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Abstract

This paper presents an adaptive discriminative generative model that gen-
eralizes the conventional Fisher Linear Discriminant algorithm and ren-
ders a proper probabilistic interpretation. Within the context of object
tracking, we aim to find a discriminative generative model that best sep-
arates the target from the background. We present a computationally
efficient algorithm to constantly update this discriminative model as time
progresses. While most tracking algorithms operate on the premise that
the object appearance or ambient lighting condition does not significantly
change as time progresses, our method adapts a discriminative genera-
tive model to reflect appearance variation of the target and background,
thereby facilitating the tracking task in ever-changing environments. Nu-
merous experiments show that our method is able to learn a discrimina-
tive generative model for tracking target objects undergoing large pose
and lighting changes.

1 Introduction

Tracking moving objects is an important and essential component of visual perception,
and has been an active research topic in computer vision community for decades. Object
tracking can be formulated as a continuous state estimation problem where the unobserv-
able states encode the locations or motion parameters of the target objects, and the task is
to infer the unobservable states from the observed images over time. At each time step,
a tracker first predicts a few possible locations (i.e., hypotheses) of the target in the next
frame based on its prior and current knowledge. The prior knowledge includes its previous
observations and estimated state transitions. Among these possible locations, the tracker
then determines the most likely location of the target object based on the new observa-
tion. An attractive and effective prediction mechanism is based on Monte Carlo sampling
in which the state dynamics (i.e., transition) can be learned with a Kalman filter or simply
modeled as a Gaussian distribution. Such a formulation indicates that the performance of
a tracker is largely based on a good observation model for validating all hypotheses. In-
deed, learning a robust observation model has been the focus of most recent object tracking
research within this framework, and is also the focus of this paper.

Most of the existing approaches utilize static observation models and construct them before
a tracking task starts. To account for all possible variation in a static observation model,
it is imperative to collect a large set of training examples with the hope that it covers all
possible variations of the object’s appearance. However, it is well known that the appear-
ance of an object varies significantly under different illumination, viewing angle, and shape
deformation. It is a daunting, if not impossible, task to collect a training set that enumerates
all possible cases. An alternative approach is to develop an adaptive method that contains
a number of trackers that track different features or parts of a target object [3]. Therefore,



even though each tracker may fail under certain circumstances, it is unlikely all of them fail
at the same time. The tracking method then adaptively selects the trackers that are robust at
current situation to predict object locations. Although this approach improves the flexibility
and robustness of a tracking method, each tracker has a static observation model which has
to be trained beforehand and consequently restricts its application domains severely. There
are numerous cases, e.g., robotics applications, where the tracker is expected to track a pre-
viously unseen target once it is detected. To the best of our knowledge, considerably less
attention is paid to developing adaptive observation models to account for appearance vari-
ation of a target object (e.g., pose, deformation) or environmental changes (e.g., lighting
conditions and viewing angles) as tracking task progresses.

Our approach is to learn a model for determining the probability of a predicted image loca-
tion being generated from the class of the target or the background. That is, we formulate
a binary classification problem and develop a discriminative model to distinguish obser-
vations from the target class and the background class. While conventional discriminative
classifiers simply predict the class of each test sample, a good model within the above-
mentioned tracking framework needs to select the most likely sample that belongs to target
object class from a set of samples (or hypotheses). In other words, an observation model
needs a classifier with proper probabilistic interpretation.

In this paper, we present an adaptive discriminative generative model and apply it to object
tracking. The proposed model aims to best separate the target and the background in the
ever-changing environment. The problem is formulated as a density estimation problem,
where the goal is, given a set of positive (i.e., belonging to the target object class) and neg-
ative examples (i.e., belonging to the background class), to learn a distribution that assigns
high probability to the positive examples and low probability to the negative examples. This
is done in a two-stage process. First, in the generative stage, we use a probabilistic principal
component analysis to model the density of the positive examples. The result of this state is
a Gaussian, which assigns high probability to examples lying in the linear subspace which
captures the most variance of the positive examples. Second, in the discriminative stage,
we use negative examples (specifically, negative examples that are assigned high probabil-
ity by our generative model) to produce a new distribution which reduces the probability
of the negative examples. This is done by learning a linear projection that, when applied
to the data and the generative model, increases the distance between the negative examples
and the mean. Toward that end, it is formulated as an optimization problem and we show
that this is a direct generalization of the conventional Fisher Linear Discriminant algorithm
with proper probabilistic interpretation. Our experimental results show that our algorithm
can reliably track moving objects whose appearance changes under different poses, illumi-
nation, and self deformation.

2 Probabilistic Tracking Algorithm
We formulate the object tracking problem as a state estimation problem in a way similar
to [5] [9]. Denote ot as an image region observed at time t and Ot = {o1, . . . , ot} is a set
of image regions observed from the beginning to time t. An object tracking problem is a
process to infer state st from observation Ot, where state st contains a set of parameters
referring to the tracked object’s 2-D position, orientation, and scale in image o t. Assuming
a Markovian state transition, this inference problem is formulated with a recursive equation:

p(st|Ot) = kp(ot|st)
∫

p(st|st−1)p(st−1|Ot−1)dst−1 (1)

where k is a constant, and p(ot|st) and p(st|st−1) correspond to the observation model and
dynamic model, respectively.

In (1), p(st−1|Ot−1) is the state estimation given all the prior observations up to time t−1,
and p(ot|st) is the likelihood that observing image ot at state st. Put together, the posterior
estimation p(st|Ot) can be computed efficiently. For object tracking, an ideal distribution



of p(st|Ot) should peak at ot, i.e., st matching the observed object’s location ot. While
the integral in (1) predicts the regions where object is likely to appear given all the prior
observations, the observation model p(ot|st) determines the most likely state that matches
the observation at time t.

In our formulation, p(ot|st) measures the probability of observing ot as a sample being
generated by the target object class. Note that Ot is an image sequence and if the images
are acquired at high frame rate, it is expected that the difference between o t and ot−1

is small though object’s appearance might vary according to different of viewing angles,
illuminations, and possible self-deformation. Instead of adopting a complex static model
to learn p(ot|st) for all possible ot, a simpler model suffices by adapting this model to
account for the appearance changes. In addition, since o t and ot−1 are most likely similar
and computing p(ot|st) depends on p(ot−1|st−1), the prior information p(ot−1|st−1) can
be used to enhance the distinctiveness between the object and its background in p(o t|st).

The idea of using an adaptive observation model for object tracking and then applying
discriminative analysis to better predict object location is the focus of the rest the paper. The
observation model we use is based on probabilistic principle component analysis (PPCA)
[10]. Object Tracking using PCA models have been well exploited in the computer vision
community [2]. Nevertheless, most existing tracking methods do not update the observation
models as time progresses. In this paper, we follow the work by Tipping and Bishop [10]
and propose an adaptive observation model based on PCA within a formal probabilistic
framework. Our result is a generalization of the conventional Fisher Linear Discriminant
with proper probabilistic interpretation.

3 A Discriminative Generative Observation Model

In this work, we track a target object based on its observations in the videos, i.e., o t. Since
the size of image region ot might change according to different s t, we first convert ot to
a standard size and use it for tracking. In the following, we denote y t as the standardized
appearance vector of ot.

The dimensionality of the appearance vector y t is usually high. In our experiments, the
standard image size is a 19 × 19 patch and thus yt is a 361-dimensional vector. We thus
model the appearance vector with a graphical model of low-dimensional latent variables.

3.1 A Generative Model with Latent Variables

A latent model relates a n-dimensional appearance vector y to a m-dimensional vector of
latent variables x:

y = Wx + µ + ε (2)

where W is a n × m projection matrix associating y and x, µ is the mean of y, and ε is
additive noise. As commonly assumed in factor analysis [1] and other graphical models [6],
the latent variables x are independent with unit variance, x ∼ N (0, Im), where Im is the
m-dimensional identity matrix, and ε is zero mean Gaussian noise, ε ∼ N (0, σ 2In). Since
x and ε are both Gaussians, it follows that y is also a Gaussian distribution, y ∼ N (µ, C),
where C = WW T + σ2I and In is an n-dimensional identity matrix. Together with (2),
we have a generative observation model:

p(ot|st) = p(yt|W, µ, ε) ∼ N (yt|µ, WWT + σ2In) (3)

This latent variable model follows the form of probabilistic principle component analysis,
and its parameters can be estimated from a set of examples [10]. Given a set of appearance
samples Y = {y1, . . . , yN}, the covariance matrix of Y is denoted as S = 1

N

∑
(y −

µ)(y − µ)T . Let {λi|i = 1, . . . , N} be the eigenvalues of S arranged in descending order,
i.e., λi ≥ λj if i < j. Also, define the diagonal matrix Σm = diag(λ1, . . . , λm), and let
Um be the eigenvectors that corresponds to the eigenvalues in Σm. Tipping and Bishop



[10] show that the the maximum likelihood estimate of µ, W and ε can be obtained by

µ =
1
N

N∑
i=1

yi, W = Um(Σm − σ2Im)1/2R, σ2 =
1

n − m

n∑
i=m+1

λi (4)

where R is an arbitrary m × m orthogonal rotation matrix.

To model all possible appearance variations of a target object (due to pose, illumination
and view angle change), one could resort to a mixture of PPCA models. However, it not
only requires significant computation for estimating the model parameters but also leads
to other serious questions such as the number of components as well as under-fitting or
over-fitting. On the other hand, at any given time a linear PPCA model suffices to model
gradual appearance variation if the model is constantly updated. In this paper, we use a
single PPCA, and dynamically adapt the model parameters W , µ, and σ 2 to account for
appearance change.

3.1.1 Probability computation with Probabilistic PCA

Once the model parameters are known, we can compute the probability that a vector y is a
sample of this generative appearance model. From (4), the log-probability is computed by

L(W, µ, σ2) = −1
2

(
N log 2π + log |C| + yT C−1y

)
(5)

where y = y − µ. Neglecting the constant terms, the log-probability is determined by
yT C−1y. Together with C = WW T + σ2In and (4), it follows that

yT C−1y = yT UmΣ−1
m UT

my +
1
σ2

yT (In − UmUT
m)y (6)

Here yT UmΣ−1
m UT

my is the Mahalanobis distance of y in the subspace spanned by Um, and
yT (In −UmUT

m)y is the shortest distance from y to this subspace spanned by Um. Usually
σ is set to a small value, and consequently the probability will be determined solely by the
distance to the subspace. However, the choice of σ is not trivial. From (6), if the σ is set to
a value much smaller than the actual one, the distance to the subspace will be favored and
ignore the contribution of Mahalanobis distance, thereby rendering an inaccurate estimate.
The choice of σ is even more critical in situations where the appearance changes dynami-
cally and requires σ to be adjusted accordingly. This topic will be further examined in the
following section.

3.1.2 Online Learning of Probabilistic PCA

Unlike the analysis in the previous section where model parameters are estimated based on
a fixed set of training examples, our generative model has to learn and update its parameters
on line. Starting with a single example (the appearance of the tracked object in the first
video frame), our generative model constantly updates its parameters as new observations
arrive.

The equations for updating parameters are derived from (4). The update procedure of U m

and Σm is complicated since it involves the computations of eigenvalues and eigenvectors.
Here we use a forgetting factor γ to put more weights on the most recent data. Denote the
newly arrived samples at time t as Y = {y1, . . . , yM}, and assume the mean µ is fixed,
U t

m and Σt
m can be obtained by performing singular value decomposition (SVD) on

[
√

γUm,t−1(Σm,t−1)1/2|
√

(1 − γ)
M

Y ] (7)

where Y = [y1−µ, . . . , yM −µ]. Σ1/2
m,t and Um,t will contain the m-largest singular values

and the corresponding singular vectors respectively at time t. This update procedure can
be efficiently implemented using the R-SVD algorithm, e.g., [4] [7].

If the mean µ constantly changes, the above update procedure can not be applied. We
recently proposed a method [8] to compute SVD with correct updated mean in which Σ 1/2

m,t



and Um,t can be obtained by computing SVD on[
√

γUm,t−1(Σm,t−1)1/2

∣∣∣∣∣
√

(1 − γ)
M

Y

∣∣∣∣∣
√

(1 − γ)γ(µt−1 − µY )

]
(8)

where Y = [y1 −µY , . . . , yM −µY ] and µY = 1
M

∑M
i=1 yi. This formulation is similar to

the SVD computation with the fixed mean case, and the same incremental SVD algorithm
can be used to compute Σ1/2

m,t and Um,t with an extra term shown in (8).

Computing and updating σ is more difficult than the form in (8). In the previous section,
we show that an inaccurate value of σ will severely affect probability estimates. In order
to have an accurate estimate of σ using (4), a large set of training examples is usually
required. Our generative model starts with a single example and gradually adapts the model
parameters. If we update σ based on (4), we will start with a very small value of σ since
there are only a few samples at our disposal at the outset, and the algorithm could quickly
lose track of the target because of an inaccurate probability estimate. Since the training
examples are not permanently stored in memory, λ i in (4) and consequently σ may not be
accurately updated if the number of drawn samples is insufficient. These constraints lead
us to develop a method that adaptively adjusts σ according to the newly arrived samples,
which will be explained in the next section.

3.2 Discriminative Generative Model

As is observed in Section 2, the object’s appearance at o t−1 and ot do not change much.
Therefore, we can use the observation at ot−1 to boost the likelihood measurement in ot.
That is, we draw a set samples (i.e., image patches) parameterized by {s i

t−1|i = 1, ..., k}
in ot−1 that have large p(ot−1|si

t−1), but the low posterior p(si
t−1|Ot−1). These are treated

as the negative samples (i.e., samples that are not generated from the class of the target
object) that the generative model is likely to confuse at O t.

Given a set samples Y ′ = {y1, . . . , yk} where yi is the appearance vector collected in ot−1

based on state parameter si
t−1, we want to find a linear projection V ∗ that projects Y ′ onto

a subspace such that the likelihood of Y ′ in the subspace is minimized. Let V be a p × n
matrix and since p(y|W, µ, σ) is a Gaussian, p(V y|V, W, µ, σ) ∼ N (V µ, V CV T ) is a also
Gaussian. The log likelihood is computed by

L(V, W, µ, σ) = −k

2
(
p log(2π) + log |V CV T | + tr((V CV T )−1V S′V T )

)
(9)

where S ′ = 1
k

∑k
i=1(y

i − µ)(yi − µ)T .

To facilitate the following analysis we first assume V projects Y ′ to a 1-D space, i.e., p = 1
and V = vT , and thus

L(V, W, µ, σ) = −k

2

(
log(2π) + log |vT Cv| + vT S′v

vT Cv

)
(10)

Note that vT Cv is the variance of the object samples in the projected space, and we need
to impose a constraint, e.g., v tCv = 1, to ensure that the minimum likelihood solution of
v does not increase the variance in the projected space. Let v T Cv = 1, the optimization
problem becomes

v∗ = arg max
{v|vT Cv=1}

vT S′v = argmax
v

vT S′v
vT Cv

(11)

Thus, we obtain an equation exactly like the Fisher discriminant analysis for a binary clas-
sification problem. In (11), v is a projection that keeps the object’s samples in the projected
space close to the µ (with variance vT Cv = 1), while keeping negative samples in Y ′ away
from µ. The optimal value of v is the generalized eigenvector of S ′ and C that corresponds
to largest eigenvalue. In a general case, it follows that

V ∗ = arg max
{V |V CV T =I}

|V S′V T | = arg max
V

|V S′V T |
|V CV T | (12)



where V ∗ can be obtained by solving a generalized eigenvalue problem of S ′ and C. By
projecting observation samples onto a low dimensional subspace, we enhance the discrim-
inative power of the generative model. In the meanwhile, we reduce the time required to
compute probabilities, which is also a critical improvement for real time applications like
object tracking.

3.2.1 Online Update of Discriminative Analysis

The computation of the projection matrix V depends on matrices C and S ′. In section
3.1.2, we have shown the procedures to update C. The same procedures can be used to
update S ′. Let µY ′ = 1

k

∑k
i=1 yi and SY ′ = 1

k

∑k
i=1(y

i − µY ′)(yi − µY ′)T ,

S′ =
1
k

k∑
i=1

(yi − µ)(yi − µ)T = SY ′ + (µ − µY ′)(µ − µY ′)T (13)

Given S ′ and C, V is computed by solving a generalized eigenvalue problem. If we de-
compose S ′ = AT A and C = BT B, then we can find V more efficiently using generalized
singular value decomposition. Denote UY ′ and ΣY ′ as the SVD of SY ′ , it follows that by
letting A = [UY ′Σ1/2

Y ′ | (µ − µY ′)]T and B = [UmΣ1/2
m |σ2I]T , we obtain S ′ = AT A and

C = BT B.

As is detailed in [4] , V can be computed by first performing a QR factorization:[
A
B

]
=

[
QA

QB

]
R (14)

and computing the singular value decomposition of QA

QA = UADAV T
A (15)

, we then obtain V = R−1VA. The rank of A is usually small in vision applications, and V
can be computed efficiently, thereby facilitating tracking the process.

4 Proposed Tracking Algorithm

In this section, we summarize the proposed tracking algorithm and demonstrate how the
abovementioned learning and inference algorithms are incorporated for object tracking.
Our algorithm localizes the tracked object in each video frame using a rectangular window.
A state s is a length-5 vector, s = (x, y, θ, w, h), that parameterizes the windows position
(x, y), orientation (θ) and width and height (w, h). The proposed algorithm is based on
maximum likelihood estimate (i.e., the most probable location of the object) given all the
observations up to that time instance, s∗

t = arg maxst p(st|Ot).

We assume that state transition is a Gaussian distribution, i.e.,
p(st|st−1) ∼ N (st−1, Σs) (16)

where Σs is a diagonal matrix. According to this distribution, the tracker then draws N
samples St = {c1, . . . , cN} which represent the possible locations of the target. Denote y i

t
as the appearance vector of ot, and Yt = {y1

t , . . . , y
N
t } as a set of appearance vectors that

corresponds to the set of state vectors St. The posterior probability that the tracked object
is at ci in video frame ot is then defined as

p(st = ci|Ot) = κp(yi
t|V, W, µ, σ)p(st = ci|s∗t−1) (17)

where κ is a constant. Therefore, s∗
t = argmaxci∈St p(st = ci|Ot).

Once s∗t is determined, the corresponding observation y ∗
t will be a new example to update

W and µ. Appearance vectors y i
t with large p(yi

t|V, W, µ, σ) but whose corresponding state
parameters ci are away from s∗t will be used as new examples to update V .

Our tracking assumes o1 and s∗1 are given (through object detection) and thus obtains the
first appearance vector y1 which in turn is used an the initial value of µ, but V and W are



unknown at the outset. When V and W are not available, our tracking algorithm is based
on template matching (with µ being the template). The matrix W is computed after a small
number of appearance vectors are observed. When W is available, we can then start to
compute and update V accordingly.

As mentioned in the Section 3.1.1, it is difficult to obtain an accurate estimate of σ. In our
tracking the system, we adaptively adjust σ according to Σm in W . We set σ be a fixed
fraction of the smallest eigenvalues in Σm. This will ensure the distance measurement
in (6) will not be biased to favor either the Mahalanobis distance in the subspace or the
distance to the subspace.

5 Experimental Results

We tested the proposed algorithm with numerous object tracking experiments. To ex-
amine whether our model is able to adapt and track objects in the dynamically chang-
ing environment, we recorded videos containing appearance deformation, large illumina-
tion change, and large pose variations. All the image sequences consist of 320 × 240
pixel grayscale videos, recorded at 30 frames/second and 256 gray-levels per pixel. The
forgetting term is empirically selected as 0.85, and the batch size for update is set to 5
as a trade-off of computational efficiency as well as effectiveness of modeling appear-
ance change due to fast motion. More experimental results and videos can be found at
http://www.ifp.uiuc.edu/˜rlin1/adgm.html.

Figure 1: A target undergoes pose and lighting variation.

Figures 1 and 2 show snapshots of some tracking results enclosed with rectangular win-
dows. There are two rows of images below each video frame. The first row shows the
sampled images in the current frame that have the largest likelihoods of being the target lo-
cations according our discriminative generative model. The second row shows the sample
images in the current video frame that are selected online for updating the discriminative
generative model.

The results in Figure 1 show the our method is able to track targets undergoing pose and
lighting change. Figure 2 shows tracking results where the object appearances change
significantly due to variation in pose and lighting as well as cast shadows. These exper-
iments demonstrate that our tracking algorithm is able to follow objects even when there
is a large appearance change due to pose or lighting variation. We have also tested these
two sequences with conventional view-based eigentracker [2] or template-based method.
Empirical results show that such methods do not perform well as they do not update the
object representation to account for appearance change.



Figure 2: A target undergoes large lighting and pose variation with cast shadows.

6 Conclusion

We have presented a discriminative generative framework that generalizes the conventional
Fisher Linear Discriminant algorithm with a proper probabilistic interpretation. For object
tracking, we aim to find a discriminative generative model that best separates the target
class from the background. With a computationally efficient algorithm that constantly up-
date this discriminative model as time progresses, our method adapts the discriminative
generative model to account for appearance variation of the target and background, thereby
facilitating the tracking task in different situations. Our experiments show that the pro-
posed model is able to learn a discriminative generative model for tracking target objects
undergoing large pose and lighting changes. We also plan to apply the proposed method to
other problems that deal with non-stationary data stream in our future work.
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