
Neural Networks 133 (2021) 103–111

a

b

c

d

b
s
w
t
t
a
t
a
f
t
t
u
f
t
p
h
a

(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Unsupervised feature learning for self-tuning neural networks
Jongbin Ryu a,b, Ming-Hsuan Yang d, Jongwoo Lim c,∗

Department of Computer Engineering, Ajou University, Republic of Korea
Department of Artificial Intelligence, Ajou University, Republic of Korea
Department of Computer Science, Hanyang University, Republic of Korea
School of Engineering, University of California, Merced, United States of America

a r t i c l e i n f o

Article history:
Received 9 March 2020
Received in revised form 28 August 2020
Accepted 16 October 2020
Available online 22 October 2020

Keywords:
Self-tuning neural network
Unsupervised feature learning
Unsupervised transfer learning
Bagged clustering
Ranking violation for triplet sampling

a b s t r a c t

In recent years transfer learning has attracted much attention due to its ability to adapt a well-
trained model from one domain to another. Fine-tuning is one of the most widely-used methods
which exploit a small set of labeled data in the target domain for adapting the network. Including
a few methods using the labeled data in the source domain, most transfer learning methods require
labeled datasets, and it restricts the use of transfer learning to new domains. In this paper, we
propose a fully unsupervised self-tuning algorithm for learning visual features in different domains.
The proposed method updates a pre-trained model by minimizing the triplet loss function using
only unlabeled data in the target domain. First, we propose the relevance measure for unlabeled
data by the bagged clustering method. Then triplets of the anchor, positive, and negative data points
are sampled based on the ranking violations of the relevance scores and the Euclidean distances in
the embedded feature space. This fully unsupervised self-tuning algorithm improves the performance
of the network significantly. We extensively evaluate the proposed algorithm using various metrics,
including classification accuracy, feature analysis, and clustering quality, on five benchmark datasets
in different domains. Besides, we demonstrate that applying the self-tuning method on the fine-tuned
network help achieve better results.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, convolutional neural networks (CNNs) have
een applied to numerous learning and vision problems with
tate-of-the-art performance. Among the various tasks, the net-
orks for large-scale image classification are designed and
rained thoroughly with a vast amount of labeled data to achieve
he best performance. As these networks have learned generic
nd effective feature representations, there have been attempts to
ransfer them to different tasks, e.g., object detection, recognition,
nd tracking. Fine-tuning is one of the most widely-used methods
or domain transfer. When fine-tuning a classification network,
he labeled training data in the target domain are used to update
he pre-trained network. Although the size of the training data
sed in fine-tuning is significantly less than that for training
rom scratch, still a significant amount of labeled data in the
arget domain is needed for high performance. In general, the
erformance of a fine-tuned network model for a new domain
inges on whether a training dataset with accurate labeling is
vailable or not.

∗ Corresponding author.
E-mail addresses: jongbinryu@ajou.ac.kr (J. Ryu), mhyang@ucmerced.edu

M.-H. Yang), jlim@hanyang.ac.kr (J. Lim).
ttps://doi.org/10.1016/j.neunet.2020.10.011
893-6080/© 2020 Elsevier Ltd. All rights reserved.
Constructing a large set of training data requires a significant
amount of effort, and the labeling tasks are merely daunting.
Besides, human error and bias can be introduced while collecting
and labeling the data and, it becomes one of the reasons for poor
performance. Thus recent efforts have been focused on reduc-
ing or eliminating the need for labeling training data (Ganin &
Lempitsky, 2015; Long et al., 2016; Yang et al., 2020; Zhou et al.,
2017). The above-mentioned issues are exacerbated for applying
deep neural network models to a new application domain when
there is no established training dataset or lack of expert domain
knowledge. Therefore it is of great interest if a pre-trained net-
work can be transferred to a new domain without using any
training data or relying solely on unlabeled data.

In this paper, we propose a fully unsupervised self-tuning
algorithm for the transfer learning of neural networks as Fig. 1.
The algorithm starts with a pre-trained network in a source
domain and a set of unlabeled training data in the target domain.
Intuitively the distance in the embedded feature space by the
network should better reflect the relevance of data points. In a
supervised setup, the data labels are used to determine relevance.
Data points sharing same class labels are considered as positive
samples; otherwise, they are sampled by negatives with an an-
chor. The Siamese distance metric or the triplet loss updates the

network to pull or push the training samples accordingly.

https://doi.org/10.1016/j.neunet.2020.10.011
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.10.011&domain=pdf
mailto:jongbinryu@ajou.ac.kr
mailto:mhyang@ucmerced.edu
mailto:jlim@hanyang.ac.kr
https://doi.org/10.1016/j.neunet.2020.10.011

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

F
T

i
f
s
u
2
t
o
a

t
i
t
i
t
p
n
a

2

t
r

Fig. 1. Main steps of the proposed self-tuning method. We first feedforward mini-batch samples to obtain FC features. An ensemble of clusters is constructed on the
C features to measure the relevance score. Two rankings by the relevance scores and Euclidean distances on the FC features are computed for an anchor sample.
he violation of the rankings is used to selects positive and negative samples to an anchor. Finally, the neural network is self-tuned by the gradient of the triplets.
In our fully unsupervised self-tuning method, the first intu-
tion is that the relevance between unlabeled data can be inferred
rom the probability of whether the data points belong to the
ame cluster or not. For this relevance measurement, we use the
nsupervised clustering algorithms with K-means (Duda et al.,
000) in randomly-selected subspaces or the random projection
rees (RPT) (Dasgupta & Freund, 2008). The relevance estimation
f the unlabeled training data is the most important part of our
lgorithm.
Even though the approximate relevance measure is available,

uning the network with this weak information is very challeng-
ng. It is desirable for the Euclidean distance in the feature space
o reflect the relevance between data points, and our second intu-
tion is to use the ranking inconsistency of the relevance and fea-
ure distance between data. The proposed algorithm selects the
ositive and negative samples whose distance rankings are sig-
ificantly different from the relevance rankings. Then networks
re updated via the sampled triplets without any supervision.
The main contributions of this work are as follows.

(i) We propose a novel fully-unsupervised self-tuning algo-
rithm for neural networks. The triplet sampling algorithm
using the ranking inconsistency in the Euclidean distance,
and the relevance measure performs well with the un-
labeled data. The relevance model by bagged clustering
in random subspaces of the feature space is novel and
effective.

(ii) We carry out extensive experimental evaluations to ver-
ify the proposed self-tuning algorithm. Five pre-trained
CNN models and five different domains are used, and the
performance is evaluated with various classification and
clustering metrics. Experimental results demonstrate that
our algorithm shows significant improvement, considering
that it operates in a fully unsupervised manner.

(iii) We show that self-tuning on the fine-tuned neural net-
works also improves the performance significantly. As most
domain adaptation is carried out by fine-tuning, it is inter-
esting that the performance of a fine-tuned network can
be further enhanced by self-tuning with the same training
data without the labels. From the fact that the fine-tuned
network also contains notable ranking inconsistency, we
notice that what self-tuning learns from unlabeled data is
different from the conventional supervised algorithms.

. Related work

We discuss the transfer learning algorithms, unsupervised fea-
ure learning and pseudo-labeling based metric learning as the
elevant works of the proposed method.
104
2.1. Transfer learning

Transferring knowledge from source to specific target domains
where the distribution of data to the source differs significantly
is a very challenging problem. In many cases, the overfitting
problem occurs due to the different data distribution of the source
and target. Adversarial learning (Ganin & Lempitsky, 2015; Liu
et al., 2019), kernel (Tao et al., 2016), and ensemble based meth-
ods (Ryu et al., 2020a, 2020b) have been introduced to overcome
the overfitting problem. Most of them suppose that we have
labeled data for the source domain and unlabeled data for the
target domain. The main issue for this setting is reducing the
domain shift using both domain data. Although, we does not have
labels of the target domain, we can label them as ‘target’ for the
domain label; of course, the source data should be labeled as
‘source’. From this domain label, the source and target domain
distribution can be aligned. On the other hand, training neural
networks from a few samples is also widely studied by the few-
shot learning algorithm. Since the scarcity of the training data
often causes the overfitting problem also, we need to prepare
additional data source or transfer knowledge from another model.
Augmenting training data (Antoniou et al., 2017; Hariharan &
Girshick, 2017) and knowledge distillation (Bhardwaj et al., 2019;
Yu et al., 2017) are effectively applied to escape the overfitting
problem under the few-shot learning setup.

Recently, domain generalization, which uses multiple source
domains without any target domain data, is also studied in sev-
eral works (Balaji et al., 2018; Ryu et al., 2020b). It learns a
model that reduces the domain-shift between multiple source
domains, so that the domain-shift is minimized with any unseen
domain not used for the learning. Thus, the model generalizes the
classification task regardless of the domains.

2.2. Unsupervised feature learning

Learning robust features is a difficult task in an unsupervised
environment. The most serious difficulty is to define the objective
function without true labels. However, these methods (Bo et al.,
2013; Boureau et al., 2011; Dosovitskiy et al., 2016; Zou et al.,
2012) are different from the proposed approach for two reasons.
First, they use the class labels to train a classifier. Although
they improve the robustness of training features without the
class labels, their methods are evaluated on a classifier trained
by the ground-truth class labels. Second, most works focus on
supervised visual recognition tasks, specified by a certain network
architecture. However, we do not use class labels to train a
network or classifier to measure classification accuracy using K-
nearest neighbors. Further, we evaluate the proposed self-tuning
algorithm by four visual domains with five network architecture.
We think that this extensive experiment validates the generalized
performance of the proposed self-tuning algorithm.

The fully unsupervised method is very important in real-world
application scenarios. On the web and cloud, there exist millions

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

o
n
e
u
f
d
w
a
m
o
a
d
f
t

3

o
t
t
(
i
s
c
p
s
f
s

o

X

a
t
c
i
v
t
b
w

f data, but they cannot be directly utilized in training neural
etworks due to the lack of labels. Fully-unsupervised algorithms
nable the networks to be autonomously updated and improved
sing the massive unlabeled data. It tries to find the effective
eatures in the pre-trained base network for the new data in a
ifferent domain, and update the network to enhance them as
ell as learn new features. Since there is no classification label
vailable, we focus on the feature space so that similar data are
apped closer, and different ones are dispersed apart. To best
f our knowledge, the proposed self-tuning method is the first
ttempt in this direction. Without any information on the target
omain, we propose using the ranking inconsistency between
eature distance and clustering results, and experimentally show
hat this idea is effective in the extensive experiments.

. Proposed algorithm

In this section, we describe the proposed self-tuning algorithm
n the pre-trained neural networks using unlabeled data in the
arget domain. The proposed self-tuning algorithm uses the
riplet loss function similar to Chechik et al. (2010), Ryu et al.
2020b), Schroff et al. (2015) and Wang et al. (2014a). The main
dea of triplet loss is to keep the distance between samples of the
ame class close and the distance between samples of different
lasses far. For an anchor, samples of the same class become
ositive, and samples of the other class become negative. In a
upervised setting, it is easy to define triplets using class label in-
ormation, but in our fully-unsupervised setting, a well-designed
election algorithm is required.
In our algorithm, for a given (unlabeled) training set T , a set

f triplet X is defined as:

= {⟨ xa, x+, x−⟩} such that ρ (xa, x+) > ρ (xa, x−) , (1)

where xa, x+ and x− ∈ T are the anchor, positive, and negative
samples respectively, and ρ(·) denotes a relevance score function.
We denote the distance in the feature space as

D(xi, xj) = ∥f (xi) − f (xj)∥2
2, (2)

where f (x) is the feature descriptor output by the neural network
and xi, xj are data points. The training process aims to minimize
the distance of a positive pair ⟨ xa, x+⟩, and at the same time
to maximize that of a negative pair ⟨ xa, x−⟩. Naturally, the loss
function for the triplet set is defined as:

L =

∑
⟨ xa,x+,x−⟩∈X

max {0, α − D (xa, x−) + D (xa, x+)} , (3)

where α denotes a margin constraint that is a user input hyper-
parameter. Minimizing the above loss function pushes the more
relevant data x+ closer to the anchor and, at the same time, the
less relevant data x− farther from it in the feature space. Thus the
main goal is to build an adequate triplet set from the unlabeled
data to transfer the pre-trained neural network f (·) to the target
domain.

Existing transfer learning or domain adaptation methods
mainly use class labels of the training examples to determine
data relevance (Chechik et al., 2010; Schroff et al., 2015; Wang
et al., 2014b). The positive samples are those with the same
label as the anchor, and otherwise negative. In the supervised
or semi-supervised settings where the labels of training data are
available, this is a natural and effective way to construct the
triplet set. However, in a fully unsupervised scenario, such label-
based relevance functions cannot be used as the labels of training
data.

Therefore, we propose the clustering-based relevance model
for the fully unsupervised network learning. This approach is
 o

105
motivated by the pseudo-label based unsupervised learning mod-
els (Liang et al., 2018, 2019). They propose pseudo-label gen-
eration methods to learn networks without label supervision.
Liang et al. create pseudo labels of target domain data with
unsupervised random projection. They use the property that la-
bels belonging to the same cluster have a high probability of
having the same class. Inspired by this property, we propose
the relevance model using an unsupervised clustering method.
Suppose that the data points are clustered into several groups
according to different criteria. If two points are more relevant
than the others, they are more likely and more often to be in the
same clusters. In our formulation, if two data points are closely
related, repeated clustering with random feature selection should
reflect such relevance. Samples with the same class label will
frequently belong to the same cluster, and the distance between
their features should be close. Therefore, we reduce the inconsis-
tency between the relevance score and euclidean distance by a
ranking model. For a reference data point, the rankings according
to the feature distance and the relevance score of other data
points are computed. When a network is not tuned to the target
domain, there will be many inconsistencies in the two rankings;
thus we can tune the network to reduce the inconsistency. Then
the sampled triplets are used for updating the network to move
the positive data toward the anchor and the negative data away
from the anchor, as carried out in the conventional triplet loss
algorithms (Fig. 2).

3.1. Unsupervised relevance model

To design the relevance score function, we exploit the data
clustering algorithms which are well-established unsupervised
learning methods for categorizing data according to their affinity.
If two data are relevant to each other, they are likely to appear in
the same cluster, and thus the clustering results can be used as a
measure of relevance. However, it is not appropriate to apply it
directly to the feature output of the training data since the feature
space of the pre-trained network is tuned to the relevance in the
source domain, rather than the target domain where the training
data belongs to.

If the source domain is completely different from the target
domain, it is not realistic to expect the pre-trained feature space
to work in the target domain. However, the deep neural net-
works for large-scale object classification are constructed using
a precisely-labeled huge training data on very diverse categories,
and the features obtained from these networks have been used as
the bases in various fine-tuning and transfer learning algorithms.
What the proposed algorithm tries to do is tuning the generic
feature embedding of the base network so that its discriminative
power in the target domain is enhanced in a fully unsupervised
way.

We formulate the relevance metric as the expected probability
whether two data points belong to the same clusters via the
ensemble of clustering methods, i.e.,

ρ(xi, xj) ∝ Pr
(
C(f (xi)) == C(f (xj))

)
≃ Ek

[
1(Ck(f (xi)) == Ck(f (xj)))

]
, (4)

where C(·) returns the cluster label, 1(·) is an indicator function,
nd Ek denotes expected value of k clusters. If a data pair is clus-
ered together more often by different clustering algorithms, it
an be considered more relevant than other data pairs. However,
f the clustering is fully determined by the embedded feature
ectors, no additional information is discovered by clustering, and
here will be no update to the network. We verify this claim
y the experiment using the K-means with data bootstrapping,
here the affinity is measured by the Euclidean distance in the

riginal feature space. Different clustering results are generated

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

m
j

Fig. 2. Visualization of FC features of the Flower102 dataset using t-SNE (Maaten & Hinton, 2008). It shows that the self-tuned result is much improved over the
pre-trained and comparable to the fine-tuned result in terms of the discriminative ability.
a
r
=

(

Fig. 3. Performance comparison of the three relevance models by clustering:
K-means with data or feature bootstrapping and RPT. It shows K-means with
data bootstrapping saturates prematurely compared to the other two methods.
The reason can be because data bootstrapping uses the same feature space as
the pre-trained network, whereas the others use differently weighted features.

by running it on randomly-selected subsets of data, and the co-
incidence frequency is counted. As expected, it quickly converges
to a local minimum without significant improvement, as shown
in Fig. 3.

To avoid this problem, we propose two bagged clustering
ethods: K-means with feature bootstrapping and random pro-

ection tree (RPT).

(i) K-means with feature bootstrapping: Instead of randomly
sampling the data for cluster bagging, the subspaces of
the feature space are randomly sampled, and the K-means
clustering is performed in the sampled subspace. By ran-
dom projections, different subsets of features are used in
clustering, and the subsets effective in the target domain
will generate informative clustering results. Combined with
the proposed triplet sampling method Section 3.2, this
weak information is effectively utilized for self-tuning .

(ii) Random projection tree: The RPT clustering constructs a
random projection tree, and groups samples in the same
leaf node as one cluster. Each non-leaf node n of a RPT
has a randomly sampled vector wn and a threshold λn,
and the data falls to the left branch if f (x) · wn < λn or
to the right branch otherwise. In RPT, the set of random
projection vectors {wn} plays a similar role as the random
feature subspaces in the K-means algorithm with feature
bootstrapping.
106
3.2. Triplet sampling using rank inconsistency

As we discuss in the previous section, the relevance between
data pairs can be estimated using a clustering algorithm with
random feature selection. However, finding the positive and neg-
ative pairs using the relevance scores is not straightforward since
it only provides very weak information on data similarity, and
simplistic approaches such as thresholding may not find a good
training set.

We propose to use the ranking inconsistency in finding the
positive and negative sample to build a triplet for training. For
a randomly selected data point (the anchor) in the mini-batch,
other data can be sorted according to the two metrics: the Eu-
clidean distance in the feature space and the relevance score by
clustering coincidence. The Euclidean feature distance represents
the data similarity in the current feature space, and the relevance
score indicates the desired distance ordering with respect to the
nchor. At the moment, all data except the anchor have two
anks, one in ascending order of Euclidean distance (lower rank
closer), and the other in descending order of relevance score

lower rank = more relevant). If the two ranks are the same for all
data, it is in the optimal state since the Euclidean feature distance
matches with the relevance. If the Euclidean distance rank of a
data is lower than its relevance rank, it means that the data is
located closer than desired; thus it needs to be pushed away from
the anchor (a negative sample), and vice versa. Hence for anchor
data, we can choose positive and negative samples by using the
rank inconsistency.

For fast and effective learning, it is important to select the hard
negative and hard positive examples. We start with finding the
hardest negative example for an anchor:

x− = argmin
x

{
σD↑(x; xa) − σρ↓(x; xa)

}
, (5)

where σm(s; xa) denotes the index of s in the sorted list of the
mini-batch by ascending(↑) or descending(↓) order in terms of
the metricm ∈ {D, ρ} w.r.t the anchor xa. Thus, σD↑(x; xa) denotes
the index of sorted list for the distance metric D in ascending
order and σρ↓(x; xa) represents that for the relevance score ρ in
descending order. Then, we select a negative sample x− using the
gap between these two criteria.

Note that the data with a negative ranking gap in the above
equation can be negative examples, and a positive ranking gap
means positive candidates. Therefore, x− is the one whose rank-
ing gap is negatively largest when the data is sorted according to
the relevance and distance with respect to the anchor xa.

Next, a hard positive sample is selected. We note if the hardest
positive and hardest negative data are sampled at the same time,
the learning is likely stuck to local minima at the early stage.

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111
Fig. 4. Example of the triplet selection process. Data points are ranked on a randomly-selected anchor (black) by the relevance scores and Euclidean distances. The
blue data point never belongs to the same cluster with the anchor while they are close to each other in Euclidean space. Since the ranking violation of the blue one
is the largest in the mini-batch, it is sampled as the negative. The yellow data point, however, has a minimum ranking violation, but cannot be selected as positive
because its distance is farther than the negative sample. Instead, the red one is selected as positive because it has the smallest ranking violation among the samples
satisfying the distance condition. For more details refer to the text in Section 3.2.
Therefore, we select a positive sample of the hard positives that
satisfy the following condition:

x+ = argmax
x

{
σD↑(x; xa) − σρ↓(x; xa)

}
,

subject to D(x, xa) < D(x−, xa). (6)

where x+ denotes the positive sample. We constrain the dis-
tance between the positive and anchor to be closer than the
distance between negative and anchor. This constraint ensures
stable learning of the network, which can also be found in a
method to prevent model collapse in Schroff et al. (2015).

In practice, it is similar to the supervised triplet sampling
approaches (Schroff et al., 2015; Wang et al., 2014a). The sampled
triplet ⟨ xa, x+, x−⟩ are used to self-tune a neural network. Fig. 4
illustrates this process with examples.

The self-tuning algorithm removes the last FC layer and the
softmax layer in the pre-trained models and connects the pro-
posed triplet loss layer at the end. All layers in the network
are updated by backpropagation until convergence using the au-
tomatically generated triplets from the unlabeled training data
according to the proposed sampling algorithm.

4. Experimental results

4.1. Experimental setting

We evaluate the proposed self-tuning algorithm on the five
datasets in different visual domains: generic objects (Caltech
101) (Fei-Fei et al., 2007), scenes (MIT Indoor) (Quattoni & Tor-
ralba, 2009), flowers (Flower 102) (Nilsback & Zisserman, 2008),
and materials (FMD) (Sharan et al., 2009). We use the standard
evaluation protocols for these datasets, including splitting the
training and test sets.

For the pre-trained neural network models we use the fol-
lowing five networks: AlexNet (Krizhevsky et al., 2012), VGG-
S (Chatfield et al., 2014), VGGVD-19 (Simonyan & Zisserman,
2014), ResNet-50 and ResNet-101 (He et al., 2016). We obtain
features from the last FC layer for both pre-trained and self-tuned
networks. The FC feature dimensions are 4096 for AlexNet, VGG-
S, and VGGVD-19, and 2048 for ResNet-50 and ResNet-101. We
do not apply any post-processing to the features.
107
4.2. Evaluation metrics

To evaluate the proposed algorithm, we perform extensive
experiments on three tasks: classification, feature representation,
and clustering. In all experiments, the class labels in the datasets
are only used for evaluation purposes. The first task, classification
performance, is measured by K-nearest neighbors (KNN) with
K = 1. The classification performance is the most fundamental
and important metric to evaluate learning algorithms, and thus
we use the KNN, which does not need class labels in the training
stage. Second, we use Fisher score and variance for the evaluation
of feature representations learned by the proposed algorithm and
others. Since it is known that the features with higher variance
are more salient in the feature selection method (Guyon & Elisse-
eff, 2003), we also use the feature variances. Third, to measure the
clustering performance by the learned features of the algorithms,
we use the average purity, precision, and recall values after run-
ning the K-means clustering algorithm. The clustering task is also
widely used to evaluate the robustness of the feature learning
algorithm. Some of the evaluation metrics are described in more
detail below.

(i) Fisher score: The discriminative power of a feature space
is measured by the FisherScore =

∑
k(µ−µk)2∑

k σ2
k

, where µ is

the sample mean, and µk and σ 2
k are the mean and variance

of the kth cluster.
(ii) Purity: When each cluster is assigned with the label by the

majority, the purity is the ratio of the correctly clustered
data (i.e., data with the label same as the cluster label).
The maximum value of purity is 1 when the clustering is
perfect. That is, Purity =

1
N

∑
k maxl∈L

∑
s∈Ck

1(λ(s) = l)
where N is the number of all samples, Ck is the kth cluster,
λ(s) is the label of a sample s, and L is the set of all labels.

(iii) Precision and recall: In the context of clustering evalua-
tion, all pairs of test data are checked, and the term posi-
tive/negative represents if a data pair belongs to the same
cluster or not. Thus among the pairs in the same clusters,
true positives (TP) are those with the same labels, and false
positives (FP) are those with different labels. True negatives
(TN) and false negatives (FN) can be defined accordingly for
the pairs in different clusters. The precision and recall are
defined as Precision =

TP
TP+FP and Recall =

TP
TP+FN . In the

experiment, we fix the number of clusters to 50.

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

T
E
p
u
S
a
t
e

e
t
m
p
a

able 1
valuation results on the proposed self-tuning algorithm (Self) over the baseline
re-trained model (Pre) for classification accuracy and feature evaluation. KNN is
sed to measure classification accuracy, which shows significant improvement of
elf in all cases. Feature representation evaluation by Fisher score and variance
lso shows that Self enhances the discriminative power (Fisher score) and
ransforms features more salient (variance). Overall the results demonstrate the
ffectiveness of domain adaptation by the self-tuning algorithm.
Net Dataset KNN (K = 1) Fisher score Variance

Pre Self Pre Self Pre Slef

AlexNet

Caltech 101 78.12 80.08 0.40 0.48 0.43 1.13
MIT Indoor 33.58 36.04 0.29 0.34 0.65 1.30
Flower 102 63.95 67.18 0.37 0.42 2.03 2.98
FMD 47.60 49.40 0.18 0.19 0.54 0.61

VGG-S

Caltech 101 79.91 82.10 0.41 0.46 0.20 0.23
MIT Indoor 43.28 43.28 0.34 0.38 0.37 0.75
Flower 102 65.21 70.92 0.39 0.43 0.84 1.58
FMD 52.40 55.60 0.20 0.21 0.25 0.29

VGGVD-19

Caltech 101 79.06 81.36 0.41 0.51 0.23 0.47
MIT Indoor 46.27 49.55 0.40 0.43 0.58 0.75
Flower 102 55.31 67.88 0.38 0.46 1.40 1.97
FMD 62.20 66.00 0.22 0.22 0.30 0.34

ResNet-50

Caltech101 84.29 87.10 0.45 0.52 0.10 0.11
MIT Indoor 56.34 58.81 0.37 0.38 0.08 0.08
Flower 102 70.87 77.22 0.41 0.47 0.12 0.09
FMD 69.00 72.00 0.24 0.24 0.14 0.14

ResNet-101

Caltech101 85.16 87.64 0.45 0.54 0.12 0.13
MIT Indoor 58.73 60.37 0.38 0.39 0.09 0.08
Flower 102 70.16 77.09 0.42 0.48 0.13 0.09
FMD 69.20 72.00 0.24 0.24 0.15 0.16

Table 2
Evaluation results on the proposed self-tuning (Self) algorithm over the base-
line pre-trained model (Pre) for clustering analysis. Self-tuning improves the
performance of the pre-trained model for purity in most cases. Precision rates
also increase by the self-tuning while recall rates remain similar compared to
the pre-trained model. This result also supports the self-tuning transforms the
feature space of the pre-trained model into better representation.
Net Dataset Purity Precision Recall

Pre Self Pre Self Pre Self

AlexNet

Caltech 101 0.64 0.66 0.60 0.71 0.80 0.74
MIT Indoor 0.32 0.32 0.12 0.13 0.19 0.18
Flower 102 0.39 0.41 0.19 0.23 0.36 0.34
FMD 0.44 0.45 0.21 0.22 0.16 0.14

VGG-S

Caltech 101 0.66 0.67 0.67 0.68 0.82 0.79
MIT Indoor 0.37 0.38 0.16 0.17 0.24 0.23
Flower 102 0.38 0.42 0.19 0.24 0.34 0.36
FMD 0.51 0.54 0.27 0.32 0.12 0.14

VGGVD-19

Caltech 101 0.64 0.67 0.57 0.67 0.85 0.84
MIT Indoor 0.42 0.42 0.20 0.21 0.30 0.29
Flower 102 0.32 0.39 0.14 0.21 0.28 0.32
FMD 0.58 0.59 0.33 0.32 0.23 0.22

ResNet-50

Caltech101 0.68 0.71 0.67 0.73 0.84 0.87
MIT Indoor 0.44 0.46 0.22 0.25 0.32 0.33
Flower 102 0.40 0.45 0.21 0.30 0.37 0.44
FMD 0.65 0.67 0.42 0.50 0.21 0.16

ResNet-101

Caltech101 0.66 0.72 0.58 0.73 0.82 0.87
MIT Indoor 0.46 0.46 0.24 0.25 0.35 0.34
Flower 102 0.40 0.46 0.21 0.28 0.37 0.43
FMD 0.65 0.67 0.41 0.53 0.20 0.17

4.3. Self-tuning on pre-trained model

Tables 1 and 2 summarize the comprehensive experimental
valuations of the proposed self-tuning method. Compared to
he baseline pre-trained model, the self-tuning method improves
ost of the classification, feature representation, and clustering
erformance measures significantly. When the average value of
ll datasets is obtained from ResNet-101, it shows that self-tuning
108
has better performance in all cases than the pre-trained network,
as shown in Table 3.

In classification tasks, the average improvement of KNN ranges
from 1.94% to 4.40% across all five networks, and the purity and
precision values in clustering analysis are significantly improved
while the recall remains similar. In addition, the Fisher scores
and variances show the enhancement in feature representation
quality by the proposed algorithm. Compared to AlexNet and
VGG, ResNet networks mark slightly lower variances than the
original network, but the difference is not large.

In clustering evaluation, while the purity and precision show
impressive boosting, the recall remains the same or decreases a
little. According to the definition of recall in clustering, making
more positives tends to yield higher recall, and when the cluster
sizes are unbalanced the number of positives increase (in the
extreme, recall = 1 if all data is in one cluster). As self-tuning
refines the feature space, the clustering results improve, and the
clusters will have similar sizes as the training dataset is built in
such way. The slight decrease in the recall can be contributed to
the above reason.

4.4. Self-tuning on mixed datasets

The four datasets we used in the experiments are constructed
and carefully labeled. Although the labels are not used in training,
the data quality is very high. For the unsupervised, the data may
be noisy, corrupted, or even in completely different domains (out-
liers). To simulate such cases and to evaluate the generalization
ability, the self-tuning algorithm is run on the three networks
with various combinations of datasets. Table 5 shows the result of
self-tuning using mixtures of datasets. This is a challenging task
as the datasets are very diverse, from flowers to materials.

In this challenging scenario, the self-tuning successfully learns
the heterogeneous domains in a fully unsupervised way. Classifi-
cation and feature representation performances are significantly
improved, except purity becomes slightly worse in AlexNet and
VGG-S. This experiment shows that the proposed self-tuning
algorithm is a generic framework that is quite robust to domain
and variations.

4.5. Self-tuning on fine-tuned networks

Fine-tuning is a supervised learning algorithm that updates
the pre-trained network using the labeled target domain data. It
has been the state-of-the-art and used in many transfer learning
applications. We present experimental results of comparing the
proposed self-tuning algorithm with the supervised fine-tuning
method and running the self-tuning on the fine-tuned network.
Compared to the pre-trained and self-tuning results Tables 1
and 2, the fine-tuning results in Table 4 shows much improved
performance since the fine-tuning uses labeled training data. The
self-tuning results are in the middle of the pre-trained and the
fine-tuned results, which is remarkable, considering that it is a
fully unsupervised method.

More interestingly running self-tuning on the fine-tuned net-
works also boosts the performance as shown in Table 4 and
Fig. 5. By simply running the self-tuning with the same dataset
without the labels on the fine-tuned network all classification,
feature representation, and clustering performance are consid-
erably improved. This is quite surprising that we do not use
any additional data (in fact, less information since labels are
not used) to self-tune the network. We interpret this result as
the self-tuning process reduces the overfitting in the fine-tuned
networks by examining various combinations of learned features
and fortifying more robust feature subsets. Thus, we believe the
proposed self-tuning method is unique and different from the
conventional learning methods, and it contributes to the field

significantly.

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

t
i
s
u
p
e
a
c

Table 3
Evaluation results of the average performance of the classification, feature representation and clustering problems.
It shows that the proposed self-tuning algorithm (Self) improves the performance of the pre-trained models (Pre)
in all cases.
Classification Feature representation Clustering problem

KNN (K = 1) Fisher score Variance Purity Precision Recall

Pre Self Pre Self Pre Self Pre Self Pre Self Pre Self

70.81 74.28 0.37 0.41 0.12 0.12 0.54 0.58 0.36 0.45 0.44 0.45
Table 4
Performance comparison of the fine-tuning (Fine) and the self-tuning on the fine-tuned networks (F-A) of ResNet-
101. Fine-tuning marks much improved performance compared to the pre-trained and self-tuning as it uses
training labels. More interestingly running the self-tuning algorithm on the fine-tuned networks shows considerable
enhancement over the fine-tuning. We think that the self-tuning can reduce the overfitting induced by supervised
methods, and thus the self-tuning operates quite differently than the conventional learning methods.
Dataset KNN(N = 1) Fisher score Purity Precision Recall

Fine F-A Fine F-A Fine F-A Fine F-A Fine F-A

Caltech 101 91.26 92.39 0.65 0.70 0.72 0.75 0.65 0.71 0.89 0.91
MIT Indoor 70.22 70.60 0.41 0.42 0.59 0.62 0.36 0.38 0.50 0.49
Flower 102 86.29 87.14 0.51 0.55 0.56 0.57 0.37 0.37 0.62 0.61
Average 82.59 83.38 0.52 0.56 0.62 0.65 0.46 0.49 0.67 0.67
Table 5
Experimental results on the heterogeneous dataset combination. To show the generalization ability of the proposed
algorithm, the self-tuning method is performed with synthetically generated datasets on heterogeneous domains. The
synthetic datasets are constructed by simply merging several existing datasets: C (Caltech 101), M (MIT Indoor),
Fl (Flower 102), and FM (FMD). Even with mixed and inconsistent training data, the self-tuning improves the
pre-trained network.
Net Dataset KNN (K = 1) Fisher score Purity

C M F
l

F
M

Pre Self Pre Self Pre Self

AlexNet
✓ ✓ 68.10 69.96 0.36 0.39 0.49 0.48

✓ ✓ 60.03 61.22 0.26 0.30 0.24 0.23
✓ ✓ ✓ 58.29 59.82 0.27 0.30 0.43 0.41

VGG-S
✓ ✓ 72.35 73.57 0.40 0.41 0.50 0.48

✓ ✓ 62.01 63.92 0.31 0.33 0.24 0.23
✓ ✓ ✓ 60.66 62.30 0.31 0.33 0.45 0.44

ResNet-101
✓ ✓ 79.74 80.59 0.45 0.47 0.44 0.54

✓ ✓ 69.76 71.79 0.38 0.39 0.21 0.23
✓ ✓ ✓ 69.07 70.61 0.38 0.39 0.41 0.43
Table 6
Performance comparison of the self-tuning with previous unsu-
pervised feature learning methods on Caltech-101. The self-tuned
network of ResNet-101 achieves favorable results compared to
previous state-of-the-art methods.
Previous method Accuracy

Multiway local pooling (Boureau et al., 2011) 77.3
Slowness on vidoes (Zou et al., 2012) 74.6
Multipath HMP (Bo et al., 2013) 82.5
Ex-CNN (Small/Large) (Dosovitskiy et al., 2016) 79.8 / 87.1

Pre-trained (ResNet-50) 84.3 / 85.6
Self-tuning (ResNet-50) 87.1 / 88.8
Pre-trained (ResNet-101) 85.2 / 85.9
Self-tuning (ResNet-101) 87.6 / 89.3

4.6. Performance comparison with unsupervised feature learning
methods

Since the proposed self-tuning is the first attempt to transfer
he neural networks in a fully unsupervised manner, fair compar-
son with existing similar algorithms is not a simple task. In this
ection, we compare the proposed algorithm with the previous
nsupervised feature learning methods such as pyramidal max
ooling (Boureau et al., 2011), temporal slowness constraint (Zou
t al., 2012), hierarchical matching pursuit (HMP) (Bo et al., 2013)
nd Exemplar CNN (Dosovitskiy et al., 2016). They use deep ar-
hitectures to learn feature representation for visual classification
109
tasks. Hence, we compare our KNN(K = 1 and 5) results of ResNet
on the Caltech101 dataset to the best reported results of the
previous works. Table 6 shows the self-tuning performs well
compared to previous unsupervised feature learning methods.
This result also supports the unsupervised feature learning ability
of the self-tuning method.

5. Discussion

We propose a ‘fully-unsupervised’ network learning method.
Therefore, to emphasize the complete unsupervised-ness, we
summarize the differences between ours and the previous
method with regard to the use of labels as shown in Table 7.
Note that the proposed self-tuning algorithm does not use any
labels in a training stage. In contrast, existing approaches, such
as few-shot learning and domain adaptation, needs some super-
vision in learning process. Few-shot learning requires a small
number of class labels in the target domain for training. To
apply meta-learning to the few-shot approach, additional class
labels are necessary. Domain adaptation also needs class labels
of the training data in the source domain, although those of
the target domain is not required. Therefore, we expect that the
proposed approach can be utilized for many learning algorithms
especially with large-scale data. Labeling large data is obviously
very difficult, so the proposed approach will help train deep
neural networks while reducing human labor. In addition, the
proposed approach will be effective even if there are noisy labels
or partially annotated labels in training data.

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111
Table 7
Differences of four approaches in terms of label requirement. The self-tuning do not use any class labels in training.

Few-shot Domain adaptation Self-tuning

Labels of training data Required only a few Required for source
not required for target

Not required

Category Semi-supervised Unsupervised in target domain,
but supervised in source domain

Fully
unsupervised
B

B

C

C

D

Fig. 5. Improvement of Fisher score by the tuning methods of Caltech 101
with ResNet-101. The yellow circle denotes the Fisher score value of the pre-
trained model. Blue and red regions indicate the fine-tuning on the pre-trained
model and self-tuning on fine-tuned one, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

6. Conclusion

In this paper, we propose a fully-unsupervised self-tuning
algorithm that can transfer a pre-trained neural network to a new
target domain only using unlabeled training data. The self-tuning
is conducted by minimizing the triplet loss function, and the
triplets are automatically sampled based on the ranking violations
of the relevance scores and Euclidean feature distances. The rele-
vance of unlabeled data points is estimated by bagged clustering
with feature bootstrapping. Extensive experiments are carried
out to validate the ability of the proposed self-tuning method.
Classification, feature representation, and clustering metrics on
110
five domains with five neural networks show significant improve-
ment over the pre-trained networks. Furthermore, we demon-
strate that the self-tuning method improves the performance of
the fine-tuned neural networks. These results are significant as
the proposed self-tuning methods can also facilitate achieving
state-of-the-art performance in various domains.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (IITP), Ko-
rea grant funded by the Korea government(MSIT) (No. 2020-0-
01373, Artificial Intelligence Graduate School Program(Hanyang
University)), Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry
of Education, Korea (NRF-2017R1A6A3A11031193), and the NSF
CAREER, United States of America Grant #1149783.

References

Antoniou, A., Storkey, A., & Edwards, H. (2017). Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340.

Balaji, Y., Sankaranarayanan, S., & Chellappa, R. (2018). Metareg: Towards domain
generalization using meta-regularization. In Neural information processing
systems (pp. 998–1008).

Bhardwaj, S., Srinivasan, M., & Khapra, M. M. (2019). Efficient video classification
using fewer frames. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 354–363).

o, L., Ren, X., & Fox, D. (2013). Multipath sparse coding using hierarchi-
cal matching pursuit. In IEEE conference on computer vision and pattern
recognition (pp. 660–667).

oureau, Y.-L., Le Roux, N., Bach, F., Ponce, J., & LeCun, Y. (2011). Ask the
locals: multi-way local pooling for image recognition. In IEEE international
conference on computer vision (pp. 2651–2658).

hatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the
devil in the details: Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531.

hechik, G., Sharma, V., Shalit, U., & Bengio, S. (2010). Large scale online learning
of image similarity through ranking. Journal of Machine Learning Research,
11(Mar), 1109–1135.

asgupta, S., & Freund, Y. (2008). Random projection trees and low dimensional
manifolds. In ACM symposium on theory of computing (pp. 537–546).

Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., & Brox, T.
(2016). Discriminative unsupervised feature learning with exemplar convo-
lutional neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(9), 1734–1747.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. John Wiley &
Sons.

Fei-Fei, L., Fergus, R., & Perona, P. (2007). Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101
object categories. Computer Vision and Image Understanding, 106(1), 59–70.

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation
by backpropagation. In International conference on machine learning
(pp. 1180–1189).

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3(Mar), 1157–1182.

http://arxiv.org/abs/1711.04340
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb2
http://arxiv.org/abs/1405.3531
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb13

J. Ryu, M.-H. Yang and J. Lim Neural Networks 133 (2021) 103–111

H

H

L

S

S

S

T

W

W

Y

Y

Z

Z

ariharan, B., & Girshick, R. (2017). Low-shot visual recognition by shrinking
and hallucinating features. In IEEE international conference on computer vision
(pp. 3018–3027).

e, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In IEEE conference on computer vision and pattern recognition
(pp. 770–778).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Neural information processing systems
(pp. 1097–1105).

Liang, J., He, R., Sun, Z., & Tan, T. (2018). Aggregating randomized clustering-
promoting invariant projections for domain adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(5), 1027–1042.

iang, J., He, R., Sun, Z., & Tan, T. (2019). Exploring uncertainty in pseudo-
label guided unsupervised domain adaptation. Pattern Recognition, 96, Article
106996.

Liu, H., Long, M., Wang, J., & Jordan, M. (2019). Transferable adversarial training:
A general approach to adapting deep classifiers. In International conference
on machine learning (pp. 4013–4022).

Long, M., Zhu, H., Wang, J., & Jordan, M. I. (2016). Unsupervised domain
adaptation with residual transfer networks. In Neural information processing
systems (pp. 136–144).

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov), 2579–2605.

Nilsback, M.-E., & Zisserman, A. (2008). Automated flower classification over a
large number of classes. In Indian conference on computer vision, graphics and
image processing (pp. 722–729).

Quattoni, A., & Torralba, A. (2009). Recognizing indoor scenes. In IEEE conference
on computer vision and pattern recognition (pp. 413–420).

Ryu, J., Bae, J., & Lim, J. (2020). Collaborative training of balanced random forests
for open set domain adaptation. arXiv preprint arXiv:2002.03642.
111
Ryu, J., Kwon, G., Yang, M.-H., & Lim, J. (2020). Generalized convolutional forest
networks for domain generalization and visual recognition. In International
conference on learning representations. URL: https://openreview.net/forum?id=
H1lxVyStPH.

chroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding
for face recognition and clustering. In IEEE conference on computer vision and
pattern recognition (pp. 815–823).

haran, L., Rosenholtz, R., & Adelson, E. (2009). Material perception: What can
you see in a brief glance? Journal of Vision, 9(8), 784.

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

ao, J., Hu, W., & Wen, S. (2016). Multi-source adaptation joint kernel sparse
representation for visual classification. Neural Networks, 76, 135–151.

ang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., & Wu, Y.
(2014a). Learning fine-grained image similarity with deep ranking. In IEEE
conference on computer vision and pattern recognition.

ang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., & Wu, Y.
(2014b). Learning fine-grained image similarity with deep ranking. In IEEE
conference on computer vision and pattern recognition (pp. 1386–1393).

ang, J., Cao, J., Wang, T., Xue, A., & Chen, B. (2020). Regularized correntropy
criterion based semi-supervised ELM. Neural Networks, 122, 117–129.

u, R., Li, A., Morariu, V. I., & Davis, L. S. (2017). Visual relationship detection
with internal and external linguistic knowledge distillation. In Proceedings of
the IEEE international conference on computer vision (pp. 1974–1982).

hou, T., Brown, M., Snavely, N., & Lowe, D. G. (2017). Unsupervised learning of
depth and ego-motion from video. In IEEE conference on computer vision and
pattern recognition (vol. 2) (no. 6) (p. 7).

ou, W., Zhu, S., Yu, K., & Ng, A. Y. (2012). Deep learning of invariant features
via simulated fixations in video. In Neural information processing systems
(pp. 3203–3211).

http://refhub.elsevier.com/S0893-6080(20)30366-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb21
http://arxiv.org/abs/2002.03642
https://openreview.net/forum?id=H1lxVyStPH
https://openreview.net/forum?id=H1lxVyStPH
https://openreview.net/forum?id=H1lxVyStPH
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb27
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30366-X/sb35

	Unsupervised feature learning for self-tuning neural networks
	Introduction
	Related work
	Transfer learning
	Unsupervised feature learning

	Proposed algorithm
	Unsupervised relevance model
	Triplet sampling using rank inconsistency

	Experimental results
	Experimental setting
	Evaluation metrics
	Self-tuning on pre-trained model
	Self-tuning on mixed datasets
	Self-tuning on fine-tuned networks
	Performance comparison with unsupervised feature learning methods

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

