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Abstract—It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as

pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples

from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First,

while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to

learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned

samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient

tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-

independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the

image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance

model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The

tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A

coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed

compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in

terms of efficiency, accuracy and robustness.

Index Terms—Visual tracking, random projection, compressive sensing

Ç

1 INTRODUCTION

DESPITE that numerous algorithms have been proposed
in the literature, object tracking remains a challenging

problem due to appearance change caused by pose, illumi-
nation, occlusion, and motion, among others. An effective
appearance model is of prime importance for the success of
a tracking algorithm that has attracted much attention in
recent years [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16].

Numerous effective representation schemes have been
proposed for robust object tracking in recent years. One
commonly adopted approach is to learn a low-dimensional
subspace (e.g., eigenspace [7], [17]), which can adapt online
to object appearance change. Since this approach is data-
dependent, the computational complexity is likely to
increase significantly because it needs eigen-decomposi-
tions. Moreover, the noisy or misaligned samples are likely
to degrade the subspace basis, thereby causing these algo-
rithms to drift away the target objects gradually. Another
successful approach is to extract discriminative features
from a high-dimensional space. Since object tracking can be
posed as a binary classification task which separates object

from its local background, a discriminative appearance
model plays an important role for its success. Online boost-
ing methods [6], [10] have been proposed to extract discrim-
inative features for object tracking. Alternatively, high-
dimensional features can be projected to a low-dimensional
space from which a classifier can be constructed.

The compressive sensing (CS) theory [18], [19] shows that
if the dimension of the feature space is sufficiently high,
these features can be projected to a randomly chosen low-
dimensional space which contains enough information to
reconstruct the original high-dimensional features. The
dimensionality reduction method via random projection
(RP) [20], [21] is data-independent, non-adaptive and infor-
mation-preserving. In this paper, we propose an effective
and efficient tracking algorithm with an appearance model
based on features extracted in the compressed domain [1].
The main components of the proposed compressive track-
ing algorithm are shown by Fig. 1. We use a very sparse
measurement matrix that asymptotically satisfies the
restricted isometry property (RIP) in compressive sensing
theory [18], thereby facilitating efficient projection from the
image feature space to a low-dimensional compressed sub-
space. For tracking, the positive and negative samples are
projected (i.e., compressed) with the same sparse measure-
ment matrix and discriminated by a simple naive Bayes
classifier learned online. The proposed compressive track-
ing algorithm runs at real-time and performs favorably
against state-of-the-art trackers on challenging sequences in
terms of efficiency, accuracy and robustness.

The rest of this paper is organized as follows. We first
review the most relevant work on online object tracking
in Section 2. The preliminaries of compressive sensing
and random projection are introduced in Section 3. The
proposed algorithm is detailed in Section 4, and the
experimental results are presented in Section 5 with
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comparisons to state-of-the-art methods on challenging
sequences. We conclude with remarks on our future work
in Section 6.

2 RELATED WORK

Recent surveys of object tracking can be found in [22], [23],
[24]. In this section, we briefly review the most relevant liter-
ature of online object tracking. In general, tracking algo-
rithms can be categorized as either generative [2], [3][7], [9],
[11], [12], [25], [26], [27], [28], [29] or discriminative [4], [5],
[6], [8], [10], [30], [13], [16] based on their appearancemodels.

Generative tracking algorithms typically learn a model to
represent the target object and then use it to search for the
image region with minimal reconstruction error. Black and
Jepson [2] learn an offline subspace model to represent the
object of interest for tracking. Reference templates based on
color histogram [31], [32], integral histogram [25] have been
used for tracking. In [3] Jepson et al. present a Gaussian mix-
ture model with an online expectation maximization algo-
rithm to handle object appearance variations during
tracking. Ho et al. [17] propose a tracking method using a set
of learned subspace model to deal with appearance change.
Instead of using pre-trained subspace, the IVT method [7]
learns an appearance model online to adapt appearance
change. Kwon and Lee [9] combine multiple observation
and motion models in a modified particle filtering frame-
work to handle large appearance and motion variation.
Recently, sparse representation has been used in the
‘1-tracker where an object is modeled by a sparse linear com-
bination of target and trivial templates [12]. However, the
computational complexity of the ‘1-tracker is rather high,
thereby limiting its applications in real-time scenarios. Li
et al. [11] further extend it by using the orthogonal matching
pursuit algorithm for solving the optimization problems effi-
ciently, and Bao et al. [27] improve the efficiency via acceler-
ated proximal gradient approach. A representation based on
distribution of pixels at multiple layers is proposed to

describe object appearance for tracking [29]. Oron et al. [28]
propose a joint model of appearance and spatial configura-
tion of pixels which estimates the amount of local distortion
of the target object, thereby well handling rigid and nonrigid
deformations. Recently, Zhang et al. [26] propose a multi-
task approach to jointly learn the particle representations for
robust object tracking. Despite much demonstrated success
of these online generative tracking algorithms, several prob-
lems remain to be solved. First, numerous training samples
cropped from consecutive frames are required in order to
learn an appearance model online. Since there are only a few
samples at the outset, most tracking algorithms often
assume that the target appearance does not change much
during this period. However, if the appearance of the target
changes significantly, the drift problem is likely to occur.
Second, these generative algorithms do not use the back-
ground information which is likely to improve tracking sta-
bility and accuracy.

Discriminative algorithms pose the tracking problem as a
binary classification task with local search and determine the
decision boundary for separating the target object from the
background. Avidan [4] extends the optical flow approach
with a support vector machine (SVM) classifier for object
tracking, and Collins et al. [5] demonstrate that the most dis-
criminative features can be learned online to separate the tar-
get object from the background. In [6] Grabner et al. propose
an online boosting algorithm to select features for tracking.
However, these trackers [4], [5], [6] use one positive sample
(i.e., the current tracker location) and a few negative samples
when updating the classifier. As the appearance model is
updated with noisy and potentially misaligned examples,
this often leads to the tracking drift problem. An online
semi-supervised boosting method is proposed by Grabner et
al. [8] to alleviate the drift problem inwhich only the samples
in the first frame are labeled and all the other samples are
unlabeled. Babenko et al. [10] formulate online tracking
within themultiple instance learning frameworkwhere sam-
ples are consideredwithin positive and negative bags or sets.

Fig. 1. Main components of the proposed compressive tracking algorithm.

ZHANG ET AL.: FAST COMPRESSIVE TRACKING 2003



A semi-supervised learning approach [33] is developed in
which positive and negative samples are selected via an
online classifier with structural constraints. Wang et al. [30]
present a discriminative appearance model based on super-
pixels which is able to handle heavy occlusions and recovery
from drift. In [13], Hare et al. use an online structured
output support vector machine for robust tracking which
can mitigate the effect of wrong labeling samples. Recently,
Henriques et al. [16] introduce a fast tracking algorithm
which exploits the circulant structure of the kernel matrix in
SVM classifier that can be efficiently computed by the fast
Fourier transform algorithm.

3 PRELIMINARIES

We present some preliminaries of compressive sensing
which are used in the proposed tracking algorithm.

3.1 Random Projection and Compressive Sensing

In random projection, a random matrix R 2 Rn�m whose
rows have unit length projects data from the high-
dimensional feature space x 2 Rm to a lower-dimensional
space v 2 Rn

v ¼ Rx; (1)

where n� m. Each projection v is essentially equivalent to
a compressive measurement in the compressive sensing
encoding stage. The compressive sensing theory [19], [34]
states that if a signal is K-sparse (i.e., the signal is a linear
combination of only K basis [35]), it is possible to near per-
fectly reconstruct the signal from a small number of random
measurements. The encoder in compressive sensing (using
(1)) correlates signal with noise (using random matrix R)
[19], thereby it is a universal encoding which requires no
prior knowledge of the signal structure. In this paper, we
adopt this encoder to construct the appearance model for
visual tracking.

Ideally, we expect R provides a stable embedding that
approximately preserves the salient information in any
K-sparse signal when projecting from x 2 Rm to v 2 Rn. A
necessary and sufficient condition for this stable embedding
is that it approximately preserves distances between any
pairs of K-sparse signals that share the same K basis. That
is, for any two K-sparse vectors x1 and x2 sharing the same
K basis,

ð1� �Þkx1 � x2k2‘2 � kRx1 �Rx2k2‘2 � ð1þ �Þkx1 � x2k2‘2 :
(2)

The restricted isometry property [18], [19] in compressive
sensing shows the above results. This property is achieved
with high probability for some types of random matrix R
whose entries are identically and independently sampled
from a standard normal distribution, symmetric Bernoulli
distribution or Fourier matrix. Furthermore, the above
result can be directly obtained from the Johnson-Linden-
strauss (JL) lemma [20].

Lemma 1. (Johnson-Lindenstrauss lemma) [20]: Let Q be a finite
collection of d points in Rm. Given 0 < � < 1 and b > 0, let
n be a positive integer such that

n � 4þ 2b

�2=2� �3=3

� �
lnðdÞ: (3)

LetR 2 Rn�m be a random matrix withRði; jÞ ¼ rij, where

rij ¼ þ1; with probability 1
2 ;�1; with probability 1
2 ;

�
(4)

or

rij ¼
ffiffiffi
3
p
�

þ1; with probability 1
6 ;

0; with probability 2
3 ;

�1; with probability 1
6 :

8<
: (5)

Then, with probability exceeding 1� d�b, the following state-
ment holds: For every x1;x2 2 Q,

ð1� �Þkx1 � x2k2‘2 �
1ffiffiffi
n
p kRx1 �Rx2k2‘2

� ð1þ �Þkx1 � x2k2‘2 : (6)

Baraniuk et al. [36] prove that any random matrix sat-
isfying the Johnson-Lindenstrauss lemma also holds true
for the restricted isometry property in compressive sens-
ing. Therefore, if the random matrix R in (1) satisfies the
JL lemma, x can be reconstructed with minimum error
from v with high probability if x is K-sparse (e.g., audio
or image signals). This strong theoretical support moti-
vates us to analyze the high-dimensional signals via their
low-dimensional random projections. In the proposed
algorithm, a very sparse matrix is adopted that not only
asymptotically satisfies the JL lemma, but also can be effi-
ciently computed for real-time tracking.

3.2 Very Sparse Random Measurement Matrix

A typical measurement matrix satisfying the restricted isom-
etry property is the random Gaussian matrix R 2 Rn�m

where rij � Nð0; 1Þ (i.e., zero mean and unit variance), as
used in recent work [11], [37], [38]. However, as the matrix is
dense, the memory and computational loads are very expen-
sive when m is large. In this paper, we adopt a very sparse
randommeasurement matrix with entries defined as

rij ¼ ffiffiffi
r
p �

1; with probability 1
2r ;

0; with probability 1� 1
r
;

�1; with probability 1
2r :

8><
>: (7)

Achlioptas [20] proves that this type of matrix with r ¼ 1 or
3 satisfies the Johnson-Lindenstrauss lemma (i.e., (4) and
(5)). This matrix is easy to compute which requires only a
uniform random generator. More importantly, when r ¼ 3,
it is sparse where two thirds of the computation can be
avoided. In addition, Li et al. [39] show that for r ¼ oðmÞ
(x 2 Rm), the random projections are almost as accurate as
the conventional random projections where rij � Nð0; 1Þ.
Therefore, the random matrix (7) with r ¼ oðmÞ asymptoti-
cally satisfies the JL lemma. In this work, we set r ¼ oðmÞ ¼
m=ða log10ðmÞÞ ¼ m=ð10aÞ � m=ð6aÞ with a fixed constant a
because the dimensionality m is typically in the order of 106

to 1010. For each row of R, only about c ¼ ð 12rþ 1
2rÞ� m ¼

a log10ðmÞ � 10a nonzero entries need to be computed.
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We observe that good results can be obtained by fixing
a ¼ 0:4 in our experiments. Therefore, the computational
complexity is only oðcnÞ (n ¼ 100 in this work) which is
very low. Furthermore, only the nonzero entries of R need
to be stored which makes the memory requirement also
very light.

4 PROPOSED ALGORITHM

In this section, we present the proposed compressive track-
ing algorithm in details. The tracking problem is formulated
as a detection task and the main steps of the proposed algo-
rithm are shown in Fig. 1. We assume that the tracking win-
dow in the first frame is given by a detector or manual label.
At each frame, we sample some positive samples near the
current target location and negative samples away from the
object center to update the classifier. To predict the object
location in the next frame, we draw some samples around
the current target location and determine the one with the
maximal classification score.

4.1 Image Representation

To account for large scale change of object appearance, a
multiscale image representation is often formed by convolv-
ing the input image with a Gaussian filter of different spa-
tial variances [40]. The Gaussian filters in practice have to
be truncated which can be replaced by rectangle filters. Bay
et al. [41] show that this replacement does not affect the per-
formance of the interest point detectors but can significantly
speed up the detectors via integral image method [42].

For each sample Z 2 Rw�h, its multiscale representation
(as illustrated in Fig. 2) is constructed by convolving Z with
a set of rectangle filters at multiple scales fF1;1; . . . ;Fw;hg
defined by

Fw;hðx; yÞ ¼ 1

wh
� 1; 1� x � w, 1� y � h;

0; otherwise;

�
(8)

where w and h are the width and height of a rectangle fil-
ter, respectively.

Then, we represent each filtered image as a column
vector in Rwh and concatenate these vectors as a very
high-dimensional multiscale image feature vector x ¼
ðx1; . . . ; xmÞ> 2 Rm where m ¼ ðwhÞ2. The dimensionality
m is typically in the order of 106 to 1010. We adopt a

sparse random matrix R in (7) to project x onto a vector
v 2 Rn in a low-dimensional space. The random matrix R
needs to be computed only once offline and remains fixed
throughout the tracking process. For the sparse matrix R
in (7), the computational load is very light. As shown in
Fig. 3, we only need to store the nonzero entries in R and
the positions of rectangle filters in an input image corre-
sponding to the nonzero entries in each row of R. Then,
v can be efficiently computed by using R to sparsely mea-
sure the rectangular features which can be efficiently
computed using the integral image method [42].

4.2 Analysis of Compressive Features

4.2.1 Relationship to the Haar-Like Features

As shown in Fig. 3, each element vi in the low-dimensional
feature v 2 Rn is a linear combination of spatially distrib-
uted rectangle features at different scales. Since the coeffi-
cients in the measurement matrix can be positive or
negative (via (7)), the compressive features compute the rel-
ative intensity difference in a way similar to the generalized
Haar-like features [10] (See Fig. 3). The Haar-like features
have been widely used for object detection with demon-
strated success [10], [42], [43]. The basic types of these Haar-
like features are typically designed for different tasks [42],
[43]. There often exist a very large number of Haar-like fea-
tures which make the computational load very heavy. This
problem is alleviated by boosting algorithms for selecting
important features [42], [43]. Recently, Babenko et al. [10]
adopt the generalized Haar-like features where each one is
a linear combination of randomly generated rectangle fea-
tures, and use online boosting to select a small set of them
for object tracking. In this work, the large set of Haar-like
features are compressively sensed with a very sparse mea-
surement matrix. The compressive sensing theories ensure
that the extracted features of our algorithm preserve almost
all the information of the original image, and hence is able
to correctly classify any test image because the dimension of
the feature space is sufficiently large (106 to 1010) [37].
Therefore, the projected features can be classified in the
compressed domain efficiently and effectively without the
curse of dimensionality.

4.2.2 Scale Invariant Property

It is easy to show that the low-dimensional feature v is
scale invariant. As shown in Fig. 3, each feature in v is a
linear combination of some rectangle filters convolving
the input image at different positions. Therefore, without

Fig. 2. Illustration of multiscale image representation.

Fig. 3. Graphical representation of compressing a high-dimensional vec-
tor x to a low-dimensional vector v. In the matrixR, dark, gray and white
rectangles represent negative, positive, and zero entries, respectively.
The blue arrows illustrate that one of nonzero entries of one row of R
sensing an element in x is equivalent to a rectangle filter convolving the
intensity at a fixed position of an input image.
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loss of generality, we only need to show that the jth rect-
angle feature xj in the ith feature vi in v is scale invariant.
From Fig. 4, we have

xjðsyÞ ¼ Fswj;shjðsyÞ 	 ZðsyÞ
¼ Fswj;shjðaÞ 	 ZðaÞja¼sy
¼ 1

s2wihi

Z
u2Vs

Zða� uÞdu

¼ 1

s2wihi

Z
u2V

Zðy� uÞjs2jdu

¼ 1

wihi

Z
u2V

Zðy� uÞdu

¼ Fwj;hjðyÞ 	 ZðyÞ
¼ xjðyÞ;

where V ¼ fðu1; u2Þj1 � u1 � wi; 1 � u2 � hig and Vs ¼
fðu1; u2Þj1 � u1 � swi; 1 � u2 � shig.

4.3 Classifier Construction and Update

We assume all elements in v are independently distributed
and model them with a naive Bayes classifier [44],

HðvÞ ¼ log

Qn
i¼1 pðvi j y ¼ 1Þpðy ¼ 1ÞQn
i¼1 pðvi j y ¼ 0Þpðy ¼ 0Þ

� �

¼
Xn
i¼1

log
pðvi j y ¼ 1Þ
pðvi j y ¼ 0Þ

� �
; (9)

where we assume uniform prior, pðy ¼ 1Þ ¼ pðy ¼ 0Þ, and
y 2 f0; 1g is a binary variable which represents the sample
label.

Diaconis and Freedman [45] show that random projec-
tions of high dimensional random vectors are almost always
Gaussian. Thus, the conditional distributions pðvi j y ¼ 1Þ
and pðvi j y ¼ 0Þ in the classifier HðvÞ are assumed to be
Gaussian distributed with four parameters ðm1

i ; s
1
i ;m

0
i ; s

0
i Þ,

pðvi j y ¼ 1Þ � N �
m1
i ; s

1
i

�
; pðvi j y ¼ 0Þ � N �

m0
i ; s

0
i

�
; (10)

where m1
i (m

0
i ) and s1

i (s
0
i ) are mean and standard deviation

of the positive (negative) class. The scalar parameters in (10)
are incrementally updated by

m1
i  �m1

i þ ð1� �Þm1

s1
i  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
s1
i

�2 þ ð1� �Þðs1Þ2 þ �ð1� �Þ�m1
i � m1

�2q
;

(11)

where � > 0 is a learning parameter,

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn�1
k¼0jy¼1ðviðkÞ � m1Þ2

q

and m1 ¼ 1
n

Pn�1
k¼0jy¼1 viðkÞ. Parameters m0

i and s0
i are updated

with similar rules. The above equations can be easily

derived by maximum likelihood estimation [46]. Fig. 5

shows the probability distributions for three different fea-

tures of the positive and negative samples cropped from a
few frames of a sequence for clarity of presentation. It

shows that a Gaussian distribution with online update

using (11) is a good approximation of the features in the

projected space where samples can be easily separated.
Because the variables are assumed to be independent in

our classifier, the n-dimensional multivariate problem is
reduced to the n univariate estimation problem. Thus, it
requires fewer training samples to obtain accurate estima-
tion than estimating the covariance matrix in the multivari-
ate estimation. Furthermore, several densely sampled
positive samples surrounding the current tracking result
are used to update the distribution parameters, which is
able to obtain robust estimation even when the tracking
result has some drift. In addition, the useful information
from the former accurate samples is also used to update the
parameter distributions, thereby facilitating the proposed
algorithm to be robust to misaligned samples. Thus, our
classifier performs robustly even when the misaligned or
the insufficient number of training samples are used.

4.4 Fast Compressive Tracking

The aforementioned classifier is used for local search. To
reduce the computational complexity, a coarse-to-fine slid-
ing window search strategy is adopted (See Fig. 6). The main
steps of our algorithm are summarized in Algorithm 1. First,
we search the object location based on the previous object
location by shifting the window with a large number of

Fig. 4. Illustration of scale invariant property of low-dimensional features.
From the left figure to the right one, the ratio is s. Red rectangle repre-
sents the jth rectangle feature at position y.

Fig. 5. Probability distributions of three different features in a low-dimen-
sional space. The red stair represents the histogram of positive samples
while the blue one represents the histogram of negative samples. The
red and blue lines denote the corresponding estimated distributions by
the proposed incremental update method.

Fig. 6. Coarse-to-fine search for new object location. Left: object center
location (denoted by red solid circle) at the tth frame. Middle: coarse-
grained search with a large radius gc and search step Dc based on the
previous object location. Right: fine-grained search with a small radius
gf < gc and search step Df < Dc based on the coarse-grained search
location (denoted by green solid circle). The final object location is
denoted by blue solid circle.
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pixels Dc within a large search radius gc. This generates
fewer windows than locally exhaustive search method (e.g.,
[10]) but the detected object location may be slightly inaccu-
rate but close to the accurate object location. Based on the
coarse-grained detected location, fine-grained search is car-
ried out with a small number of pixels Df within a small
search radius gf . For example, we set gc ¼ 25, Dc ¼ 4, and
gf ¼ 10, Df ¼ 1 in all the experiments. If we use the fine-
grained locally exhaustive method with gc ¼ 25 and Df ¼ 1,
the total number of search windows is about 1,962 (i.e., pg2c ).
However, using this coarse-to-fine search strategy, the total
number of search windows is about 436 (i.e., pg2c=16þ pg2

f ),
thereby significantly reducing computational cost.

4.4.1 Multiscale Fast Compressive Tracking

At each location in the search region, three image patches
are cropped at different scale s: current (s ¼ 1), small
(s ¼ 1� d) and large scale (s ¼ 1þ d), to account for appear-
ance variation due to fast scale change. The template of
each rectangle feature for patch with scale s is multiplied
by ratio s (See Fig. 4). Therefore, the feature vs for each
patch with scale s can be efficiently extracted by using
the integral image method [42]. Since the low-dimensional
features for each image patch are scale invariant, we
have vs

t ¼ arg maxv2FHðvÞ 
 vt�1, where vt�1 is the low-
dimensional feature vector that represents the object in the
(t� 1)th frame, andF is the set of low-dimensional features
extracted from image patches at different scales. The classi-
fier is updated with cropped positive and negative samples
based on the new object location and scale. The above pro-
cedures can be easily integrated into Algorithm 1: the scale
is updated every fifth frame in the fine-grained search pro-
cedure (See Step 4 in Algorithm 1), which is a tradeoff
between computational efficiency and effectiveness of han-
dling appearance change caused by fast scale change.

4.5 Discussion

We note that simplicity is the prime characteristic of the
proposed algorithm in which the proposed sparse measure-
ment matrix R is independent of training samples, thereby
resulting in an efficient method. In addition, the proposed
algorithm achieves robust performance as discussed below.

Difference with related work. It should be noted that the
proposed algorithm is different from recent work based
on sparse representation [12] and compressive sensing
[11]. First, both algorithms are generative models that
encode an object sample by sparse representation of tem-
plates using ‘1-minimization. Thus the training samples
cropped from the previous frames are stored and
updated, but this is not required in the proposed algo-
rithm due to the use of a data-independent measurement
matrix. Second, the proposed algorithm extracts a linear
combination of generalized Haar-like features and other
trackers [12], [11] use sparse representations of holistic
templates which are less robust as demonstrated in the
experiments. Third, both tracking algorithms [12], [11]
need to solve numerous time-consuming ‘1-minimization
problems although one method has been recently pro-
posed to alleviate the problem of high computational
complexity [27]. In contrast, the proposed algorithm is
efficient as only matrix multiplications are required.

The proposed method is different from the MIL tracker
[10] as it first constructs a feature pool in which each feature
is randomly generated as a weighted sum of pixels in two
to four rectangles. A subset of most discriminative features
are then selected via an MIL boosting method to construct
the final strong classifier. However, as the adopted mea-
surement matrix of the proposed algorithm satisfies the JL
lemma, the compressive features can preserve the ‘2 dis-
tance of the original high-dimensional features. Since each
feature that represents a target or background sample is
assumed to be independently distributed with a Gaussian
distribution, the feature vector for each sample is modeled
as a mixture of Gaussian (MoG) distribution. The MoG dis-
tribution is essentially a mixture of weighted ‘2 distances of
Gaussian distributions. Thus, the ‘2 distance between the
target and background distributions is preserved in the
compressive feature space, and the proposed algorithm can
obtain favorable results without further learning the dis-
criminative features from the compressive feature space.

Discussion with the online AdaBoost method (OAB) [6]. The
reasons that our method performs better than the OAB
method can be attributed to the following factors. First, to
reduce the computational complexity, the feature pool size
designed by the OAB method is small (less than 250 accord-
ing to the default setting in [6] which may contain insuffi-
cient discriminative features. However, our compressive
features can preserve the intrinsic discriminative strength of
the original high-dimensional multiscale features, i.e., large
(between 106 and 1010) feature space . Therefore, our com-
pressive features have better discriminative capability than
the Haar-like features used by the OAB method. Second,
the proposed method uses several positive samples (patches
close to the tracking result at any frame) for online update of
the appearance model which alleviates the errors intro-
duced by inaccurate tracking locations, whereas the OAB
method only uses one positive sample (i.e., the tracking
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result). When the tracking location is not accurate, the
appearance model of the OAB method will not be updated
properly and thereby cause drift.

Random projection versus principal component analysis
(PCA). For visual tracking, dimensionality reduction algo-
rithms such as principal component analysis and its varia-
tions have been widely used in generative approaches [2],
[7]. These methods need to update the appearance models
frequently for robust tracking. However, these methods are
usually sensitive to heavy occlusion due to the holistic
representation schemes although some robust schemes
have been proposed [47]. Furthermore, it is not clear
whether the appearance models can be updated correctly
with new observations (e.g., without alignment errors to
avoid tracking drift). In contrast, the proposed algorithm
does not suffer from the problems with online self-taught
learning approaches [48] as the proposed model with the
measurement matrix is data-independent. It has been
shown that for image and text applications, favorable
results are achieved by methods with random projection
than principal component analysis [21].

Robustness to ambiguity in detection. The tracking-by-
detection methods often encounter the inherent ambiguity
problems as shown in Fig. 7. Recently Babenko et al. [10]
introduce online multiple instance learning schemes to
alleviate the tracking ambiguity problem. The proposed
algorithm is robust to the ambiguity problem as illustrated
in Fig. 7. While the target appearance changes over time,
the most “correct” positive samples (e.g., the sample in the
red rectangle in Fig. 7) are similar in most frames. How-
ever, the less “correct” positive samples (e.g., samples in
yellow rectangles of Fig. 7) are much more different as
they contain some background pixels which vary much
more than those within the target object. Thus, the distri-
butions for the features extracted from the most “correct”
positive samples are more concentrated than those from
the less “correct” positive samples. This in turn makes the
features from the most “correct” positive samples much
more stable than those from the less “correct” positive
samples (e.g., on the bottom row of Fig. 7, the features

denoted by red markers are more stable than those
denoted by yellow markers). The proposed algorithm is
able to select the most “correct” positive sample because
its probability is larger than those of the less “correct” posi-
tive samples (See the markers in Fig. 7). In addition, the
proposed measurement matrix is data-independent and
no noise is introduced by mis-aligned samples.

Robustness to occlusion. Each feature in the proposed algo-
rithm is spatially localized (See Fig. 3) which is less sensitive
to occlusion than methods based on holistic representations.
Similar representations, e.g., local binary patterns (LBP)
[49], Haar-like features [6], [10], have been shown to be
effective in handling occlusion. Furthermore, features are
randomly sampled at multiple scales by the proposed algo-
rithm in a way similar to [10], [50] which have demon-
strated robust results for dealing with occlusion.

Dimensionality of projected space. Bingham and Mannila
[21] show that in practice the bound of the Johnson-Lin-
denstrauss lemma (i.e., (3)) is much higher than that suf-
fices to achieve good results on image and text data. In
[21], the lower bound for n when � ¼ 0:2 is 1;600 but
n ¼ 50 is sufficient to generate good results for image
and text analysis. In the experiments, with 100 samples
(i.e., d ¼ 100), � ¼ 0:2 and b ¼ 1, the lower bound for n is
approximately 1;600. Another bound derived from the
restricted isometry property in compressive sensing [18]
is much tighter than that from the Johnson-Lindenstrauss
lemma, where n � kb logðm=bÞ and k and b are constants.
For m ¼ 106; k ¼ 1, and b ¼ 10, it is expected that n � 50.
We observe that good results can be obtained when
n ¼ 100 in the experiments.

Robustness to preserve important features. With the setting
in this work, d ¼ 100 and b ¼ 1, the probability that pre-
serves the pair-wise distances in the JL lemma (See
Lemma 1) exceeds 1� d�b ¼ 99%. Assume that there exists
only one important feature that can separate the foreground
object from the background. Since each compressed feature
is assumed to be generated from an identical and indepen-
dent distribution, it is reasonable to assume that each fea-
ture contains or looses the piece of important information
with the same probability, i.e., piðy ¼ 1Þ ¼ piðy ¼ 0Þ ¼ 50%;
i ¼ 1; . . . ; n, where y ¼ 1 indicates the feature contains the
piece of important information while y ¼ 0 otherwise.
Therefore, the probability that the only important feature
being lost is less than p ¼ d�b �Qn

i¼1 piðy ¼ 0Þ ¼ 1% �
0:5100 
 0 when a failure happens.

5 EXPERIMENTS

The proposed algorithm is termed as fast compressive
tracker (FCT) with one fixed scale, and scaled FCT
(SFCT), with multiple scales in order to distinguish from
the compressive tracker (CT) proposed by our conference
paper [1]. The FCT and SFCT methods demonstrate supe-
rior performance over the CT method in terms of accuracy
and efficiency (See results in Table 2 and Table 3), which
validates the effectiveness of the scale invariant features
and coarse-to-fine search strategy. Furthermore, the pro-
posed algorithm is evaluated with other 15 state-of-the-
art methods on 20 challenging sequences among which 14
are publicly available and six are collected on our own (i.

Fig. 7. Illustration of the proposed algorithm in dealing with ambiguity in
detection. Top row: three positive samples. The sample in red rectangle
is the most “correct” positive sample while other two in yellow rectangles
are less “correct” positive samples. Bottom row: the probability distribu-
tions for a feature extracted from positive and negative samples. The
green markers denote the feature extracted from the most “correct” posi-
tive sample while the yellow markers denote the feature extracted from
the two less “correct” positive samples. The red and blue stairs as well
as lines denote the estimated distributions of positive and negative sam-
ples as shown in Fig. 5.
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e., Biker, Bolt, Chasing, Goat, Pedestrian, and Shaking 2 in
Table 2). The 15 evaluated trackers are the compressive
sensing tracker [11], the fragment tracker (Frag) [25],
online AdaBoost method [6], Semi-supervised tracker
(SemiB) [8], incremental visual tracker (IVT) [7], MIL
tracker [10], visual tracking decomposition (VTD) algo-
rithm [9], ‘1-tracker (L1T) [12], TLD tracker [33], distribu-
tion field (DF) tracker [29], multi-task tracker (MTT) [26],
Struck (Struck) method [13], circulant structure tracker
(CST) [16], sparsity-based collaborative model (SCM)
tracker [51] and adaptive structural local sparse appear-
ance (ASLA) tracker [52]. Table 1 summarizes the charac-
teristics of the evaluated tracking algorithms. Most of the
compared discriminative algorithms rely on either refined
features (via feature selection such as OAB, SemiB, MIL)
or strong classifiers (SVM classifier such as Struck and
CST) for object tracking. For the TLD method, it uses a
detector integrated with a cascade of three classifiers (i.e.,
patch variance, random ferns, and nearest neighbor classi-
fiers) for tracking. While the proposed tracking algorithm
uses Haar-like features (via random projection) and sim-
ple naive Bayes classifier, it achieves favorable results
against other methods.

It is worth noticing that the most challenging sequences
from the existing works are used for evaluation. All param-
eters in the proposed algorithm are fixed for all the experi-
ments to demonstrate the robustness and stability of the
proposed method. To fairly verify the effectiveness of the
scale invariant compressive feature and the coarse-of-fine
search strategy, the dimensionality of the compressive fea-
ture space for the CT method [1] is set to 100 as the FCT
and SFCT. For other evaluated trackers, we use the source
or binary codes provided by the authors with default
parameters. Note that these settings are different in our
conference paper [1] in which we either use the tuned
parameters from the source codes or empirically set them
for best results. Therefore, the results of some baseline
methods are different. For fair comparisons, all the evalu-
ated trackers are initialized with the same parameters (e.g.,
initial locations, number of particles and search range). The
proposed FCT algorithm runs at 149 frame per second
(FPS) with a MATLAB implementation on an i7 Quad-Core
machine with 3:4 GHz CPU and 32 GB RAM. In addition,

the SFCT algorithm runs 135 frames per second. Both run
faster than the CT algorithm (80 FPS) [1], illustrating the
efficiency of coarse-to-fine search scheme. The CS algorithm
[11] runs 40 FPS, which is much less efficient than our pro-
posed algorithms because of its solving a time-consuming
‘1-minimization problem. The source codes, videos, and
data sets are available at http://www4.comp.polyu.edu.
hk/~cslzhang/FCT/FCT.htm.

5.1 Experimental Setup

Given a target location at the current frame, the search
radius for drawing positive samples a is set to 4 which gen-
erates 45 positive samples. The inner z and outer radii b for
the set Dz;b that generates negative samples are set to 8 and
30, respectively. In addition, 50 negative samples are ran-
domly selected from the set Dz;b. The search radius gc for
the setDgc to coarsely detect the object location is 25 and the
shifting step Dc is 4. The radius gf for setD

gf to fine-grained
search is set to 10 and the shifting step Df is set to 1. The
scale change parameter d is set to 0:01. The dimensionality
of projected space n is set to 100, and the learning parameter
� is set to 0:85.

5.2 Evaluation Criteria

Two metrics are used to evaluate the proposed algorithm

with 15 state-of-the-art trackers in which gray scale videos

are used except color images are used for the VTD method.

The first metric is the success rate which is used in the PAS-

CAL VOC challenge [53] defined as, score ¼ areaðROIT\ROIGÞ
areaðROIT[ROIGÞ,

where ROIT is the tracking bounding box and ROIG is the

ground truth bounding box. If the score is larger than 0:5 in

one frame, the tracking result is considered as a success.

Table 2 shows the tracking results in terms of success rate.

The other is the center location error which is defined as the

euclidean distance between the central locations of the

tracked objects and the manually labeled ground truth.

Table 3 shows the average tracking errors of all methods.

The proposed SFCT and FCT algorithms achieve the best or

second best results in most sequences based on both success

rate and center location error. Furthermore, the proposed

TABLE 1
Summary of all Evaluated Tracking Algorithms
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trackers run faster than all the other algorithms except for

the CST method which uses the fast Fourier transform. In

addition, the SFCT algorithm performs better than the FCT

algorithm for most sequences, and both achieve much better

results than the CT algorithm in terms of both success rate

and center location error, verifying the effectiveness of

using scale invariant compressive features.

5.3 Tracking Results

5.3.1 Pose and Illumination Change

For the David indoor sequence shown in Fig. 8a, the appear-
ance changes gradually due to illumination and pose varia-
tion when the person walks out of the dark meeting room.
The IVT, VTD, TLD, CT, FCT and SFCT algorithms per-
form well on this sequence. The IVT method uses a PCA-
based appearance model which has been shown to account
for appearance change caused by illumination variation
well. The VTD method performs well due to the use of
multiple observation models constructed from different
features. The TLD approach works well because it main-
tains a detector which uses Haar-like features during track-
ing. In the Sylvester sequence shown in Fig. 8b, the object
undergoes large pose and illumination change. The MIL,
TLD, Struck, CST, ASLA, FCT and SFCT methods perform
well on this sequence with lower tracking errors than other

methods. The IVT, L1T, MTT, and DF methods do not per-
form well on this sequence as these methods use holistic
features which are less effective for large scale pose varia-
tions. In Fig. 8c, the target object in the Skating sequence
undergoes occlusion (#165), shape deformation (#229;
#280), and severe illumination change (#383). Only the
VTD, Struck, CT, FCT and SFCT methods perform well on
this sequence. The VTD method performs well as it con-
structs multiple observation models which account for
some different object appearance variations over time. The
Struck method achieves low tracking errors as it maintains
a fixed number of support vectors from the former frames
which contain different aspects of the object appearance
over time. However, the Struck method drifts away from
the target after frame #350 in the Skating sequence due to
several reasons. When the stage light changes drastically
and the pose of the performer changes rapidly as she per-
forms, only the VTD, CT, FCT and SFCT methods are able
to track the object reliably. The proposed trackers are
robust to pose and illumination changes as object appear-
ance can be modeled well by random projections (based
on the Johnson-Lindenstrauss lemma) and the classifier
with online update is used to separate foreground and
background samples. Furthermore, the features used in the
proposed algorithms are similar to generalized Haar-like
features which have been shown to be robust to pose and
orientation change [10].

TABLE 2
Success Rate (SR) (Percent)

The total number of evaluated frames is 8; 762.

TABLE 3
Center Location Error (CLE) (in Pixels) and Average Frame per Second (FPS)

Bold fonts indicate the best performance while the italic fonts indicate the second best ones. The total number of evaluated frames is 8;762.
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5.3.2 Occlusion and Pose Variation

The target object in the Occluded face sequence in Fig. 9a
undergoes in-plane pose variation and heavy occlusion.
Overall, the MIL, L1T, Struck, CST, CT, FCT and SFCT algo-
rithms perform well on this sequence. In the Panda sequence
(Fig. 9b), the target undergoes out-of-plane pose variation
and shape deformation. Table 2 and Table 3 show that only
the proposed SFCT method outperforms the other methods
on this sequence in terms of success rate and center location
error. The OAB and MIL methods work well on this
sequence as they select the most discriminative Haar-like
features for object representation which can well handle
pose variation and shape deformation. Although the Struck
method uses the Haar-like features to represent objects, no
feature selection mechanism is employed and hence it is
less effective in handling large pose variation and shape
deformation. Due to the same reasons, the Struck method
fails to track the target object stably in the Bolt sequence
(Fig. 9c). In the Bolt sequence, several objects appear in the
same scene with rapid appearance change due to shape
deformation and fast motion. Only the MIL, CST, CT, FCT
and SFCT algorithms track the object stably. The CS, IVT,
VTD, L1T, DF, MTT and ASLA methods do not perform
well as generative models are less effective to account for
appearance change caused by large shape deformation (e.g.,
background pixels are mistakenly considered as foreground
ones), thereby making the algorithms drift away to similar
objects. In the Goat sequence, the object undergoes pose var-
iation, occlusion, and shape deformation. As shown in
Fig. 9d, the proposed FCT and SFCT algorithms perform

well, and the Struck as well as CST methods achieve rela-
tively high success rate and low center location error. The
CT algorithm fails to track the target after frame #100. In
the Pedestrian sequence shown in Fig. 9e, the target object
undergoes heavy occlusion (e.g.,#50). In addition, it is chal-
lenging to track the target object due to low resolution.
Except the FCT and SFCT algorithms, all the other methods
lose track of the target in numerous frames.

The proposed FCT and SFCT algorithms handle occlu-
sion and pose variation well as the adopted scale invari-
ant appearance model is discriminatively learned from
target and background with data-independent measure-
ment, thereby alleviating the influence of background pix-
els (See also Fig. 9c). Furthermore, the FCT and SFCT
algorithms perform well on objects with non-rigid shape
deformation and camera view change in the Panda, Bolt
and Goat sequences (Figs. 9b, 9c, and 9d) as the adopted
appearance model is based on spatially local scale invari-
ant features which are less sensitive to non-rigid shape
deformation.

5.3.3 Rotation and Abrupt Motion

The target object in the Chasing sequence (Fig. 10a) under-
goes abrupt movements with 360 degree out-of-plane rota-
tion. The IVT, MTT, Struck, CST and CT methods perform
well on this sequence. The CS method cannot handle scale
changes well as illustrated by frames #430 and #530. The
images of the Shaking 2 sequence (Fig. 10b) are blurry due to
fast motion of the subject. The DF, MTT and SFCT methods
achieve favorable performance on this sequence in terms of

Fig. 8. Screenshots of some sample tracking results when there are pose variations and severe illumination changes.
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both success rate and center location error. However, the
MTT method drifts away from the target object after frame
#270. When the out-of-plane rotation and abrupt motion
both occur in the Tiger 1, Tiger 2 and Biker sequences
(Figs. 10c, 10d), most algorithms fail to track the target
objects well. The proposed SFCT and FCT algorithms out-
perform most of the other methods in most metrics (accu-
racy, success rate and speed). The Twinings and Animal
sequences contain objects undergoing out-of-plane rotation
and abrupt motion, respectively. Similarly, the proposed
trackers perform well in terms of all metrics.

5.3.4 Background Clutter

The object in the Cliff bar sequence changes in scale, ori-
entation and the surrounding background has similar
texture (Fig. 11a). As the Frag, IVT, VTD, L1T, DF, CS,
MTT and ASLA methods use generative appearance
models that do not exploit the background information,
it is difficult to keep track of the objects correctly. The
object in the Coupon book sequence undergoes significant
appearance change at the 60th frame and then the other

coupon book appears in the scene. The CS method drifts
to the background after frame #60. The Frag, SemiB,
VTD, L1T, TLD, MTT and SCM methods drift away to
track the other coupon book (#150;#200;#280 in
Fig. 11b) while the proposed SFCT and FCT algorithms
successfully track the correct one. The proposed algo-
rithms are able to track the right objects accurately in
these sequences as it extracts discriminative scale invari-
ant features for the most “correct” positive sample (i.e.,
the target object) online with classifier update for fore-
ground and background separation (See Fig. 7).

6 CONCLUDING REMARKS

In this paper, we propose a simple yet robust tracking
algorithm with an appearance model based on non-adap-
tive random projections that preserve the structure of origi-
nal image space. A very sparse measurement matrix is
adopted to efficiently compress features from the fore-
ground targets and background ones. The tracking task is
formulated as a binary classification problem with online
update in the compressed domain. Numerous experiments

Fig. 9. Screenshots of some sample tracking results when there are severe occlusion and pose variations.
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with state-of-the-art algorithms on challenging sequences
demonstrate that the proposed algorithm performs well in
terms of accuracy, robustness, and speed.

Our future work will focus on applications of the devel-
oped algorithm for object detection and recognition under
heavy occlusion. In addition, we will explore efficient detec-
tion modules for persistent tracking (where objects disap-
pear and reappear after a long period of time).
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