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Abstract

Convolutional neural networks (CNNs) have recently been applied to the optical
flow estimation problem. As training the CNNs requires sufficiently large amounts
of labeled data, existing approaches resort to synthetic, unrealistic datasets. On
the other hand, unsupervised methods are capable of leveraging real-world videos
for training where the ground truth flow fields are not available. These methods,
however, rely on the fundamental assumptions of brightness constancy and spatial
smoothness priors that do not hold near motion boundaries. In this paper, we
propose to exploit unlabeled videos for semi-supervised learning of optical flow
with a Generative Adversarial Network. Our key insight is that the adversarial
loss can capture the structural patterns of flow warp errors without making explicit
assumptions. Extensive experiments on benchmark datasets demonstrate that the
proposed semi-supervised algorithm performs favorably against purely supervised
and baseline semi-supervised learning schemes.

1 Introduction
Optical flow estimation is one of the fundamental problems in computer vision. The classical formu-
lation builds upon the assumptions of brightness constancy and spatial smoothness [15, 25]. Recent
advancements in this field include using sparse descriptor matching as guidance [4], leveraging dense
correspondences from hierarchical features [2, 39], or adopting edge-preserving interpolation tech-
niques [32]. Existing classical approaches, however, involve optimizing computationally expensive
non-convex objective functions.

With the rapid growth of deep convolutional neural networks (CNNs), several approaches have
been proposed to solve optical flow estimation in an end-to-end manner. Due to the lack of the
large-scale ground truth flow datasets of real-world scenes, existing approaches [8, 16, 30] rely on
training on synthetic datasets. These synthetic datasets, however, do not reflect the complexity of
realistic photometric effects, motion blur, illumination, occlusion, and natural image noise. Several
recent methods [1, 40] propose to leverage real-world videos for training CNNs in an unsupervised
setting (i.e., without using ground truth flow). The main idea is to use loss functions measuring
brightness constancy and spatial smoothness of flow fields as a proxy for losses using ground truth
flow. However, the assumptions of brightness constancy and spatial smoothness often do not hold
near motion boundaries. Despite the acceleration in computational speed, the performance of these
approaches still does not match up to the classical flow estimation algorithms.

With the limited quantity and unrealistic of ground truth flow and the large amounts of real-world
unlabeled data, it is thus of great interest to explore the semi-supervised learning framework. A
straightforward approach is to minimize the End Point Error (EPE) loss for data with ground truth
flow and the loss functions that measure classical brightness constancy and smoothness assumptions
for unlabeled training images (Figure 1 (a)). However, we show that such an approach is sensitive
to the choice of parameters and may sometimes decrease the accuracy of flow estimation. Prior
work [1, 40] minimizes a robust loss function (e.g., Charbonnier function) on the flow warp error
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Figure 1: Semi-supervised learning for optical flow estimation. (a) A baseline semi-supervised
algorithm utilizes the assumptions of brightness constancy and spatial smoothness to train CNN from
unlabeled data (e.g., [1, 40]). (b) We train a generative adversarial network to capture the structure
patterns in flow warp error images without making any prior assumptions.

(i.e., the difference between the first input image and the warped second image) by modeling the
brightness constancy with a Laplacian distribution. As shown in Figure 2, although robust loss
functions can fit the likelihood of the per-pixel flow warp error well, the spatial structure in the warp
error images cannot be modeled by simple distributions. Such structural patterns often arise from
occlusion and dis-occlusion caused by large object motion, where the brightness constancy assumption
does not hold. A few approaches have been developed to cope with such brightness inconsistency
problem using the Fields-of-Experts (FoE) [37] or a Gaussian Mixture Model (GMM) [33]. However,
the inference of optical flow entails solving time-consuming optimization problems.

In this work, our goal is to leverage both the labeled and the unlabeled data without making explicit
assumptions on the brightness constancy and flow smoothness. Specifically, we propose to impose an
adversarial loss [12] on the flow warp error image to replace the commonly used brightness constancy
loss. We formulate the optical flow estimation as a conditional Generative Adversarial Network
(GAN) [12]. Our generator takes the input image pair and predicts the flow. We then compute the flow
warp error image using a bilinear sampling layer. We learn a discriminator to distinguish between the
flow warp error from predicted flow and ground truth optical flow fields. The adversarial training
scheme encourages the generator to produce the flow warp error images that are indistinguishable
from the ground truth. The adversarial loss serves as a regularizer for both labeled and unlabeled data
(Figure 1 (b)). With the adversarial training, our network learns to model the structural patterns of
flow warp error to refine the motion boundary. During the test phase, the generator can efficiently
predict optical flow in one feed-forward pass.

We make the following three contributions:
• We propose a generative adversarial training framework to learn to predict optical flow by leverag-

ing both labeled and unlabeled data in a semi-supervised learning framework.
• We develop a network to capture the spatial structure of the flow warp error without making

primitive assumptions on brightness constancy or spatial smoothness.
• We demonstrate that the proposed semi-supervised flow estimation method outperforms the purely

supervised and baseline semi-supervised learning when using the same amount of ground truth
flow and network parameters.

2 Related Work
In the following, we discuss the learning-based optical flow algorithms, CNN-based semi-supervised
learning approaches, and generative adversarial networks within the context of this work.

Optical flow. Classical optical flow estimation approaches typically rely on the assumptions of
brightness constancy and spatial smoothness [15, 25]. Sun et al. [36] provide a unified review of
classical algorithms. Here we focus our discussion on recent learning-based methods in this field.

Learning-based methods aim to learn priors from natural image sequences without using hand-crafted
assumptions. Sun et al. [37] assume that the flow warp error at each pixel is independent and use a
set of linear filters to learn the brightness inconsistency. Rosenbaum and Weiss [33] use a GMM to
learn the flow warp error at the patch level. The work of Rosenbaum et al. [34] learns patch priors
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Figure 2: Modeling the distribution of flow warp error. The robust loss functions, e.g., Lorentzian
or Charbonnier functions, can model the distribution of per-pixel flow warp error well. However, the
spatial pattern resulting from large motion and occlusion cannot be captured by simple distributions.

to model the local flow statistics. These approaches incorporate the learned priors into the classical
formulation and thus require solving time-consuming alternative optimization to infer the optical flow.
Furthermore, the limited amount of training data (e.g., Middlebury [3] or Sintel [5]) may not fully
demonstrate the capability of learning-based optical flow algorithms. In contrast, we train a deep
CNN with large datasets (FlyingChairs [8] and KITTI [10]) in an end-to-end manner. Our model can
predict flow efficiently in a single feed-forward pass.

The FlowNet [8] presents a deep CNN approach for learning optical flow. Even though the network
is trained on a large dataset with ground truth flow, strong data augmentation and the variational
refinement are required. Ilg et al. [16] extend the FlowNet by stacking multiple networks and using
more training data with different motion types including complex 3D motion and small displacements.
To handle large motion, the SPyNet approach [30] estimates flow in a classical spatial pyramid
framework by warping one of the input images and predicting the residual flow at each pyramid level.

A few attempts have recently been made to learn optical flow from unlabeled videos in an unsupervised
manner. The USCNN method [1] approximates the brightness constancy with a Taylor series
expansion and trains a deep network using the UCF101 dataset [35]. Yu et al. [40] enables the back-
propagation of the warping function using the bilinear sampling layer from the spatial transformer
network [18] and explicitly optimizes the brightness constancy and spatial smoothness assumptions.
While Yu et al. [40] demonstrate comparable performance with the FlowNet on the KITTI dataset,
the method requires significantly more sophisticated data augmentation techniques and different
parameter settings for each dataset. Our approach differs from these methods in that we use both
labeled and unlabeled data to learn optical flow in a semi-supervised framework.

Semi-supervised learning. Several methods combine the classification objective with unsupervised
reconstruction losses for image recognition [31, 41]. In low-level vision tasks, Kuznietsov et al. [21]
train a deep CNN using sparse ground truth data for single-image depth estimation. This method
optimizes a supervised loss for pixels with ground truth depth value as well as an unsupervised
image alignment cost and a regularization cost. The image alignment cost resembles the brightness
constancy, and the regularization cost enforces the spatial smoothness on the predicted depth maps.
We show that adopting a similar idea to combine the EPE loss with image reconstruction and
smoothness losses may not improve flow accuracy. Instead, we use the adversarial training scheme
for learning to model the structural flow warp error without making assumptions on images or flow.

Generative adversarial networks. The GAN framework [12] has been successfully applied to
numerous problems, including image generation [7, 38], image inpainting [28], face completion [23],
image super-resolution [22], semantic segmentation [24], and image-to-image translation [17, 42].

Within the scope of domain adaptation [9, 14], the discriminator learns to differentiate the features
from the two different domains, e.g., synthetic, and real images. Koziński et al. [20] adopt the
adversarial training framework for semi-supervised learning on the image segmentation task where the
discriminator is trained to distinguish between the predictions produced from labeled and unlabeled
data. Different from Koziński et al. [20], our discriminator learns to distinguish the flow warp errors
between using the ground truth flow and using the estimated flow. The generator thus learns to model
the spatial structure of flow warp error images and can improve flow estimation accuracy around
motion boundaries.
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3 Semi-Supervised Optical Flow Estimation

In this section, we describe the semi-supervised learning approach for optical flow estimation, the
design methodology of the proposed generative adversarial network for learning the flow warp error,
and the use of the adversarial loss to leverage labeled and unlabeled data.

3.1 Semi-supervised learning

We address the problem of learning optical flow by using both labeled data (i.e., with the ground truth
dense optical flow) and unlabeled data (i.e., raw videos). Given a pair of input images {I1, I2}, we
train a deep network to generate the dense optical flow field f = [u, v]. For labeled data with the
ground truth optical flow (denoted by f̂ = [û, v̂]), we optimize the EPE loss between the predicted
and ground truth flow:

LEPE(f, f̂) =

√
(u− û)2 + (v − v̂)2. (1)

For unlabeled data, existing work [40] makes use of the classical brightness constancy and spatial
smoothness to define the image warping loss and flow smoothness loss:

Lwarp(I1, I2, f) = ρ (I1 −W (I2, f)) , (2)
Lsmooth(f) = ρ(∂xu) + ρ(∂yu) + ρ(∂xv) + ρ(∂yv), (3)

where ∂x and ∂y are horizontal and vertical gradient operators and ρ(·) is the robust penalty function.
The warping function W (I2, f) uses the bilinear sampling [18] to warp I2 according to the flow
field f . The difference I1 −W (I2, f) is the flow warp error as shown in Figure 2. Minimizing
Lwarp(I1, I2, f) enforces the flow warp error to be close to zero at every pixel.

A baseline semi-supervised learning approach is to minimize LEPE for labeled data and minimize
Lwarp and Lsmooth for unlabeled data:∑

i∈Dl

LEPE

(
f (i), f̂ (i)

)
+
∑
j∈Du

(
λwLwarp

(
I
(j)
1 , I

(j)
2 , f (j)

)
+ λsLsmooth

(
f (j)

))
, (4)

where Dl and Du represent labeled and unlabeled datasets, respectively. However, the commonly
used robust loss functions (e.g., Lorentzian and Charbonnier) assume that the error is independent
at each pixel and thus cannot model the structural patterns of flow warp error caused by occlusion.
Minimizing the combination of the supervised loss in (1) and unsupervised losses in (2) and (3)
may degrade the flow accuracy, especially when large motion present in the input image pair. As a
result, instead of using the unsupervised losses based on classical assumptions, we propose to impose
an adversarial loss on the flow warp images within a generative adversarial network. We use the
adversarial loss to regularize the flow estimation for both labeled and unlabeled data.

3.2 Adversarial training

Training a GAN involves optimizing the two networks: a generator G and a discriminator D. The
generator G takes a pair of input images to generate optical flow. The discriminator D performs
binary classification to distinguish whether a flow warp error image is produced by the estimated
flow from the generator G or by the ground truth flow. We denote the flow warp error image from the
ground truth flow and generated flow by ŷ = I1 −W(I2, f̂) and y = I1 −W(I2, f), respectively.
The objective function to train the GAN can be expressed as:

Ladv(y, ŷ) = Eŷ[logD(ŷ)] + Ey[log (1−D(y))]. (5)

We incorporate the adversarial loss with the supervised EPE loss and solve the following minmax
problem for optimizing G and D:

min
G

max
D
LEPE(G) + λadvLadv(G,D), (6)

where λadv controls the relative importance of the adversarial loss for optical flow estimation.

Following the standard procedure for GAN training, we alternate between the following two steps
to solve (6): (1) update the discriminator D while holding the generator G fixed and (2) update
generator G while holding the discriminator D fixed.
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Figure 3: Adversarial training procedure. Training a generative adversarial network involves the
alternative optimization of the discriminator D and generator G.

Updating discriminator D. We train the discriminator D to classify between the ground truth
flow warp error (real samples, labeled as 1) and the flow warp error from the predicted flow (fake
samples, labeled as 0). The maximization of (5) is equivalent to minimizing the binary cross-entropy
loss LBCE(p, t) = −t log(p)− (1− t) log(1− p) where p is the output from the discriminator and t
is the target label. The adversarial loss for updating D is defined as:

LDadv(y, ŷ) = LBCE(D(ŷ), 1) + LBCE(D(y), 0)

= − logD(ŷ)− log(1−D(y)). (7)
As the ground truth flow is required to train the discriminator, only the labeled data Dl is involved in
this step. By fixing G in (6), we minimize the following loss function for updating D:∑

i∈Dl

LDadv(y
(i), ŷ(i)). (8)

Updating generator G. The goal of the generator is to “fool” the discriminator by producing flow
to generate realistic flow warp error images. Optimizing (6) with respect to G becomes minimizing
log(1−D(y)). As suggested by Goodfellow et al. [12], one can instead minimize − log(D(y)) to
speed up the convergence. The adversarial loss for updating G is then equivalent to the binary cross
entropy loss that assigns label 1 to the generated flow warp error y:

LGadv(y) = LBCE(D(y), 1) = − log(D(y)). (9)
By combining the adversarial loss with the supervised EPE loss, we minimize the following function
for updating G: ∑

i∈Dl

(
LEPE

(
f (i), f̂ (i)

)
+ λadvLGadv(y

(i))
)
+
∑
j∈Du

λadvLGadv(y
(j)). (10)

We note that the adversarial loss is computed for both labeled and unlabeled data, and thus guides
the flow estimation for image pairs without the ground truth flow. Figure 3 illustrates the two main
steps to update the generator D and the discriminator G in the proposed semi-supervised learning
framework.
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3.3 Network architecture and implementation details

Generator. We construct a 5-level SPyNet [30] as our generator. Instead of using simple stacks
of convolutional layers as sub-networks [30], we choose the encoder-decoder architecture with skip
connections to effectively increase the receptive fields. Each convolutional layer has a 3× 3 spatial
support and is followed by a ReLU activation. We present the details of our SPyNet architecture in
the supplementary material.

Discriminator. As we aim to learn the local structure of flow warp error at motion boundaries, it
is more effective to penalize the structure at the scale of local patches instead of the whole image.
Therefore, we use the PatchGAN [17] architecture as our discriminator. The PatchGAN is a fully
convolutional classifier that classifies whether each N ×N overlapping patch is real or fake. The
PatchGAN has a receptive field of 47× 47 pixels.

Implementation details. We implement the proposed method using the Torch framework [6]. We
use the Adam solver [19] to optimize both the generator and discriminator with β1 = 0.9, β2 = 0.999
and the weight decay of 1e− 4. We set the initial learning rate as 1e− 4 and then multiply by 0.5
every 100k iterations after the first 200k iterations. We train the network for a total of 600k iterations.

We use the FlyingChairs dataset [8] as the labeled dataset and the KITTI raw videos [10] as the
unlabeled dataset. In each mini-batch, we randomly sample 4 image pairs from each dataset. We
randomly augment the training data in the following ways: (1) Scaling between [1, 2], (2) Rotating
within [−17◦, 17◦], (3) Adding Gaussian noise with a sigma of 0.1, (4) Using color jitter with respect
to brightness, contrast and saturation uniformly sampled from [0, 0.04]. We then crop images to
384× 384 patches and normalize by the mean and standard deviation computed from the ImageNet
dataset [13]. The source code is publicly available on http://vllab.ucmerced.edu/wlai24/
semiFlowGAN.

4 Experimental Results

We evaluate the performance of optical flow estimation on five benchmark datasets. We conduct
ablation studies to analyze the contributions of individual components and present comparisons with
the state-of-the-art algorithms including classical variational algorithms and CNN-based approaches.

4.1 Evaluated datasets and metrics

We evaluate the proposed optical flow estimation method on the benchmark datasets: MPI-Sintel [5],
KITTI 2012 [11], KITTI 2015 [27], Middlebury [3] and the test set of FlyingChairs [8]. The MPI-
Sintel and FlyingChairs are synthetic datasets with dense ground truth flow. The Sintel dataset
provides two rendered sets, Clean and Final, that contain both small displacements and large motion.
The training and test sets contain 1041 and 552 image pairs, respectively. The FlyingChairs test set
is composed of 640 image pairs with similar motion statistics to the training set. The Middlebury
dataset has only eight image pairs with small motion. The images from the KITTI 2012 and KITTI
2015 datasets are collected from driving real-world scenes with large forward motion. The ground
truth optical flow is obtained from a 3D laser scanner and thus only covers about 50% of image pixels.
There are 194 image pairs in the KITTI 2012 dataset, and 200 image pairs in the KITTI 2015 dataset.

We compute the average EPE (1) on pixels with the ground truth flow available for each dataset. On
the KITTI-2015 dataset, we also compute the Fl score [27], which is the ratio of pixels that have EPE
greater than 3 pixels and 5% of the ground truth value.

4.2 Ablation study

We conduct ablation studies to analyze the contributions of the adversarial loss and the proposed
semi-supervised learning with different training schemes.

Adversarial loss. We adjust the weight of the adversarial loss λadv in (10) to validate the effect
of the adversarial training. When λadv = 0, our method falls back to the fully supervised learning
setting. We show the quantitative evaluation in Table 1. Using larger values of λadv may decrease the
performance and cause visual artifacts as shown in Figure 4. We therefore choose λadv = 0.01.
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Table 1: Analysis on adversarial loss. We train the proposed model using different weights for the
adversarial loss in (10).

λadv
Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs

EPE EPE EPE EPE Fl-all EPE

0 3.51 4.70 7.69 17.19 40.82% 2.15
0.01 3.30 4.68 7.16 16.02 38.77% 1.95
0.1 3.57 4.73 8.25 16.82 42.78% 2.11
1 3.93 5.18 13.89 21.07 63.43% 2.21

Table 2: Analysis on receptive field of discriminator. We vary the number of strided convolutional
layers in the discriminator to achieve different size of receptive fields.

# Strided Receptive field Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs
convolutions EPE EPE EPE EPE Fl-all EPE

d = 2 23× 23 3.66 4.90 7.38 16.28 40.19% 2.15
d = 3 47× 47 3.30 4.68 7.16 16.02 38.77% 1.95
d = 4 95× 95 3.70 5.00 7.54 16.38 41.52% 2.16

Receptive fields of discriminator. The receptive field of the discriminator is equivalent to the size
of patches used for classification. The size of the receptive field is determined by the number of
strided convolutional layers, denoted by d. We test three different values, d = 2, 3, 4, which are
corresponding to the receptive field of 23×23, 47×47, and 95×95, respectively. As shown in Table 2,
the network with d = 3 performs favorably against other choices on all benchmark datasets. Using
too large or too small patch sizes might not be able to capture the structure of flow warp error well.
Therefore, we design our discriminator to have a receptive field of 47× 47 pixels.

Training schemes. We train the same network (i.e., our generator G) with the following training
schemes: (a) Supervised: minimizing the EPE loss (1) on the FlyingChairs dataset. (b) Unsupervised:
minimizing the classical brightness constancy (2) and spatial smoothness (3) using the Charbonnier
loss function on the KITTI raw dataset. (c) Baseline semi-supervised: minimizing the combination
of supervised and unsupervised losses (4) on the FlyingChairs and KITTI raw datasets. For the
semi-supervised setting, we evaluate different combinations of λw and λs in Table 3. We note that it
is not easy to run grid search to find the best parameter combination for all evaluated datasets. We
choose λw = 1 and λs = 0.01 for the baseline semi-supervised and unsupervised settings.

We provide the quantitative evaluation of the above training schemes in Table 4 and visual comparisons
in Figure 5 and 6. As images in KITTI 2015 have large forward motion, there are large occluded/dis-
occluded regions, particularly on the image and moving object boundaries. The brightness constancy
does not hold in these regions. Consequently, minimizing the image warping loss (2) results in
inaccurate flow estimation. Compared to the fully supervised learning, our method further refines the
motion boundaries by modeling the flow warp error. By incorporating both labeled and unlabeled
data in training, our method effectively reduces EPEs on the KITTI 2012 and 2015 datasets.

Training on partially labeled data. We further analyze the effect of the proposed semi-supervised
method by reducing the amount of labeled training data. Specifically, we use 75%, 50% and 25%

Input images λadv = 0 λadv = 0.01

Ground truth flow λadv = 0.1 λadv = 1

Figure 4: Comparisons of adversarial loss λadv. Using larger value of λadv does not necessarily
improve the performance and may cause unwanted visual artifacts.
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Table 3: Evaluation for baseline semi-supervised setting. We test different combinations of λw
and λs in (4). We note that it is difficult to find the best parameters for all evaluated datasets.

λw λs
Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs

EPE EPE EPE EPE Fl-all EPE

1 0 3.77 5.02 10.90 18.52 39.94% 2.25
1 0.1 3.75 5.05 11.82 19.98 43.18% 2.19
1 0.01 3.69 4.86 10.38 18.07 39.33% 2.11

0.1 0.01 3.64 4.81 10.15 18.94 40.85 % 2.17
0.01 0.01 3.57 4.82 8.63 18.87 42.63 % 2.22

Table 4: Analysis on different training schemes. “Chairs” represents the FlyingChairs dataset and
“KITTI” denotes the KITTI raw dataset. The baseline semi-supervised settings cannot improve the
flow accuracy as the brightness constancy assumption does not hold on occluded regions. In contrast,
our approach effectively utilizes the unlabeled data to improve the performance.

Method Training Datasets Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs
EPE EPE EPE EPE Fl EPE

Supervised Chairs 3.51 4.70 7.69 17.19 40.82% 2.15
Unsupervised KITTI 8.01 8.97 16.54 25.53 54.40% 6.66

Baseline semi-supervised Chairs + KITTI 3.69 4.86 10.38 18.07 39.33% 2.11
Proposed semi-supervised Chairs + KITTI 3.30 4.68 7.16 16.02 38.77% 1.95

of labeled data with ground truth flow from the FlyingChairs dataset and treat the remaining part as
unlabeled data to train the proposed semi-supervised method. We also train the purely supervised
method with the same amount of labeled data for comparisons. Table 5 shows that the proposed semi-
supervised method consistently outperforms the purely supervised method on the Sintel, KITTI2012
and KITTI2015 datasets. The performance gap becomes larger when using less labeled data, which
demonstrates the capability of the proposed method on utilizing the unlabeled data.

4.3 Comparisons with the state-of-the-arts
In Table 6, we compare the proposed algorithm with four variational methods: EpicFlow [32],
DeepFlow [39], LDOF [4] and FlowField [2], and four CNN-based algorithms: FlowNetS [8],
FlowNetC [8], SPyNet [30] and FlowNet 2.0 [16]. We further fine-tune our model on the Sintel
training set (denoted by “+ft“) and compare with the fine-tuned results of FlowNetS, FlowNetC,
SPyNet, and FlowNet2. We note that the SPyNet+ft is also fine-tuned on the Driving dataset [26]
for evaluating on the KITTI2012 and KITTI2015 datasets, while other methods are fine-tuned on
the Sintel training data. The FlowNet 2.0 has significantly more network parameters and uses more
training datasets (e.g., FlyingThings3D [26]) to achieve the state-of-the-art performance. We show
that our model achieves competitive performance with the FlowNet and SPyNet when using the same
amount of ground truth flow (i.e., FlyingChairs and Sintel datasets). We present more qualitative
comparisons with the state-of-the-art methods in the supplementary material.

4.4 Limitations
As the images in the KITTI raw dataset are captured in driving scenes and have a strong prior of
forward camera motion, the gain of our semi-supervised learning over the supervised setting is mainly
on the KITTI 2012 and 2015 datasets. In contrast, the Sintel dataset typically has moving objects
with various types of motion. Exploring different types of video datasets, e.g., UCF101 [35] or
DAVIS [29], as the source of unlabeled data in our semi-supervised learning framework is a promising
future direction to improve the accuracy on general scenes.

Table 5: Training on partial labeled data. We use 75%, 50% and 25% of data with ground truth
flow from the FlyingChair dataset as labeled data and treat the remaining part as unlabeled data. The
proposed semi-supervised method consistently outperforms the purely supervised method.

Method Amount of Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs
labeled data EPE EPE EPE EPE Fl-all EPE

Supervised
75%

4.35 5.40 8.22 17.43 41.62% 1.96
Proposed semi-supervised 3.58 4.81 7.30 16.46 41.00% 2.20

Supervised
50%

4.48 5.46 9.34 18.71 42.14% 2.04
Proposed semi-supervised 3.67 4.92 7.39 16.64 40.48% 2.28

Supervised
25%

4.91 5.78 10.60 19.90 43.79% 2.09
Proposed semi-supervised 3.95 5.00 7.40 16.61 40.68% 2.33
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Figure 5: Comparisons of training schemes. The proposed method learns the flow warp error
using the adversarial training and improve the flow accuracy on motion boundary.

Ground truth Baseline semi-supervised Proposed semi-supervised

Figure 6: Comparisons of flow warp error. The baseline semi-supervised approach penalizes the
flow warp error on occluded regions and thus produce inaccurate flow.

Table 6: Comparisons with state-of-the-arts. We report the average EPE on six benchmark
datasets and the Fl score on the KITTI 2015 dataset.

Method
Middlebury Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 Chairs

Train Train Test Train Test Train Test Train Train Test Test
EPE EPE EPE EPE EPE EPE EPE EPE Fl-all Fl-all EPE

EpicFlow [32] 0.31 2.27 4.12 3.57 6.29 3.47 3.8 9.27 27.18% 27.10% 2.94
DeepFlow [39] 0.25 2.66 5.38 4.40 7.21 4.58 5.8 10.63 26.52% 29.18% 3.53
LDOF [4] 0.44 4.64 7.56 5.96 9.12 10.94 12.4 18.19 38.11% - 3.47
FlowField [2] 0.27 1.86 3.75 3.06 5.81 3.33 3.5 8.33 24.43% - -

FlowNetS [8] 1.09 4.50 7.42 5.45 8.43 8.26 - 15.44 52.86% - 2.71
FlowNetC [8] 1.15 4.31 7.28 5.87 8.81 9.35 - 12.52 47.93% - 2.19
SpyNet [30] 0.33 4.12 6.69 5.57 8.43 9.12 - 20.56 44.78% - 2.63
FlowNet2 [16] 0.35 2.02 3.96 3.14 6.02 4.09 - 10.06 30.37% - 1.68

FlowNetS + ft [8] 0.98 (3.66) 6.96 (4.44) 7.76 7.52 9.10 - - - 3.04
FlowNetC + ft [8] 0.93 (3.78) 6.85 (5.28) 8.51 8.79 - - - - 2.27
SpyNet + ft [30] 0.33 (3.17) 6.64 (4.32) 8.36 4.13 4.7 - - - 3.07
FlowNet2 + ft [16] 0.35 (1.45) 4.16 (2.01) 5.74 3.61 - 9.84 28.20% - -

Ours 0.37 3.30 6.28 4.68 7.61 7.16 7.5 16.02 38.77% 39.71% 1.95
Ours + ft 0.32 (2.41) 6.27 (3.16) 7.31 5.23 6.8 14.69 30.30% 31.01 % 2.41

5 Conclusions
In this work, we propose a generative adversarial network for learning optical flow in a semi-
supervised manner. We use a discriminative network and an adversarial loss to learn the structural
patterns of the flow warp error without making assumptions on brightness constancy and spatial
smoothness. The adversarial loss serves as guidance for estimating optical flow from both labeled and
unlabeled datasets. Extensive evaluations on benchmark datasets validate the effect of the adversarial
loss and demonstrate that the proposed method performs favorably against the purely supervised and
the straightforward semi-supervised learning approaches for learning optical flow.
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