reliable results

as the covariance of each posterior distribution does not well

represent tracker reliability because each one is constructed

from different feature space (i.e., no calibration of tracking

results). In addition, similar to SMO, it does not consider the

reliability information in the interaction step, which has the

interaction scheme in computing the likelihood.

In contrast, the MCS method selects the most reliable

tracker at each frame where the reliability is determined by the

acceptance ratio using the covariance of the posterior and prior

distributions. If the acceptance ratio is below the threshold

(e.g., 0.2 in the experiments), the tracker is considered as an

unreliable one. In the sampling stage, the MCS method simply

replaces the probability distribution of unreliable trackers by

that of the most reliable tracker. However, the covariance

information is not reliable as discussed above. This sampling

process is likely to cause tracking failure as it does consider

all information of unreliable trackers which can be incorrectly

selected due to inaccurate covariance information.

Different from the MCS, CVT, and SMO methods, each

tracker of the proposed IMT algorithm generates tracking

results independently, and the most reliable one is selected

using the TLF (that measures the tracker reliability robustly at

each frame as shown in Figure 6) by considering stability and

effectiveness of feature representations (See also Figure 5). In

addition, the reliability information is effectively utilized in the

tracker interaction process. Thus, the IMT algorithm performs

favorably against these methods based on multiple trackers.

9.8 Comparison with State-the-of-Art Trackers

Benchmark Dataset: We compare the proposed IMT algo-

rithm with 29 state-of-the-art trackers using a large benchmark

dataset [31] which contains 51 sequences. Three evaluation

metrics are used to evaluate whether the tracking algorithms

are sensitive to different initial settings. For the one-pass eval-

uation (OPE), we use a ground truth bounding box in the first

frame for initialization. For the temporal robustness evaluation

(TRE), we initialize each tracker with ground truth locations at

different frames. For the spatial robustness evaluation (SRE),

we use the perturbed ground truth locations in the first frames

for experiments. The top 10 tracking algorithms are shown in

Figure 7 for presentation clarity. Figure 7 shows that the IMT

algorithm performs robustly and favorably against the top 9

trackers using all the evaluation metrics (OPE, TRE, and SRE).

Startrek and Starwars: The target objects undergo drastic

illumination changes and motion blurs in low resolution and

contrast image sequences. As shown in Table 3, Figure 8(a),

and Figure 8(b), most of trackers do not perform well. On the

other hand, the IMT algorithm tracks the objects well in both

sequences due to the use of tracker reliability to weigh less

on the unreliable tracker (i.e., a tracker with intensity feature)

and more on reliable trackers in the tracker integration scheme

(via tracker selection and interaction) as shown in Figure 6(a).

David, Girl, and Football: The objects in these sequences un-

dergo large pose variations with occlusions. The VTD method

drifts away from the target objects when large appearance

changes occur (e.g., #167 in Figure 8(c)). When the target

object is partially occluded by other similar objects (e.g., #441

in Figure 8(d) and #297 in Figure 8(e)), the VTD, MIL, and

TLD methods do not perform well. Although, the KCF track

the object center location well, but it cannot estimate the size

of the objects. The IMT algorithm tracks the target objects

reliably as different trackers are selected to handle different

tracking scenarios as shown in Figure 6(b).

Woman and CAVIAR: The objects in both sequences under-

goes heavy occlusions. In addition, the scale of the object in

the CAVIAR sequence changes significantly as shown in Figure

8(f). The Struck and TLD methods do not perform well when

large scale change occurs. Due to significant scale changes

in the CAVIAR sequence, the KCF shows limited tracking

performance. When heavy occlusions occur in the Woman

sequence (#60 in Figure 8(g)), the MIL and VTD methods start

to drift away from the target object. On the other hand, the

IMT algorithm tracks the target objects well by using Haar-

like features efficiently, which are more robust for handling

occlusion than other feature as shown in Table 3.

Singer1, Sylv, and Trellis: The objects in these sequence

undergo large appearance changes due to illumination and pose

variations. As shown in Figure 8(h)-8(l), the MIL methods

do not perform well. The VTD, ASLA, TLD, and Struck
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TABLE 3

Success rate using the same default parameters. The top and second best results are denoted by red and blue.

IMT IMT IMT SI SHOG SHaar SMO MCS CVT Struck ASLA SCM KCF MIL TLD VTD
-RAM -IAM -All [4] [22] [13] [16] [37] [15] [2] [18] [20]

Startrek 91 47 86 1 12 36 44 56 76 78 1 56 74 36 3 89
Starwars 86 83 90 2 75 13 20 19 79 40 85 68 92 45 1 40
David 98 100 99 34 99 34 99 62 100 67 97 95 75 62 96 68
Girl 97 80 98 28 87 85 73 73 81 100 74 99 84 68 46 98
Football 86 79 87 64 76 59 73 57 64 66 65 57 70 73 41 76
CAVIAR 100 99 100 49 44 89 100 100 100 41 97 100 38 38 19 41
Woman 98 93 100 16 9 100 92 97 67 100 100 100 100 16 31 15
Singer1 100 66 100 39 50 98 94 63 70 29 99 100 29 27 99 43
Sylv 68 81 77 45 72 44 45 63 75 92 74 88 81 54 92 80
Trellis 93 99 98 36 68 82 90 62 89 78 85 85 84 24 47 50
Deer 100 100 100 32 98 98 77 33 2 100 2 2 82 12 73 4
Jumping 96 92 95 21 28 7 70 17 10 79 16 12 28 47 84 11
Board 80 89 86 10 77 70 65 50 52 70 71 89 86 51 11 34
Lemming 72 68 85 23 52 17 46 39 38 80 69 30 44 83 4 52
Tiger1 90 87 96 10 50 47 35 42 43 84 83 52 69 62 45 85
Coke 75 59 75 3 44 48 68 58 57 78 69 69 69 32 48 7
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Fig. 7. The area under curve (AUC) of each success plot [31]. OPE: Running the trackers throughout each sequence

with initializations of the ground truth positions. TRE: Running the trackers with initialization from the ground truth

position at different frames. SRE: Running the trackers with initialization from the different bounding boxes at the first

frame. In all evaluation metrics, the IMT performs well against the other state-of-the-art methods.

approaches do not track the object reliably when illumination

and pose variations occur together (#248 and #398 in Figure

8(l)). In addition, the Struck and VTD methods do not per-

form well when scale and large illumination changes occur

simultaneously (#54 and #190 in Figure 8(h)). The KCF does

not deal with large scale changes well as shown in Singer1

sequence. Different from other tracking methods, the IMT

algorithm tracks the object favorably by using complementary

features for various appearance changes.

Jumping and Deer: The object appearances change signif-

icantly due to fast motion and blurs with noise in both

sequences. Except for the IMT, Struck, and TLD methods,

other trackers do not handle drastic motion blurs well as shown

in Table 3 and Figure 8(j) as well as 8(k). The IMT algorithm

effectively uses shape features (HOG) to deal with motion

blurs. Table 3 shows that better results are obtained by trackers

based on SHOG features. Furthermore, by using stable features

in the TLF, large noise caused by motion blurs is well handled

by the IMT algorithm especially in the Jumping sequence.

Tiger1, Coke, Board, and Lemming: The target objects in

these sequences undergo various appearance changes includ-

ing motion blurs, illumination changes, occlusions, and pose

variations. When the target object undergoes motion blurs

and illumination changes simultaneously in the Coke sequence

(#190 and #216 in Figure 8(p)), the ASLA, SCM, and KCF

methods do not perform well. When frequent partial occlusions

occur (e.g., #316 in Figure 8(o) and #190 in Figure 8(p),

the ASLA, TLD, KCF, and MIL methods drift away from

the target objects. On the other hand, the TLD, VTD, and

MIL methods fail to track the objects well (#68 and #249

in Figure 8(m) and #383 and #709 in Figure 8(n)) when

motion blurs occur. The ASLA and Struck methods do not

perform well when large pose changes occur (#540 in the

Board sequence and #1128 in the Lemming video). In contrast,

the IMT algorithm performs well which can be attributed to

adaptive use of HOG features to handle motion blurs and Haar-

like features to deal with occlusions as shown in Figure 6(c).

As the IMT algorithm utilizes transient and stable features for

tracker selection and interaction, it is more robust in dealing

with large object appearance changes.

9.9 Run Time Performance

We implement the proposed and evaluated methods (i.e., IMT,

MCS, and CVT) using MATLAB. For each method, we use
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(a) Startrek (#18, #119) (b) Starwars (#36, #63) (c) David (#167, #202)

(d) Girl (#310, #441) (e) Football (#273, #297) (f) CAVIAR (#225, #300)

(g) Woman (#60, #140) (h) Singer1 (#54, #190) (i) Sylv (#920, #1083)

(j) Deer (#15, #58) (k) Jumping (#54, #190) (l) Trellis (#248, #398)

(m) Board (#68, #249, #540) (n) Lemming (#383, #709, #1128)

(o) Tiger1 (#216, #316) (p) Coke (#190, #269)) (q) Tracker Label

Fig. 8. Experimental results of state-of-the-art tracking methods.

600 samples for every tracker. The most time-consuming

part of the proposed IMT algorithm is to extract multiple

features. As the MCS and CVT methods use the same features

(HOG, Haar-like, and intensity), the run time performance is

comparable to that of the IMT algorithm (0.8 seconds versus

1.4 seconds per frame). The run time of the IMT is higher as

it entails solving an ℓ1 minimization problem for computing

the TLF using (29), which can be further reduced by recent

efficient ℓ1 solvers [33].

10 CONCLUSIONS

In this paper, we propose a robust visual tracking algorithm

that integrates multiple trackers based on different feature rep-

resentations via tracker interaction and selection. The tracker

interaction is carried out based on the transition probability

matrix which is designed to alleviate the drifting problems

of less reliable tracking methods. The update of transition

probability matrix and tracker selection are computed based

on the reliability of each tracker via the proposed tracker

likelihood function. To better account for abrupt and gradual

appearance changes, each likelihood function is formulated

based on transient and stable features. The proposed tracking

algorithm selects the best one among multiple trackers to

account for object appearance changes. Experimental results

on benchmark datasets demonstrate that the proposed tracking

algorithm performs favorably against state-of-the-art methods.
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