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A learning account for the problem of object recognition is developed
within the probably approximately correct (PAC) model of learnability.
The key assumption underlying this work is that objects can be recog-
nized (or discriminated) using simple representations in terms of syn-
tactically simple relations over the raw image. Although the potential
number of these simple relations could be huge, only a few of them are
actually present in each observed image, and a fairly small number of
those observed are relevant to discriminating an object.

We show that these properties can be exploited to yield an efficient
learning approach in terms of sample and computational complexity
within the PAC model. No assumptions are needed on the distribution
of the observed objects, and the learning performance is quantified rel-
ative to its experience. Most important, the success of learning an object
representation is naturally tied to the ability to represent it as a function
of some intermediate representations extracted from the image.

We evaluate this approach in a large-scale experimental study in which
the SNoW learning architecture is used to learn representations for the 100
objects in the Columbia Object Image Library. Experimental results ex-
hibit good generalization and robustness properties of the SNoW-based
method relative to other approaches. SNoW’s recognition rate degrades
more gracefully when the training data contains fewer views, and it
shows similar behavior in some preliminary experiments with partially
occluded objects.

1 Introduction

The role of learning in computer vision research has become increasingly
significant. Statistical learning theory has had an influence on many appli-
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cations: classification and object recognition, grouping and segmentation,
illumination modeling, scene reconstruction, and others. The rising role of
learning methods, made possible by significant improvements in comput-
ing power and storage, is largely motivated by the realization that explicit
modeling of complex phenomena in a messy world cannot be done without
a significant role of learning. Learning is required for model and knowl-
edge acquisition, as well as to support generalization and avoid brittleness.
However, many statistical and probabilistic learning methods require mak-
ing explicit assumptions, for example, on the distribution that governs the
occurrences of instances in the world. For visual inference problems such as
recognition, categorization, and detection, making these assumptions seems
unrealistic.

This work develops a distribution-free learning theory account to an
archetypical visual recognition problem: object recognition. The problem is
viewed as that of learning a representation of an object that, given a new
image, is used to identify the target object in it. The learning account is devel-
oped within the probably approximately correct (PAC) model of learnability
(Valiant, 1984). This framework allows us to quantify success relative to the
experience with previously observed objects, without making assumptions
on the distribution, and study the theoretical limits of what can be learned
from images in terms of the expressivity of the intermediate representation
used by the learning process. That is, learnability guarantees that objects
sampled from the same distribution as the one that governs the experience
of the learner are very likely to be recognized correctly. In addition, the
framework gives guidelines to developing practical algorithmic solutions
to the problem.

Earlier work discussed the possibility of identifying the theoretical limits
of what can be learned from images (Shvaytser, 1990) and found that learn-
ing in terms of the raw representation of the images is computationally in-
tractable. Attempts to explain this focused on the dependence of learnability
on the representation of the object (Edelman, 1993) but failed to provide a
satisfactory explanation for it or a practical solution.

The approach developed here builds on suggestions made in Kushilevitz
and Roth (1996) and relies heavily on the development of a feature-efficient
learning approach (Littlestone, 1988; Roth, 1998; Carlson, Cumby, Rosen,
& Roth, 1999). This is a learning process capable of learning quickly and
efficiently in domains in which the number of potential features is very
large, but any concept of interest actually depends on a fairly small number
of them. At the heart of the learning approach are two assumptions that we
abstract as follows:

Representational: There exists a (possibly infinite) collectionM of “expla-
nations” such that an object o can be represented as a simple function of
elements inM.
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Procedural: There exists a process that given an image in which the target
object o occurs, efficiently generates “explanations” inM that are present
in the image and such that, with high probability, at least one of them is
in the representation of o.

Under these assumptions, we prove that there exists an efficient algorithm
that, given a collection of images labeled as positive or negative examples
of the target object, can learn a good representation of the object. That is, it
can learn a representation that with high probability would make correct
predictions on future images that contain (or do not contain) the object. Fur-
thermore, we show that under these conditions, the learned representations
are robust under realistic noisy conditions. A significant nonassumption of
our approach is that it has no prior knowledge of the distribution of images
nor it is trying to estimate it. The learned representation is guaranteed to
perform well when tested on images sampled from the distribution1 that
governed the data observed in its learning experience. Section 2 describes
this framework in detail.

The framework developed here is very general. The explanations alluded
to above can represent a variety of computational processes and information
sources that operate on the image. They can depend on local properties of
the image, the relative positions of primitives in the image, and even external
information sources or context variables. Thus, the theoretical support given
here applies also to an intermediate learning stage in a hierarchical process.
In order to generate the explanations efficiently, this work assumes that they
are syntactically simple in terms of the raw image. However, the explanation
might as well be syntactically simple in terms of previously learned or
inferred predicates, giving rise to hierarchical representations. The main
assumptions of the framework are discussed in section 3, where we also
provide some concrete examples to the type of representations used.

For this framework to contribute to a practical solution, there needs to be
a computational approach that is able to learn efficiently (in terms of both
computation and number of examples) in the presence of a large number of
potential explanations. Our evaluation of the theoretical framework makes
use of the SNoW learning architecture (Roth, 1998; Carlson et al., 1999)
that is tailored for these kind of tasks. The SNoW system (available on-
line at http://L2R.cs.uiuc.edu/˜cogcomp/) is described in section 4. This
is followed by a comparison of SNoW with support vector machines in
section 5.

In section 6, we review and compare our method with previous works
on view-based object recognition. We then describe our experiments com-
paring SNoW to other approaches in section 7. In these experiments, SNoW

1 It will be clear from the technical discussion that the distribution is over the interme-
diate representation (features) generated given the images.
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is shown to exhibit a high level of recognition and robustness. We find that
the SNoW-based approach compares favorably with other approaches and
behaves more robustly in the presence of fewer views in the training data.
We conclude with some directions for future work in section 8.

2 Learning Framework

We study learnability within the standard PAC model (Valiant, 1984) and
the mistake-bound model (Littlestone, 1988). Both learning models assume
the existence of a concept class C, a class of {0, 1}-valued functions over an
instance space X with an associated complexity parameter (typically, X’s
dimensionality) n, and some unknown target concept fT ∈ C that we are
trying to learn. In the mistake-bound model, an example x ∈ X is presented
at each learning stage; the learning algorithm is asked to predict fT(x) and
is then told whether the prediction was correct. Each time the learning algo-
rithm makes an incorrect prediction, we charge it one mistake. We say that
C is mistake-bound learnable if there exists a polynomial-time prediction
algorithm A (possibly randomized) that for all fT ∈ C and any sequence
of examples is guaranteed to make at most polynomially many (in n) mis-
takes. We say that C is expected mistake-bound learnable if there exists A,
as above, such that the expected number of mistakes it makes for all fT ∈ C
and any sequence of examples is at most polynomially many (in n). Note
that the expectation is taken over the random choices made byA; no proba-
bility distribution is associated with the sequences. In learning an unknown
target function fT ∈ C in the PAC model, we assume that there is a fixed but
arbitrary and unknown distribution D over the instance space X. The learn-
ing algorithm sees examples drawn independently according to D together
with their labels (positive or negative). Then it is required to predict the
value of fT on another example drawn according to D. Denote by h(x) the
prediction of the algorithm on the example x ∈ X. The error of the algorithm
with respect to fT and D is measured by error(h) = Prx∈D{ fT(x) 6= h(x)}.

We say that C is PAC learnable if there exists a polynomial time learning
algorithm A and a polynomial p(·, ·, ·) such that for all n ≥ 1, all target
concepts fT ∈ C, all distributions D over X, and all ε > 0 and 0 < δ ≤ 1,
if the algorithmA is given p(n, 1/ε, 1/δ) examples, then with probability at
least 1− δ,A’s hypothesis, h, satisfies error(h) ≤ ε. It can be shown that if a
concept class C is learnable in the expected mistake-bound model (and thus
in the mistake-bound model), then it is PAC learnable (Haussler, Kearns,
Littlestone, & Warmuth, 1988).

The agnostic learning model (Haussler, 1992; Kearns, Schapire, & Sellie,
1994), a variant of the PAC learning model, might be more relevant to prac-
tical learning; it applies when one does not want to assume that the labeled
training examples (x, l) arise from a target concept of an a priori known
structure fT ∈ C. In this model, one assumes that data elements (x, l) are
sampled according to some arbitrary distribution D on X × {0, 1}. D may
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simply reflect the distribution of the data as they occur “in nature” without
assuming that the labels are generated according to some “rule.” As in the
PAC model, the goal is to find an approximately correct h in some classH of
hypotheses. In terms of generalization bounds, the models are similar, and
therefore we will discuss the PAC/mistake-bound case here.

In practice, learning is done on a set of training examples, and its perfor-
mance is then evaluated on a set of previously unseen examples. The hope
that a classifier learned on a training set will perform well on previously
unseen examples is based on the basic theorem of learning theory (Valiant,
1984; Vapnik, 1995); stated informally, it guarantees that if the training data
and the test data are sampled from the same distribution, good performance
on large enough training sample guarantees good performance on the test
data (implying good “true” error),2 where the difference between the per-
formance on the training data and that on the test data is parameterized
using a parameter that measures the richness of the hypothesis classH. For
completeness, we simply cite the following uniform convergence result:

Theorem 1 (Haussler, 1992). If the size of the training sample S is at least

m(ε, δ) = 1
ε2

(
kVC(H)+ ln

1
ε
+ ln

1
δ

)
,

then with probability at least 1− δ, the learned hypothesis h ∈ H satisfies

errorD(h) < errorS(h)+ ε,

where k is some constant and VC(H) is the VC dimension of the classH (Vapnik,
1982), a combinatorial parameter that measures the richness ofH.

2.1 Learning Scenario. Let I be an input space of images. Our goal is
to learn a definition such as apple :I → {0, 1} that when evaluated on a
given image, outputs 1 when there is an apple in the image and 0 otherwise.
It is clear, though, that this target function is very complex in terms of the
input space; in particular, it may depend on relational information and even
quantified predicates. Many years of research in learning theory, however,
have shown that efficient learnability of complex functions is not feasible
(Angluin, 1992). In the learning scenario described here, therefore, learning
will not take effect directly in terms of the raw input. Rather, we will learn
the target definitions in terms of an intermediate representation that will

2 In this sense, the evaluation done in section 7 after training on a small training set is
not as optimal as, say, a face detection study (Yang, Roth, & Ahuja, 2000c) done on a large
training set. However, the theory quantifies the dependence of the performance on the
size of the training data, and the experimental study exhibits how different algorithmic
approaches fare with a relatively small number of examples.
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be generated from the input image. This will allow us to learn a simpler
functional description, quantifying learnability in terms of the expressivity
of the intermediate representation as well as the function learned on top of it;
in particular, it would make explicit the requirements from an intermediate
representation so that learning is possible.

A relation3 over the instance space I is a function χ : I → {0, 1}. χ can be
viewed as an indicator function overI , defining the subset of those elements
mapped to 1 by χ . A relation χ is active in I ∈ I if χ(I) = 1.

Given an instance, we would like to transform it so that it is represented
as the collection of the relations that are active in it. We would like to do that,
though, without the need to write down explicitly all possible relations that
could be active in the domain ahead of time. This is important, in particular,
over infinite domains or in on-line situations where the domain elements
are not known in advance and therefore it is impossible to write down all
possible relations. An efficient way to do that is given by the construct of
relation-generating functions (Cumby & Roth, 2000).

Definition 1. Let X be an enumerable collection of relations over I . A relation
generation function (RGF) is a mapping G: I → 2X that maps I ∈ I to a set of
all elements in X that satisfy χ(I) = 1. If there is no χ ∈ X for which χ(I) = 1,
G(I) = φ.

RGFs can be thought as a way to define kinds of relations, or to parameterize
over a large space of relations. Only when presented with an instance I ∈
I is a concrete relation generated. For example, G may be the RGF that
corresponds to all vertical edges of size 3 in an image. Given an image, a list
of all these edges that are present in the image is produced. It will be clear
in section 2.3 that RGFs can be noisy to a certain extent since the framework
can tolerate some amount of noise at the features level.

2.2 Learning Approach. We now present a mistake-bound algorithm for
a class of functions that can be represented as DNF formulas over the space
X of all relations. As indicated, this implies a PAC learning algorithm, but
the proof for the mistake-bound case is simpler. In section 7, we will learn
a more general function—a linear threshold function over conjunctions of
relations inX . We discuss later how the theoretical results can be expanded
to this case.

Definition 2. Let X be a set of relations that can be generated by a set of RGFs.
Let M be a collection of monomials (conjunctions) over the elements of X and

3 In the machine learning literature, a relation is sometimes called a feature. We use
the term relation here to emphasize that it is a Boolean predicate and that, in principle, it
could be a higher-order predicate, that is, it could take variables (Cumby & Roth, 2000).
In this article, features are simple functions (e.g., monomials) over relations.
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p(n), q(n), and g(n) be polynomials. Let CM be the class of all functions that
are disjunctions of at most p(n) monomials in M. Following Kushilevitz and
Roth (1996), we call CM polynomially explainable if there exists an efficient
(polynomial time) algorithm B such that for every function f ∈ CM and every
positive example of f as input, B outputs at most q(n) monomials (not necessarily
all of them are inM) such that with probability at least 1/g(n), at least one of them
appears in f (the probability is taken over the coin flips of the (possibly probabilistic)
algorithm B).

It should be clear that the class of polynomially explainable DNFs is
a strict generalization over the class of, say, k-DNF, for any fixed k. This
difference might be important in the current context. It might be possible
that some structural constraints govern the generation of the monomials,
placing it inM, but the size of the monomials is not fixed. As a canonical
example for the difference, consider the following example.

Example 1. Let S1, . . . ,St be subsets of {x1, . . . , xn}, where t is polynomial
in n. LetM be any collection of monomials with the property that for ev-
ery m ∈M, the set of variables in m is Si for some 1 ≤ i ≤ t (i.e., any set
Si may correspond to at most 2|Si| monomials inM, by choosing for each
xj ∈ Si whether xj or x̄j appears in the monomial). If there exists an effi-
cient algorithm B that on input n enumerates these sets (and possibly some
more), then CM is polynomially explainable. The reason is that although
M may contain an exponential number of monomials, given an example
(x1, . . . , xn), only one element in each of the Sis might correspond to it. That
is, the data-driven nature of the process allows working with families of
features that could be very large, provided that only a reasonable number
of them (polynomial, in our definition) is active in each observation.

As a concrete instantiation, consider the class of all DNF formulas in
which the variables in each monomial have consecutive indices—for ex-
ample, f = x1x̄2x3x4 ∨ x̄4x̄5x6 ∨ x8x9. Clearly, f 6∈ k-DNF, for any constant
k. However, it is easy to enumerate the

(n
2

)
< n2 sets Si,j (1 ≤ i ≤ j ≤ n)

defined by Si,j = {xi, xi+1, . . . , xj} and, as above, although the number of
corresponding monomials is exponential, given an example, only one is rel-
evant in each Si,j. A similar situation occurs when learning representations
of visual objects. In this case, the sets might be defined by structural con-
straints, and each pixel will take a constant number of values (albeit larger
than 2, as in the above examples) but only one of these will be relevant given
an example.

We note that in principle, it is possible to abstract the generation of the
conjunctions into the RGFs (see definition 1). However, we would like to
emphasize the generation of conjunctions over simple relations and the
possibility of learning on top of it, given arguments in the literature of its
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effectiveness and potential biological plausibility (Fleuret & Geman, 1999;
Ullman & Soloviev, 1999). The elements generated by the algorithm B, the
explanations, are what we will later call the “features” supplied to the learn-
ing algorithm.

Definition 2 implements the assumptions that we abstracted in section 1.
The algorithm B is the procedural part. B keeps a small set of syntactically
simple definitions, the RGFs, and given an image it outputs those instanti-
ations that are present in the image. All we require here is that with non-
negligible probability, it outputs at least one “relevant” explanation (and
possibly many that are irrelevant). The class CM implements our represen-
tational assumption; we assume that each object has a simple (disjunctive)
representation over the relational monomials. This assumption can be ver-
ified only experimentally, as we do later in this article.

We emphasize that f itself is not given to the algorithm B. Also note that
a function f in the class CM may have few equivalent representations as a
disjunction of monomials inM. The definition requires the output of the
algorithm B to satisfy the above property, independent of which of these
representations of f are considered. The importance of this will become
clear when we analyze the learning algorithm below.

Theorem 2. If CM is polynomially explainable, then CM is expected mistake
bound learnable. Furthermore, if CM is polynomially explainable by an algorithm
B that always outputs at least one term of f (i.e., g(n) ≡ 1), then CM is mistake
bound learnable.

Proof. The algorithm is similar to an algorithm presented in Blum (1992),
which learns a disjunction in the infinite attribute model. The algorithm
maintains a hypothesis h, which is a disjunction of monomials. Initially, h
contains no monomials (i.e., h ≡ FALSE). Upon receiving an example e,
the algorithm predicts h(e); if the prediction is correct, h is not updated.
Otherwise, upon a mistaken prediction, it proceeds as follows:

• If e is positive: ExecuteB (the algorithm guaranteed by the assumption
that CM is polynomially explainable) on the example e, and add the
monomials it outputs to h.

• If e is negative: Remove from the hypothesis h all the monomials that
are satisfied by e (there must be at least one).

The analysis of the algorithm is straightforward for the case g(n) ≡ 1 and
more subtle in general. To analyze the algorithm, we first fix a representa-
tion for f as a disjunction of monomials inM (in case f has more than one
possible representation, choose one arbitrarily; we can work with any rep-
resentation of f that uses only monomials inM). Now note that an active
monomial (i.e., a monomial that appears in this representation of the target
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function f ) is never removed from h. Therefore, since on a positive example e,
the algorithm B is guaranteed to output at least one monomial that appears
in f with probability at least 1/g(n), then the expected number of mistakes
made on positive examples is at most p(n) · g(n). This also implies that the
expected total number of monomials included in h during the execution of
the algorithm is not more than p(n) · q(n) · g(n).4 Each mistake on a negative
example results in removing at least one of the monomials included in h
but not in f . The expected number of these monomials is therefore at most
p(n) · q(n) · g(n). The expected total number of mistakes made by the algo-
rithm is O(p(n) · q(n) · g(n)). Finally, note that in the case g(n) ≡ 1, we get a
truly mistake-bound algorithm, whose number of mistakes is bounded by
p(n) · q(n).

The algorithm used in practice, in SNoW, is conceptually similar. The
main difference is that the hypothesis h used is a general linear threshold
function over elements inM rather than a disjunction, which is a restricted
linear threshold function. Algorithmically, rather than dropping elements
from it, their weights are updated. The details of this process (see section 4)
are crucial for our approach to be computationally feasible for large-scale
domains and for robustness. In order to expand the theoretical results to this
case, we appeal to the results in Littlestone (1988), modified to the case of the
infinite attribute domain. If the target function is indeed a disjunction over
elements in M, our results hold directly, with a much improved mistake
bound that depends mostly on the number of elements inM that are actually
relevant to f . If f is a general linear function over M, this behavior still
holds with an additional dependence on the margin between positive and
negative examples, as measured in theM space (δ, in Littlestone, 1988; see
details there).

2.3 Robustness. Any realistic learning framework needs to support dif-
ferent kinds of noise in its input. Several kinds of noise have been studied
in the literature in the context of PAC learning, and algorithms of the type
we consider here have been shown to be robust to them. The most studied
type of noise is that of classification noise (Kearns & Li, 1993) in which the
examples are assumed to be given to the learning algorithm with labels that
are flipped with some probability, smaller than 1/2. Learning in our frame-
work can be shown to be robust to this kind of noise, as well as to a more
realistic case of attribute noise, in which the description of the input itself
is corrupted to a certain degree. We believe that this is the type of noise
that is more relevant in the current case. First, learning is done in terms of

4 Note that if B was guaranteed only to give a monomial that appears in some repre-
sentation of f , then this bound is false (as it could be the case that the active monomials
in different executions of B belong to different representations of f ). This explains the
requirement of the definition that seems too strong.
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the output of the RGFs, which may introduce some noise. Second, attribute
noise is related to occlusion noise, which is important in object recognition.
Specifically, attribute noise can be used to model the type of noise that usu-
ally occurs when other objects appear in the image, behind or in front of the
target object. This is formalized next using the notion of domination.

Let f1, f2 be two concepts. We say that f1 is k-dominated by f2 if each f1
example can be obtained from an f2 example by flipping the (binary) value
of at most k of the active relations. In this case, f2 k-dominates f1. The labels
of the examples, however, are generated according to the original concept,
before the noise is introduced.

Theorem 3. If a classCM is learnable by virtue of being polynomially explainable,
then it is learnable even if examples of the target class are cluttered by a k-domination
attribute noise, for any constant k.

Proof. The proof is an extension of the arguments in Littlestone (1991) re-
garding robustness to attribute noise to the case of the infinite attribute
model. It basically shows that the same algorithm works in the noisy case,
only that the number of flipped relations affects the number of examples
that the algorithm is required to see before it stops making mistakes.

3 From Theory to Practice

Several issues need to be addressed in order to exhibit the practicality of
our learning framework. The first is the availability of a variety of RGFs that
can be used to extract primitive visual patterns from data under different
conditions and that are expressive enough so that a simple function defined
on top of them is enough to discriminate an object. A basic assumption
underlying this work is that this is not hard to do. In this work, we illus-
trate the approach by using simple edge detectors (clearly, too simple for a
realistic situation). The second issue is the composition of complex, albeit
simply defined, relations from primitive ones. This is crucial since it allows
the representation of complex functions in terms of the instantiated rela-
tions by learning simple functional descriptions over their compositions. A
language that supports composition of restricted families of conjunctions
and can encode structural relations in images (e.g., above, to the left of . . .)
is discussed in Cumby and Roth (2000). The current work uses only general
conjunctions and restricts only their size. Again, our working assumption
is that even this simple representation is enough to generate a family of
discriminating features.

Specifically, the above discussion amounts to assuming that it is (1) easy
to extract simple relations over images—short vertical and horizontal edges
in our case; (2) easy to extract simple monomials over these—each of our
features represents the presence of some short conjunction of edges in the
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Figure 1: The short vertical and horizontal edges are extracted from an object
image. These edges (and the conjunctions of them) represent the features of the
object.

image; and (3) a linear threshold function (generalizing the simple disjunc-
tion in the theorems) over these features can be used to discriminate an object
from other objects. We represent each object, therefore, as a linear function
over the conjunctive features. In Figure 1, we exemplify the feature-based
representation extracted for three objects when the features used are only
short vertical and horizontal conjunctions (no conjunctions of those are used
here). Our theory does not commit to this simplified and clearly insufficient
representation. Nevertheless, such simple features capture sufficient infor-
mation to recognize the 100 objects in the Columbia Object Image Library
(COIL 100) database, as will be demonstrated.

Finally, the issue of the learnability of these representation is crucial in
our approach. In learning situations in vision, the number of relations com-
positions (features) that could potentially affect each decision is very large,
but typically, only a small number of them is actually relevant to a decision.
Beyond correctness, a realistic learning approach therefore needs to be fea-
ture efficient (Littlestone, 1988) in that its learning complexity (the number
of examples required for the learning algorithm to converge to a function
that is a good discriminator) depends on the number of relevant features
and not the global number of features in the domain. Equivalently, this can
be phrased as the dependence of the true error on the error observed on the
training data and the number of examples observed during training. For
a feature-efficient algorithm, the number of training examples required in
order to generalize well—to have true error that is not far from the error on
the training data—is relatively small (Kivinen & Warmuth, 1995b).
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A realistic learning approach in this domain should also allow the use
of variable input size, for two reasons. First, learning is done in terms of
relations that are generated from the image in a data-driven way, making
it impossible, or impractical, for a learning approach to write explicitly,
in advance, all possible relations and features. Similarly, dealing with a
variable input size also allows an on-line learning scenario. Second, for
computational efficiency purposes, since only a few of the many potential
features are active in any instance, using a variable input size allows the
complexity of evaluating the learning hypothesis on an instance to depend
on the number of active features in the input rather than the total number
in the domain.

Given that, the learning approach used in this work is the one developed
within the SNoW learning architecture (Roth, 1998; Carlson et al., 1999).
SNoW is specifically tailored for learning in domains in which the poten-
tial number of features taking part in decisions is very large but may be
unknown a priori, as in the infinite attribute learning model (Blum, 1992).
Specifically, as input, the algorithm receives labeled instances < (x, l) >,
where an instance x ∈ {0, 1}∞ is presented as a list of all the active features in
it and the label is a member of a discrete set of values (e.g., object identifiers).
Given a domain instance (an image), a set of preexisting RGFs is evaluated
on it and generates a collection of relations that are active in this image;
these in turn may be composed to generate complex features, the elements
ofM. A list (of unique identifiers) of active elements inM is presented to
the learning procedure, and learning is done at this level. Specifically, given
an image, the learning algorithm receives as input a description of it in terms
of elements inM that are active in it. As required by the theorems already
presented, at least some elements in this description should be relevant to
the functional description of the target object, but many others may not be.
The learning algorithm will quickly determine, by determining the weight
of different features, the appropriate linear combination of features that can
be used as a good discriminator.

We note that conceptually similar approaches have been developed by
several researchers (Fleuret & Geman, 1999; Amit & Geman, 1999; Tieu &
Viola, 2000; Mel & Fiser, 2000). In all cases, the approach is based on gener-
ating a fairly large number of features—typically generated as conjunctions
of primitive feature—and hoping that a learning approach could learn a
reliable discriminator as a function of these. These approaches made use of
simple statistical methods (Mel & Fiser, 2000) or learning algorithms such as
decision tree and AdaBoost (Fleuret & Geman, 1999; Tieu & Viola, 2000). Our
approach differs in that (1) given some reasonable assumptions, we suggest
a theoretical framework in which justifications can be developed and in
which performance can be quantified as a function of the expressivity of the
features used, and (2) it makes use of a different computational paradigm
that we believe to be more appropriate in this domain. We use a feature-
efficient learning method that provides the opportunity to learn high-order
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Figure 2: (Top) Images of the same object taken at different view points. We use
SNoW to learn the representations of each object: one subnetwork of features for
the pill box (b) and the other for mug (f). (a, e) respectively depict the features
with top weights. Given a test image (b) and the learned representations (a, e), (c)
shows the active features in the pill box subnetwork (a), and (d) shows the active
features in the mug subnetwork (e). Given the test image (f) and the learned
representations (a, e), (g) shows the active features in the mug subnetwork (e),
and (h) shows the active features in the pill box subnetwork (a).

discriminators efficiently by increasing the dimensionality of the feature
space (in a data-driven way) and still learn a linear function in the aug-
mented feature space. This eliminates the need to perform explicit feature
selection as in the other methods—it is done automatically and efficiently in
the learning stage—or to deal with each feature separately (as in AdaBoost).

In Figure 2, we use two objects to illustrate the learned representation
after training on a collection of examples, as well as the features in the
learned representation that are active in a new example.
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The images of a pill box object class and a mug object class taken at
different view points (5 degrees apart) are shown at the top of figure 2.
We extract small edges (of length 3) from each example and use these as the
representation of each instance in training a SNoW system: one subnetwork
for the pill box object class and the other for the mug object class (See also
Figure 1 for examples of the input representation to SNoW.). Figures 2a and
2e depict the dominant features in the representations learned for the pill
box object class and the mug object class (the weights of the feature are not
shown; we show only those that have relatively high weights). Given the
pill box test image shown in Figure 2b and the two learned subnetworks,
Figure 2c shows the features of the test image that are active in the pill box
subnetwork. Again, weights are not shown, but even in this way, it can be
viewed as evidence that the test image belongs to the pill box object class.
Figure 2d shows the features of the same test image that are active in the
mug subnetwork. Here we see low evidence too that the test image belongs
to the mug object class.

The mug test image shown in Figure 2f and the two learned subnetworks,
Figures 2g and 2h, show features of the test image that are active in the
mug and the pill box subnetworks. It seems clear, even with the simpler
features shown here (only short edges) and without the weight information
on the features, that the learned representations can discriminate images of
objects taken from one target class from those taken from a different class of
objects.

4 The SNoW Learning Architecture

The SNoW (Sparse Network of Winnows5) learning architecture is a sparse
network of linear units over a common predefined or incrementally learned
feature space. Nodes in the input layer of the network typically represent
relations over the input instance and are being used as the input features.
Each linear unit, called a target node, represents a concept of interest over
the input. In the current application, target nodes represent a definition of
an object in terms of the elements of M—features extracted from the 2D
image input. An input instance is mapped into a set of features active in it;
this representation is presented to the input layer of SNoW and propagates
to the target nodes. Target nodes are linked via weighted edges to (some
of) the input features. Let At = {i1, . . . , im} be the set of features that are
active in an example and are linked to the target node t. Then the linear unit
corresponding to t is active iff∑

i∈At

wt
i > θt,

5 To winnow: to separate chaff from grain.
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where wt
i is the weight on the edge connecting the ith feature to the target

node t, and θt is the threshold for the target node t.
Each SNoW unit may include a collection of subnetworks, one for each

of the target relations but all using the same feature space. A given example
is treated autonomously by each target unit; an example labeled t may be
treated as a positive example by the t unit and as a negative example by
the rest of the target nodes in its subnetwork. At decision time, a prediction
for each subnetwork is derived using a winner-take-all policy. In this way,
SNoW may be viewed as a multiclass predictor. In the application described
here, we may have one unit with target subnetworks for all the target objects
or we may define different units, each with two competing target objects.

SNoW’s learning policy is on-line and mistake driven. Several update
rules can be used within SNoW; the most successful and the only one used in
this work is a variant of Littlestone’s Winnow update rule (Littlestone, 1988),
a multiplicative update rule that is tailored to the situation in which the set
of input features is not known a priori, as in the infinite attribute model
(Blum, 1992). This mechanism is implemented via the sparse architecture
of SNoW. That is, (1) input features are allocated in a data-driven way—an
input node for the feature i is allocated only if the feature i was active in any
input vector—and (2) a link (i.e., a nonzero weight) exists between a target
node t and a feature i if and only if i was active in an example labeled t.

One of the important properties of the sparse architecture is that the
complexity of processing an example depends on only the number of fea-
tures active in it, na, and is independent of the total number of features, nt,
observed over the lifetime of the system. This is important in domains in
which the total number of features is very large but only a small number of
them is active in each example.

The Winnow update rule has, in addition to the threshold θt at the target
t, two update parameters: a promotion parameter α > 1 and a demotion
parameter 0 < β < 1. These are being used to update the current rep-
resentation of the target t (the set of weights wt

i) only when a mistake in
prediction is made. Let At = {i1, . . . , im} be the set of active features linked
to the target node t. If the algorithm predicts 0 (that is,

∑
i∈At

wt
i ≤ θt) and the

received label is 1, the active weights in the current example are promoted
in a multiplicative fashion:

∀i ∈ At,wt
i ← α · wt

i .

If the algorithm predicts 1 (
∑

i∈At
wt

i > θt) and the received label is 0, the
active weights in the current example are demoted:

∀i ∈ At,wt
i ← β · wt

i .

All other weights are unchanged.
The key feature of the Winnow update rule is that the number of ex-

amples required to learn a linear function grows linearly with the number
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nr of relevant features and only logarithmically with the total number of
features. Specifically, in the sparse model, the number of examples required
before converging to a linear separator that separates the data (provided
it exists) scales with O(nr log na), where na is the number of active features
observed. This property seems crucial in domains in which the number of
potential features is vast but a relatively small number of them is relevant.
Winnow is known to learn efficiently any linear threshold function (in gen-
eral, the number of examples scales inversely with the margin (Littlestone,
1988) and to be robust in the presence of various kinds of noise and in
cases where no linear-threshold function can make perfect classifications,
while still maintaining its dependence on the number of total and relevant
attributes (Littlestone, 1991; Kivinen & Warmuth, 1995a).

Once target subnetworks have been learned and the network is being
evaluated, a decision support mechanism is employed, which selects the
dominant active target node in the SNoW unit via a winner-take-all mech-
anism to produce a final prediction.

Figures 3, 4, and 5 provide more details on the SNoW learning architec-
ture. Essentially, the SNoW learning architecture inherits its generalization
properties from the update rule being used—the Winnow rule in this case—
but there are a few differences worth mentioning relative to simply using the
basic update rule. First, SNoW allows the use of a variable input size via the
infinite attribute domain. Second, SNoW is more expressive than the basic
Winnow rule. The basic Winnow update rule makes use of positive weights
only. Standard augmentation, for example, via the duplication trick (Little-
stone, 1988), is infeasible in high-dimensional spaces since they diminish the
gain from using variable-size examples (since half of the features become
active). More sophisticated approaches such as using the balanced version
of Winnow apply only to the case of two classes, while SNoW is a multi-
class classifier. Other extensions offered in SNoW relative to the standard
update rule include an involved feature pruning method and a prediction
confidence mechanism (Carlson, Rosen, & Roth, 2001).

F = Z+ = {0, 1, . . .} /* Set of potential features */

T = {t1, . . . tk} ⊂ F /* Set of targets */

Ft ⊆ F /* Set of features linked to target t */

tNET = {[(i,wt
i): i ∈ Ft], θt} /* The representation of the target t */

activation: T→ < /* activation level of a target t */

SNoW = {tNET : t ∈ T} /* The SNoW Network */

e = {i1, . . . , im} ⊂ Fm /* An example: a list of active features */

Figure 3: SNoW: Objects and notation.
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Training Phase: SNoW-Train (SNoW, e)

Initially: Ft = φ, for all t ∈ T.

For each t ∈ T

1. UpdateArchitecture (t, e)
2. Evaluate (t, e)
3. UpdateWeights (t, e)

Evaluation Phase: SNoW-Evaluation(SNoW, e)

For each t ∈ T

Evaluate (t, e)

MakeDecision (SNoW, e)

Figure 4: SNoW: Training and evaluation. Training is the learning phase in
which the network is constructed and weights are adjusted. Evaluation is the
phase in which the network is evaluated, given an observation. This is a con-
ceptual distinction; in principle, one can run in on-line mode, in which training
is done continuously, even when the network is used for evaluating examples.

Procedure Evaluate(t, e)

activation =∑i∈e wt
i

Procedure UpdateWeights(t, e)

If (activation(t) > θt)&(t 6∈ e) /* predicted positive on negative example */

for each i ∈ e: wi
t ← wt

i · β

If (activation(t) ≤ θt)&(t ∈ e) /*predicted negative on a positive example*/

for each i ∈ e: wi
t ← wt

i · α

Procedure UpdateArchitecture(t, e)

If t ∈ e

for each i ∈ e\Ft, set wt
i = w /* Link feature to target; set initial weight */

Otherwise: do nothing

Procedure MakeDecision(SNoW, e)

Predict winner = arg maxt∈T activation(t) /* Winner-take-all Prediction */

Figure 5: SNoW: Main procedures.



1088 D. Roth, M.-H. Yang, and N. Ahuja

The SNoW learning architecture has been used successfully on a variety
of large-scale problems in the natural language domain (Roth, 1998; Munoz,
Punyakanok, Roth, & Zimak, 1999; Golding & Roth, 1999) and only recently
has been attempted on problems in the visual domain (Yang et al., 2000c).

Finally we note that, although not crucial to the main topic of this arti-
cle, the SNoW learning architecture and the general approach of generating
features for it could also be defended with neural plausibility in mind. First,
SNoW represents objects in units that have only positive, excitatory connec-
tions corresponding to physiological facts that the firing rates of neurons
cannot be negative; inhibitory effects of features arise from their occur-
rences in the representations of other objects. Moreover, a consequence of
the weight update rule in the SNoW unit is that synapses do not change
sign. Second, generating features as conjunctions of simple binary detec-
tors (which can be SNoW units themselves) has been suggested before as
an effective representation with potential biological plausibility (Fleuret &
Geman, 1999; Ullman & Soloviev, 1999).

5 Discussion of Learning Methods

In this article, our learning approach is compared mostly to another linear
learning approach: support vector machines (SVM). Below, we present the
SVM method in some detail.

5.1 Support Vector Machines. SVM (Vapnik, 1995; Cortes & Vapnik,
1995) is a general-purpose learning method for pattern recognition and
regression problems that is based on the theory of structural risk minimiza-
tion. According to this principle, as described in section 2, a function that
describes the training data well and belongs to a set of functions with low
VC dimension will generalize well (that is, will guarantee a small, expected
recognition error for the unseen data points) regardless of the dimension-
ality of the input space (Vapnik, 1995). Based on this principle, the SVM is
a systematic approach to find a linear function (a hyperplane) that belongs
to a set of functions of this form with the lowest VC dimension. Linear clas-
sifiers are used for computational purposes and, in addition, have the nice
property that it is possible to quantify the VC dimension of this function
class explicitly in terms of the minimal distance (margin) between positive
and negative points (assuming the data is linearly separable).

For expressivity, SVMs provide nonlinear function approximations by
mapping the input vectors into a high-dimensional feature space where a
linear hyperplane that separates the data exists. It can also be extended to
cases where the best hyperplane in the resulting high-dimensional space
does not quite separate all the data points.

Given a set of samples (x1, y1), (x2, y2), . . ., (xl, yl) where xi ∈ RN is the
input vector and yi ∈ {−1, 1} is its label, an SVM aims to find a separating
hyperplane with the property that the distance it has from points of either
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class (margin distance) is maximized. Vapnik (1995) shows that maximiz-
ing the margin distance is equivalent to minimizing the VC dimension and
therefore contributes to better generalization. The problem of finding the
optimal hyperplane is thus posed as a constrained optimization problem
and solved using quadratic programming techniques. The optimal hyper-
plane, which determines the class label of a data point x ∈ RN, is of the
form

f (x) = sgn

(
l∑

i=1

yiαi · k(x, xi)+ b

)
where k(·, ·) is a kernel function, used to map the original instance space
to a high-dimensional space, b is a bias term, and sgn is the function that
outputs +1 on positive inputs and −1 otherwise. Constructing an optimal
hyperplane is equivalent to determining the nonzero αi’s. Sample vectors xi
that correspond to a nonzero αi are called the support vectors (SVs) of the
optimal hyperplane. The hope, when using this method, is to find a small
number of SVs, thereby producing a compact classifier.

The use of kernel functions allows avoiding the need to blow up the
dimensionality explicitly in order to reach a state in which the sample is
linearly separable. If the kernel is of the form

k(x, xi) = 8(x) ·8(xi)

for some nonlinear function 8: RN → RM, the computation can be done in
the original low-dimensional space rather than in the M-dimensional space,
although the hyperplane is constructed in RM. For a linear SVM, the kernel
function is simply the dot product of vectors in the input space. Several
kernel functions, such as polynomial functions and radial basis functions,
have this property (Mercer’s theorem) and can be used in nonlinear SVM,
allowing the construction of a variety of learning machines, some of which
coincide with classical architectures. However, this also results in a draw-
back since one needs to find the “right” kernel function when using SVMs.
It is interesting to observe that although the use of kernel functions seems
to be one of the advantages of SVMs from a theoretical point of view, many
experimental studies have used linear SVMs, which were found to perform
better than higher-level kernels (Pontil & Verri, 1998). This might be due
to the fact that higher-level kernels imply in general worse generalization
bounds, and thus require more examples to generalize well.

5.2 SNoW and SVMs. It is worthwhile to discuss the similarities and
differences between the computational approaches we experiment with and
to develop expectations to differences in the results.

At a conceptual level, both learning methods are very similar. They both
search for a linear function that best separates the training data. Both are
based on the same inductive principle: performing well on the training data
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with a classifier of low expressivity would result in good generalization on
data sampled from the same distribution.

Both methods work by blowing up the original instance space to a high-
dimensional space and attempt to find a linear classifier in the new space.
This gives rise to one significant difference between the methods. SVMs are a
close relative of additive update algorithms like the perceptron (Rosenblatt,
1958; Freund & Schapire, 1998). For these algorithms, the dimensionality
increase is done via the kernel functions and thus need not be done explic-
itly. The multiplicative update rule used in SNoW does not allow the use
of kernels, and the dimensionality increase has to be done explicitly. Com-
putationally, this could be significant. However, SNoW allows for the use
of a variable input space, and since the feature space is sparse, it turns out
that SNoW is actually more efficient than current SVM implementations.
This advantage is significant when the examples are sparse (the number of
active features in each example is small), and it disappears when there are
many active features in each example, where the kernel-based methods are
advantageous computationally. In addition, RGFs, which are the equivalent
notion to kernels, could allow for more general transformations than those
allowed by kernels (although in this work, we use conjunctions that are
polynomial kernels).

A second issue has to do with the way the two methods determine the
coefficients of the linear classifier and the implication this has for their gen-
eralization abilities. In SVMs, the weights are determined based on a global
optimization criterion that aims at maximizing the margin, using a quadratic
programming scheme. The generalization bounds achieved this way are re-
lated to those achieved by perceptron (Graepel, Herbrich, & Williamson,
2001). SNoW makes use of an on-line algorithm that attempts to minimize
the number of mistakes on the training data; the loss function used to de-
termine the weight update rule can be traced to the maximum entropy
principle (Kivinen & Warmuth, 1995a). The implications are that while, in
the limit, SVMs might find the optimal linear separator, SNoW has signif-
icant advantages in sparse spaces—those in which a few of the features
are actually relevant (Kivinen & Warmuth, 1995a). We could expect, there-
fore, that in domains with these characteristics, if the number of training
examples is limited, SNoW will generalize better (and in general will have
better learning curves). In the limit, when sufficient examples are given, the
methods will be comparable.

Finally, there is one practical issue: SVMs are binary classifiers, while
SNoW can be used as a multiclass classifier. However, to get a fair compar-
ison, we use SNoW here as a binary classifier as well, as described below.

6 View-Based Object Recognition

The appearance of an object is the combined effects of its shape, reflectance
properties, pose, and illumination in the scene. While shape and reflectance
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are intrinsic properties that do not change for a rigid object, pose and illu-
mination vary from one scene to another. View-based recognition methods
attempt to use data observed under different poses and illumination con-
ditions to learn a compact model of the object’s appearance; this, in turn,
is used to resolve the recognition problem from view points that were not
observed previously.

A number of view-based schemes have been developed to recognize 3D
objects. Poggio and Edelman (1990) show that 3D objects can be recognized
from the raw intensity values in 2D images (we call this representation
here a pixel-based representation) using a network of generalized radial
basis functions. Each radial basis generalizes and stores one of the example
views and computes a weighting factor to minimize a measure of the error
between the network’s prediction and the desired output for each of the
training examples. They argue and demonstrate that the full 3D structure
of an object can be estimated if enough 2D views of the object are provided.
This work has been extended to object categorization (Risenhuber & Poggio,
2000). (See also Edelman, 1999, for more details.)

Turk and Pentland (1991) demonstrate that human faces can be repre-
sented and recognized by “eigenfaces.” Representing a face image as a vec-
tor of pixel values, the eigenfaces are the eigenvectors associated with the
largest eigenvalues, which are computed from a covariance matrix of the
sample vectors. An attractive feature of this method is that the eigenfaces
can be learned from the sample images in pixel-based representation with-
out any feature selection. The eigenspace approach has since been used
in vision tasks from face recognition to object tracking. (Murase and Na-
yar, 1995; Nayar, Nene, & Murase, 1996) develop a parametric eigenspace
method to recognize 3D objects directly from their appearance. For each ob-
ject of interest, a set of images in which the object appears in different poses
is obtained as training examples. Next, the eigenvectors are computed from
the covariance matrix of the training set. The set of images is projected to
a low-dimensional subspace spanned by a subset of eigenvectors in which
the object is represented as a manifold. A compact parametric model is
constructed by interpolating the points in the subspace. In recognition, the
image of a test object is projected to the subspace, and the object is recog-
nized based on the manifold it lies on. Using a subset of COIL 100, they
show that 3D objects can be recognized accurately from their appearances
in real time.

In contrast to these algebraic methods, general-purpose learning meth-
ods such as SVMs have also been used for this problem. Schölkopf (1997)
applies SVMs to recognize 3D objects from 2D images and demonstrate the
potential of this approach in visual learning. Pontil and Verri (1998) also
use SVMs for 3D object recognition and experimented with a subset of the
COIL 100 data set. Their training set consisted of 36 images (one for every
10 degrees) for each of the 32 objects they chose, and the test sets consist
of the remaining 36 images for each object. For 20 random selections of 32
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objects from the COIL 100, their system achieves perfect recognition rate
(but see the comments on that in section 7). Recently, Roobaert and M. Van
Hulle (1999) also used a subset of the COIL 100 database to compare the
performance of SVMs with different pixel-based input representations.

Instead of using the whole appearance of an object for object recogni-
tion, several methods have used local features in visual learning. Le Cun
et al. (1995) apply a convolutional neural network with local features to
handwritten digit recognition, with very good results. They also demon-
strate that their learning method is able to extract salient local features from
example images without complicated and elaborated algorithms. The idea
of estimating joint statistics of local features has been used in recent work.
Amit and Geman (1999) use conjunction of edges as local features of image
and apply tree classifiers to recognize handwritten digits. Schneiderman
and Kanade (1998) use naive Bayes classifier to model the joint distribution
of features from face images and use the learned model for face detection
with success. Viola and colleagues (De Bonet & Viola, 1998; Rikert, Jones,
& Viola, 1999; Tieu & Viola, 2000) assume that the appearance of an ob-
ject in one image is generated by a sparse set of visual local causes (i.e.,
features). Their method computes a large set of selective features from ex-
amples to capture local causal structure and applies a variation of AdaBoost
(Freund & Schapire, 1997) with gaussian models to learn a hypothesis of an
object. Other examples include object recognition using high-dimensional
iconic representations (Rao & Ballard, 1995), multidimensional histograms
(Schiele, 2000), local curve features (Nelson & Selinger, 1998), conjunction
of local features (Mel, 1997), SVMs with local features using wavelets (Pa-
pageorgiou & Poggio, 2000), local principal component analysis (Penev &
Atick, 1996) and independent component analysis (Donato, Bartlett, Hager,
Ekman, & Sejnowski, 1999).

The current work is most related conceptually to a collection of other
works that make use of local features and their joint statistics (De Bonet
& Viola, 1998; Rikert et al., 1999; Nelson & Selinger, 1998; Amit & Geman,
1999; Schiele, 2000). As in these works, the key assumption underlying our
work is that objects can be recognized (or discriminated) using simple rep-
resentations in terms of syntactically simple relations over the raw image.
Based on these assumptions, this work provides a learning theory account
for the problem of object recognition within the PAC model of learnability.
Moreover, the computational approach developed and supported here is
different from previous approaches and more suitable, we believe, to real-
istic visual learning situations.

Although the number of these simple relations could be huge, at the ba-
sis of our computational approach is the belief that only a few of them are
actually present in each observed image and a fairly small number of those
observed is relevant to discriminating an object. Under these assumptions,
our framework has several theoretical advantages that we described in the
previous sections. For our framework to contribute to a practical solution,
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there also needs to be a computational approach that is able to learn ef-
ficiently (in terms of both computation and number of examples) in the
presence of a large number of potential explanations. Our evaluation of the
theoretical framework makes use of the SNoW learning architecture (Roth,
1998; Carlson et al., 1999), which is tailored for these kind of tasks.

Next we use the COIL 100 data set for and quantitative experimental
evaluation.

7 Experimental Evaluation

We use the COIL 100 database in all the experiments below (COIL is avail-
able on-line at www.cs.columbia.edu/CAVE). The data set consists of color
images of 100 objects where the images of the objects were taken at pose in-
tervals of 5 degrees, for 72 poses per object. The images were also normalized
such that the larger of the two object dimensions (height and width) fits the
image size of 128× 128 pixels. Figure 6 shows the images of the 100 objects
taken in frontal view (i.e., zero pose angle). The 32 highlighted objects in
Figure 6 are considered more difficult to recognize in Pontil and Verri (1998);
we use all 100 objects, including these in our experiments. Each color image
is converted to a gray-scale image of 32× 32 pixels for our experiments.

7.1 Ground Truth of the COIL 100 Data Set. At first glance, it seems
difficult to recognize the objects in the COIL data set because it consists of
a large number of objects with varying pose, texture, shape, and size. Since
each object has 72 images of different poses (5 degrees apart), many view-
based recognition methods use 36 (10 degrees apart) of them for training
and the remaining images for testing. However, it turns out that under these
dense sampling conditions, the recognition problem is not difficult (even
when only gray-level images are used). In this case, instances that belong to
the same object are very close to each other in the image space (where each
data point represents an image of an object in a certain pose). We verified
this by experimenting with a simple nearest-neighbor classifier (using the
Euclidean distance), resulting in an average recognition rate of 98.50% (54
errors out of 3,600 tests). Figure 7 shows some of the objects misclassified
by the nearest-neighbor method.

In principle, one may want to avoid using the nearest-neighbor method
since it requires a lot of memory for storing templates and its recognition
time complexity is high. The goal here is simply to show that this method is
comparable to the complex SVM approaches (Pontil & Verri, 1998; Roobaert
& Hulle, 1999) for the case of dense sampling. Therefore, the recognition
problem is not appropriate for comparison among different methods.

It is interesting to see that the pairs of the objects on which the nearest-
neighbor method misclassified have similar geometric configurations and
similar poses. A close inspection shows that most of the recognition errors
are made between the three packs of chewing gums, bottles, and cars. Other
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Figure 6: Columbia Object Image Library (COIL 100) consists of 100 objects of
varying poses 5 degrees apart. The objects are shown in row order; the high-
lighted ones are those considered more difficult to recognize.

dense sampling cases are easier for this method. Consequently, the set of
selected objects in an experiment has direct effects on the recognition rate.
This needs to be taken into account when evaluating results that use only
a subset of the 100 objects (typically 20 to 30) from the COIL data set for
experiments. Table 1 shows the recognition rates of nearest-neighbor clas-
sifiers in several experiments in which 36 poses of each object are used for
templates and the remaining 36 poses are used for tests.

Given this baseline experiment, we decided to perform our experimental
comparisons in cases in which the number of views of objects available in
training is limited. Some of our preliminary results were presented in Yang,
Roth, and Ahuja (2000a, 2000b).
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Figure 7: Mismatched objects using the nearest-neighbor method. (x : a, y : b)
means that object x with view angle a is recognized as object y with view angle
b. It shows some of the 54 errors (out of 3600 test samples) made by the nearest-
neighbor classifier when there are 36 views per object in the training set.

Table 1: Recognition Rates of Nearest-Neighbor Classifier.

32 Objects Shown
30 Objects in Figure 6 The

Randomly Selected Selected by 100 Objects
from COIL Pontil and Verri (1998) in COIL

Errors/tests 14/1080 46/1152 54/3600
Recognition rate 98.70% 96.00% 98.50%

7.2 Experiment Setups. Applying SNoW to 3D object recognition re-
quires specifying the architecture used and the representation chosen for
the input images. To perform object recognition, we associate a target unit
with each target object. This target learns a definition of the object in terms of
the input features extracted from the image. We could define either a single
SNoW unit that contains target subnetworks for all 100 different target ob-
jects or different units, each with several (e.g., two) competing target objects.
Statistically, this approach is advantageous (Hastie & Tibshirani, 1998), al-
though it clearly requires a lot more computation. The architecture selected
affects the training time, where learning a definition for object a makes use
of negative examples of other objects that are part of the same unit. More
important, it makes a difference in testing; rather than two competing ob-
jects for a decision, there may be a hundred. The chances for a spurious
mistake caused by an incidental view point are clearly much higher. It also
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Table 2: Experimental Results of Three Classifiers Using the 100 Objects in the
COIL-100 Data Set.

Number of Views per Object

36 18 8 4

3600 5400 6400 6800
Tests Tests Tests Tests

SNoW 95.81% 92.31% 85.13% 81.46%
Linear SVM 96.03 91.30 84.80 78.50
Nearest neighbor 98.50 87.54 79.52 74.63

has significant advantages in terms of space complexity and the appeal of
the evaluation mode.

SVMs are two-class classifiers that for a c-class pattern recognition prob-
lem usually need to train c(c−1)

2 binary classifiers. Since we compare the
performance of the proposed SNoW-based method with SVMs, in order
to maintain a fair comparison we have to perform it in the one-against-
one scheme. That is, we use SNoW units of size two. To classify a test in-
stance, tournament-like pair-wise competition between all the machines is
performed, and the winner determines the label of the test instance. Table 2
shows the recognition rates of the SVM- and SNoW-based methods using
the one-against-one scheme. (That is, we trained

(100
2

) = 4950 classifiers for
each method and evaluated 99(50 + 25 + 12 + 6 + 3 + 2 + 1) classifiers on
each test instance.)

7.3 Results Using Pixel-Based Representation. Table 2 shows the recog-
nition rates of the SNoW-based method, the SVM-based method (using lin-
ear dot product for the kernel function), and the nearest-neighbor classifier
using the COIL 100 data set. The important parameter we vary here is the
number of views (v) observed during training; the rest of the views (72− v)
are used for testing.

The experimental results show that the SNoW-based method performs as
well as the SVM-based method when many views of the objects are present
during training and outperforms the SVM-based method when the number
of views is limited. Although it is not surprising to see that the recognition
rate decreases as the number of views available during training decreases,
it is worth noticing that both SNoW and SVM are capable of recognizing
3D objects in the COIL 100 data set with satisfactory performance if enough
views (e.g., more than 18) are provided. Also they seem to be fairly robust
even if only a limited number of views (e.g., 8 and 4) are used for training;
the performance of both methods degrades gracefully.

An additional potential advantage of the SNoW architecture is that it does
not learn discriminators but rather can learn a representation for each object,
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Table 3: Recognition Rates of SNoW Using Two Learning Paradigms.

Number of Views per Object

SNoW 36 18 8 4

One-against-one 95.81% 92.31% 85.13% 81.46%
One-against-all 90.52 84.50 81.85 76.00

which can then be used for prediction in the one-against-all scheme or to
build hierarchical representations. See Figure 2 for examples. However, as is
shown in Table 3, this implies a significant degradation in the performance.
Finding a way to make better predictions in the one-against-all scheme is one
of the important issues for future investigation, to exploit the advantages
of this approach better.

7.4 Results Using Edge-Based Representation. For each 32 × 32 edge
map, we extract horizontal and vertical edges (of length at least 3 pixels)
and then encode as our features conjunctions of two of these edges. The
number of potential features of this sort is

(2048
2

) = 2,096,128. However, only
an average of 1822 of these is active for objects in the COIL 100 data set.
To reduce the computational cost, the feature vectors were further pruned,
and only the 512 most frequently occurring features were retained in each
image.

Table 4 shows the performance of the SNoW-based method when con-
junctions of edges are used to represent objects. As before, we vary the
number of views of an object (v) during training and use the rest of the
views (72 − v) for testing. The results indicate that conjunctions of edges
provide useful information for object recognition and that SNoW is able to
learn very good object representations using these features. The experimen-
tal results also exhibit the relative advantage of this representation when the
number of views per object is limited.

7.5 Simple Occlusion. This section presents some preliminary studies
of object recognition in the presence of occlusion. Our current modeling of
occlusion is fairly simplistic relative to studies such as Nelson and Selinger
(1998) and Schiele (2000). However, given that our theoretical paradigm
supports recognition in the presence of occlusion, we wanted to experiment
with this in the current setting.

We select a set of 10 objects6 from the COIL 100 data set and add in arti-
ficial occlusions for experiments. In the data set, each object has 36 images
(10 degrees apart) for training and the remaining 36 images for tests (also 10

6 More specifically, the objects are selected from the set of objects on which the nearest-
neighbor classifier makes the most mistakes: objects 8, 13, 23, 27, 31, 42, 65, 78, 80, 91.
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Table 4: Experimental Results of Three Classifiers Using the 100 Objects in the
COIL-100 Data Set.

Number of Views per Object

36 18 8 4

3600 5400 6400 6800
Tests Tests Tests Tests

SNoW with conjunction of edges 96.25% 94.13% 89.23% 88.28%
SNoW with intensity values 95.81 92.31 85.13 81.46
Linear support vector machine 96.03 91.30 84.80 78.50
Nearest neighbor 98.50 87.54 79.52 74.63

Figure 8: Object images with and without occlusion as well as their edge maps.

degrees apart). The object images are occluded by a strip controlled by four
parameters (α, p, l, g), whereα denote the angle of the strip, p denote the per-
centage of occluded image area, l denote the location of the center of the strip,
and g denote the intensity values of the strip. Figure 8 shows some object im-
ages and the occluded object images for {α, p, l, g} = {45◦, 15%, (16, 16), 0}.
Our trained SNoW classifier is tested against this data set using the edge-
based representation. Table 5 shows the experimental results with and with-
out occlusions on this set of 10 objects with 36 views. The recognition perfor-
mance degrades only slightly from 92.03% to 88.78%. Note that the objects
are those on which the nearest-neighbor classifier makes the most mistakes.

Although our theoretical framework supports noise tolerance, it is clear
that the limited expressivity of the features used in this experimental study

Table 5: Experimental Results of SNoW Classifier on Occluded Images with 36
Views per Object.

Recognition Rate Recognition Rate
Without Occlusion With Occlusion

SNoW 92.03% 88.78%
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limits the ability to tolerate occlusion; we nevertheless find our results
promising.

8 Conclusion

The main contribution of this work is proposing a learning framework for
visual learning and exhibiting its feasibility. In this approach, learnability
can be rigorously studied without making assumptions on the distribution
of the observed objects; instead, via the PAC model, the performance of
the learned hypothesis naturally depends on its prior experience. An im-
portant feature of the approach is that learning is studied not directly in
terms of the raw data but rather with respect to intermediate representa-
tions extracted from it and can thus be quantified in terms of the ability
to generate expressive intermediate representations. In particular, it makes
explicit the requirements from these representations to allow learnability.
We believe that research in vision should concentrate on the study of these
intermediate representations.

We evaluated the approach and demonstrated its feasibility in a large-
scale experiment in the context of learning for object recognition. Our exper-
iments allowed us also to perform a fair comparison between two successful
and related learning methods and study them in the context of object recog-
nition. We have illustrated our approach in a large-scale experimental study
in which we use the SNoW learning architecture to learn representations
for the objects in COIL 100. Although it is clear that object recognition in
isolation is not the ultimate goal, this study shows the potential of this com-
putational approach as a basis for studying and supporting more realistic
visual inferences.

We note that for a fair comparison among different methods, we have
used pixel-based presentation in the experiments. The experimental results
suggest that the edge-based representation used is more effective and robust
and should be the starting point for future research. There is no question
that the RGFs used in this work are not general enough to support more
challenging recognition problems; the intention was merely to exhibit the
general approach. We believe that pursuing the direction of using complex
intermediate representations will benefit future work on recognition and,
in particular, robust recognition under realistic conditions.

The framework developed here is very general. The explanations used as
features by the learning algorithm can represent a variety of computational
processes and information sources that operate on the image. They can
depend on local properties of the image, the relative positions of primitives
in the image, and even external information sources or context variables.
Thus, the theoretical support given here applies also to an intermediate
learning stage in a hierarchical process. In order to generate the explanations
efficiently, this work assumes that they are syntactically simple in terms of
the raw image. However, the explanation might as well be syntactically
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simple in terms of previously learned or inferred predicates, giving rise to
a hierarchical representation.

We believe that the key future research question suggested by this line of
work is that of incorporating more visual knowledge into instantiations of
this framework and, in particular, using it to generate better explanations.
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