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Sketch retrieval aims at retrieving the most similar sketches from a large database based on one hand-drawn
query. Successful retrieval hinges on an effective representation of sketch images and an efficient searchmethod.
In this paper, we propose a representation scheme which takes sketch strokes into account with local features,
thereby facilitating efficient retrieval with codebooks. Stroke features are detected via densely sampled points
on stroke lines with crucial corners as anchor points, from which local gradients are enhanced and described
by a quantized histogramof gradients. A codebook is organized in a hierarchical vocabulary tree,whichmaintains
structural information of visual words and enables efficient retrieval in sub-linear time. Experimental results on
three data sets demonstrate the merits of the proposed algorithm for effective and efficient sketch retrieval.
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1. Introduction

Sketch-based image retrieval, which deals with the problem of
retrieving similar images from a large database based on a hand-
drawn query, has received considerable attention in recent years [1–
8]. Sketches, originating from the contour or skeleton of an object,
have long been proposed as an effective intermediate representation
for describing essential shape information of objects [9] with numerous
applications. In this work, we define a sketch as a collection of hand-
drawn stroke lines, which can be closed or open as shown in Fig. 1, to
describe an object of interest.

As sketches are hand-drawn with free styles to represent objects,
sketch retrieval is challenging due to several factors. First, there exist
large intra-class differences, as a result of experiential and cognitive dif-
ferences among individuals, e.g., giraffe sketches drawn by two individ-
uals are likely to be significantly different in terms of shapes (see Fig. 1).
Second, there exist small inter-class differences, due to loss of visual de-
tails (i.e., texture and appearance), e.g., the sketch of an apple may look
similar to that of an orange. Therefore, the key issue for sketch retrieval
lies in an effective scheme to represent sketches that takes both inter-
class and intra-class differences into consideration.

Recent work on sketch retrievalmainly focuses on retrieving natural
images (sketch-to-image) on large database [10,3,4,5,7,6,8,11,12], while
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considerably less attention is paid to retrieving sketches (sketch-to-
sketch). With the increasing capacity of the sketch dataset (e.g., the TU
Berlin dataset [8] is created by crowd sourcing with 20,000 sketches of
250 object categories), it is of great importance to resolve the problem
of retrieving sketches on large scale database. Due to large intra-class
and small inter-class differences between sketches, it is ineffective to re-
trieve them simply using shape retrieval algorithms [13–16], where
shapes are derived from natural objects with regular and simple con-
tours (rather than hand-drawn). Unlike these simple shapes, sketches
are hand-drawn with significant disparities on the number and length
of stroke lines even for the same class.

In this paper, we propose an algorithm for efficient and effective
sketch matching with focus on sketch-to-sketch rather than sketch-to-
image retrieval based on one hand-drawn query. We represent a sketch
image by local features that are distributed evenly on stroke lines. For
efficient query andmatch, local features of a sketch image are described
by a quantized histogram of gradients and stored hierarchically in a vo-
cabulary tree. Each sketch image is then represented by the index of tree
nodes instead of storing all of the local feature descriptors in a long vec-
tor. We show that a straightforward bag-of-words approach with local
corner features for sketch retrieval is not effective. Instead, the proposed
algorithm focuses on stroke lines of a sketch image with crucial corner
points and evenly sampled points, which performs more robustly for
sketch retrieval. In addition, the proposed representation scheme facil-
itates integrationwith other spatial kernels [17] to capture spatial infor-
mation of local features and usage of inverted index on tree nodes to
speed up quantization of local features.We evaluate the proposed algo-
rithmon three large data sets of hand-drawn sketches. Experimental re-
sults on these data sets withmore than 20,000 sketch images show that
the proposed algorithm performs favorably against state-of-the-art
methods in terms of retrieval accuracy and execution time.
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Fig. 1. Sketch images. From left to right: Office icon library, hand-drawn ETHZ shape [1] (apple, bottle, giraffe, mug and swan) and TU Berlin sketch [8] data set. Notice that the office icons
have minor inter-class differences (e.g., the right arrows) while the ETHZ shapes have large intra-class differences (e.g., the giraffes and swans).

65C. Ma et al. / Image and Vision Computing 46 (2016) 64–73
Compared to early results of thiswork [18], we show effectiveness of
the proposed local features which use edge information of foreground
and background regions to better represent sketches (Section 3.2); we
analyze the histogram distribution of the number of the stroke points
each sketch contains to set the optimal number of dense stroke features
(Section 4.1); and we present more experimental results and discuss
the application scenarios of the proposed sketch retrieval method
(Figs. 9 and 11).

2. Related work and problem context

Existing methods on primal sketches focus on representation
schemes based on primitive features such as edges as well as curves.
In [19,20], sketches are stored in the form of multiple strokes and re-
trieved by using the shape of each stroke and the spatial relationship be-
tween them. When sketches are simple close-formed hand-drawings,
the Fourier transformed boundary is used as shape feature for represen-
tation [21,22]. By applying the 2-D Fourier transform on a polar shape
image, an adapted Fourier descriptor is proposed to represent sketches
in terms of contour [23]. In [10], Rui et al. review sketch-based image
retrieval with focus on the contour-based and region-based representa-
tion schemes. However, due to simplicity of representation for sketches,
these methods are ineffective to represent and index complex sketches
of a large scale database.

In recent years, much attention has been paid to sketch retrieval due
to its wide applications for intelligent human computer interfaces. Ferrari
et al. construct the ETHZ shape database [1] and k-adjacent segments to
detect objects in images based on hand-drawn examples where image
edges are partitioned into contour segments and organized in chains. In
addition, shape modeling [24], Chamfer matching [2], partial shape
matching [11,5], and discriminative latent shape models [3] have been
applied to sketch-based object detection and localization. However,
these methods mainly focus on retrieving objects in images using
one good query sketch (i.e., sketch to images), and thus they are
less effective for complex sketch retrieval (i.e., sketch to sketches)
when there exist large intra-class and small inter-class differences.

To retrieve object images from a large database, feature descriptors
are commonly extracted for indexing and matching sketches. The
descriptor-based representations in the literature can be roughly cate-
gorized as either global or local. In [25], Chalechale et al. exploit angular
and spatial distributions of edge pixels to represent holistic features,
which is similar to the shape context information [26]. Shao et al. [27]
instead extract key points along stroke lines to account for shape differ-
ence between sketches. In [4], Cao et al. propose an edge descriptor for
sketch based image retrieval. As the underlying matching method is
based on Chamfer distance with focus on global geometric information,
the proposed edge-based descriptors are less effective in describing
complex sketches. On the other hand, local feature based methods are
more robust to represent complex sketches. In [6,7], Eitz et al. leverage
the bag-of-words formulation with SIFT descriptors for sketch-based
image retrieval (i.e., sketch to images). Hu et al. [12] also present a
bag-of-words approach based on multiple descriptors and histogram of
image gradients for sketch-based image retrieval. Both these methods
use grid-based sampling methods to locate local features and the k-
means clustering algorithm to learn codebooks for following indexing
scheme. In contrast, we focus more on selecting the most representative
local features that are evenly distributed on strokes including crucial
corner points and describing local features via a coarsely quantized
histogram of gradients. We note that existing methods focus on
sketch classification [4,6,12,25] (i.e., sketch to images with object types)
or detection (i.e., sketch to images with object locations) [24,1–5], rather
than retrieval (i.e., sketch to sketches with ranking) based on one query.

3. Proposed algorithm

Wepresent the proposed algorithm for sketch retrieval via stroke fea-
tures,which consists of three components: selecting themost representa-
tive stroke points, describing stroke features using a quantized histogram
of gradients, and representing sketch images using a hierarchical vocabu-
lary tree for matching. Fig. 2 shows themain steps of the proposedmeth-
od. In the training phase, we extract all the local features of sketch images
and store these local features in a hierarchical vocabulary tree similar to
[28], where each sketch is indexed by the frequency of tree nodes to
which its local features belong. In the retrieval phase, each query sketch
is represented via its stroke features and the same vocabulary tree. For ef-
ficient retrieval, this vocabulary tree can be easily integrated with an
inverted indexing method, which tallies the identities (labels) of training
sketch images that have local features belonging to each node. Retrieval
can thus be carried out by counting the hit frequency between a query
sketch and the inverted list with identities of training images.

3.1. Densely sampled stroke points

In this work, we use local stroke features to represent sketches in-
stead of contour segments [1,2,3,5]. While several key point detectors
such as difference of Gaussian (DoG) [29], Hessian operator [30] and
Harris–Laplace detector [31] can be used for locating local features,
they are designedmainly for finding salient points. As salient key points
are usually sparsely distributed over an image, it is of great importance
to capture their spatial relationship for better object representation
(rather than simple bag-of-words approaches). Grid-based as well as
random sampling methods have also been proposed to locate local fea-
tures [32,33]. As sketch images consist of strokes with no textural infor-
mation, it is essential to select the most representative stroke points for
local features. Since corners and endpixels of strokes always encode im-
portant geometric information of a sketch, they are used as anchor po-
sitions for dense sampling to encode shape information properly.

In addition, sketches with complex shapes are not compactly repre-
sented by grid-based sampling well (e.g, local features detected by grid
points may capture few stroke points). Thus, we propose to extract
evenly distributed stroke points based on anchor corners. For sketch re-
trieval, each image is normalized to a canonical size and the Harris
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Fig. 2.Main steps of the proposed local feature based sketch retrieval: the vocabulary tree is constructed offline for retrieval. Inverted training image identities are indexed below the tree
leaves. Each query sketch is retrieved by the hits of the training identities (orange).
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corner detector [34] is adopted for computational efficiency. We
compute the corner response of a sketch image I by:

E x; yð Þ ¼
X
u;v

w u; vð Þ I xþ u; yþ vð Þ−I x; yð Þ½ �2; ð1Þ

where w(u,v)= exp(−(u2+v2)/σ2) is the Gaussian kernel. We use
these corners as anchors and add a number of points (e.g., twice
the desired number of points) randomly sampled on the strokes.
We next remove those random points, other than the anchors, that
are too close to each other, in order to spread the points evenly
(i.e., points with large spreads are preferred). This greedy pruning
method performs well in practice in terms of speed and distribution.
The proposed stroke point detection method is summarized in
Algorithm 1. In addition, the fact that not all corner points can be
consistently detected from sketch images (due to large intra-class
differences between hand-drawn sketches) should be taken into
account. Let N be the number of stroke points densely sampled by
Algorithm 1. The number of anchor points is N/4 and the number of
randomly sampled points is 3N/4.

Algorithm 1. Dense sampling of stroke points.

Input:
Sketch image I(x; y) = {0,1}, where ∀(x,y)I(x,y) = 1 and | I | denote all stroke
points and their total number respectively.

Output:
N stroke points.
1: If | I | ≤ N, return the whole stroke points.
2: Compute Harris response using (1) and sort it with descent order to select

N/4 corners, whose location denoted by Ωr

3: Randomly select 2N stroke points from I, whose locations denoted by Ωr.
4: Ω = Ωh ∪ Ωr.
5: Compute pairwise Euclidean distance DE of Ω, and set DE(Ωh,:) = ∞
6: For each point in Ω, remove its nearest neighbor (only in Ωr) using

rowindex according to the distance matrix DE until |Ω | = N.
7: Return Ω

Fig. 3 shows one example of the detected key points by different
methods. Note that if only salient key points are used to describe
sketches (Fig. 3(a)–(d)), the local features are not sufficient to repre-
sent sketches well. On the other hand, the feature representation
based on random sampling (Fig. 3(e)) is also ineffective due to uneven
point distribution. The proposed representation based on anchor points
and dense sampling (Fig. 3(f)) is more reliable for locating local
features.
3.2. Histogram of dense gradients from stroke points

The histogram of oriented gradients (HOG) descriptor is widely
used for object detection [35]. In the HOG formulation, an image is di-
vided into grid cells where gradient orientations are indexedwith a his-
togram of d bins (weighted by its magnitude). To further improve the
performance of HOG by using local geometric information of each cell,
Hu et al. [12] use the Poisson equation [36] to smooth the gradient
field (more details are discussed in [37]). For a sketch image I, a sparse
field from the gradients at the edge pixels is computed, i.e., G½x; y�↦
arctanðδIδx = δI

δyÞ for every edge point I(x,y) = 1. A dense field GΛ over

image coordinates Λ ϵR2 is obtained byminimizing the following ener-
gy function:

argmin
G

Z Z
Λ

∇G−Gð Þ2 s:t:GjδΛ ¼ GjδΛ; ð2Þ

where ∇ is the gradient operator and δΛ denotes the boundary condi-
tion. This equation can be solved by a discrete Poisson solver with the
Dirichlet boundary conditions [36]. The dense gradient field G captures
more edge information (see Fig. 4) than the sparse gradient field G,
thereby representing sketch images with more discriminative strength.

As sketches are typically drawn casually by hand with large intra-
class differences, it is essential to take such variations into account for
sketch retrieval. Thus, we adapt the HOG formulation by first discarding
the central distance weights (i.e., we do not compute the distance vot-
ing to each grid cell center) and then computing a histogram with
coarsely quantized orientations (e.g., d= 4) with an anti-alias function
(5). These two modifications successfully suppress intra-class differ-
ences, and help achieve better retrieval performance (see Section 4).
We summarize the proposed Poisson-based HOG (PHOG) feature de-
scriptor as follows:

Step 1. Compute the dense gradient field G from a sketch image by
solving (2) with a Laplace of Gaussian operator ΔG [36]

ΔG x; yð Þ ¼ −
1

πσ2 1−
x2 þ y2

2σ2

� �
e−

x2þy2

2σ2 : ð3Þ

The dense gradient field G can be approximated by the convolution
of a sketch Image I with ΔG

G x; yð Þ ¼
X
u;v

I x; yð ÞΔG x−u; y−vð Þ: ð4Þ



(a) (b) (c) (d)

(f)(e)

Fig. 4. Histogram of sparse and dense gradients on two patches. (a) Two local patches with different shapes. (b) Histogram of sparse gradients with 4 × 4 grid cells in 4 directions.
(c) Patches in dense gradient field G. (d) Histogram of dense gradients with 4 × 4 grid cells in 4 directions. (e) Absolute difference of two patches with representation (b). (f) Absolute
difference of two patches with representation (d). The patches in (a) can be differentiated with the proposed dense gradients.

Fig. 5. Histogram of dense gradients using the anti-alias (green) and hard quantization
(orange) in the first orientation (α1 = 0). Note that the slope of anti-alias function falls
much more slowly than that of hard quantization, which helps suppress the intra-class
difference.

DoG Hessian Harris-Laplace Harris Random Harris Random

(a) (b) (c) (d) (e) (f)

Fig. 3.Different keypoint sampling results. (a) DoGpoints [29]. (b)Hessianpoints [30]. (c)Harris–Laplace points [31]. (d)Harris corners. (e) Randomly sampled points. (f) Proposed dense
stroke points. (a)–(c) are sparse salient point detectionmethods usually used in bag-of-words approaches. The number of Harris corners ismore than (a)–(c). The proposed dense stroke
points (f) are distributed more evenly than the randomly sampled ones (e).
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Step 2. Select a local square patch around a stroke point p
i
inG (i ϵ Ω).

The patch area is denoted by Sl.

Step 3. Divide the patch Sl into n × n grid cells evenly.
Step 4. Compute the histogramofweighted gradients with d (d=4)
orientations in each cell. For each gradient with orientation θ, the
weight factor on its magnitude is:

f ð cos θ−αiÞ3
� �

; s:t: f tð Þ ¼ 0; t b 0
t; t ≥ 0

�
ð5Þ

where αi (i = 1,2,…,d) denotes the i-th orientation bin center. The
difference between the anti-alias and hard quantization histogram
is shown in Fig. 5.

Fig. 6(a)–(d) shows four examples of the HOG descriptors (second
column), dense gradient field G (third column) as well as the proposed
PHOG descriptors (fourth column) for sketch representations. Sketches
in the first row (blue) are queries; sketches in the second (green) and
third (red) rows represent rank 1 retrievals using the proposed PHOG
and HOG descriptors respectively. The proposed PHOG descriptors ef-
fectively improve the retrieval precision as a dense gradient field G cap-
tures the global contour of sketches in the foreground and background
regions by solving (2). Each local patch Sl encodes richer edge informa-
tion, which facilitates strengthening the discriminative strength of the
PHOG descriptors.

3.3. Hierarchical vocabulary tree

In general, sketch retrievalmethods depend heavily on how features
can be efficiently indexed in a codebook. In this work, we use a
hierarchical tree to train a codebook in spirit similar to the vocabulary
tree [28]. This tree effectively retains structure information of visual
words, which accelerates not only the indexing process but also sketch
retrieval in conjunction with the inverted training identity indexing
scheme.

A hierarchical tree can be defined by the number of cluster centers K
and the depth of tree L. We iteratively use the k-means clustering algo-
rithm at each level until the tree grows to the pre-defined level L. The
nodes of the tree represent the cluster centers, and each local PHOG
feature descriptor of a sketch image can be effectively represented by



(a) (b)

(c) (d)

Fig. 6. Visualization results. In (a)–(d), following each sketch (first column) are HOG descriptors (second column), dense gradient field G (third column) and the proposed PHOG
descriptors (fourth column). Sketches in the first row (blue) are queries; sketches in the second (green) and third (red) rows represent rank 1 retrievals using the proposed PHOG and
HOG descriptors, denoted by PHOG and RHoG respectively. The dense gradient field G captures the global contour information of both the foreground and background by solving (2) and
increases the discriminative strength of PHOG descriptors as the global shape information is better maintained (best viewed on high-resolution display).
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a path from the root node to a leaf node (see Fig. 2). Thus, the histogram
of all the paths of local PHOG descriptors is the signature of a sketch.
Similar to the inverted indexing scheme, we assign each leaf node a
list with image identities (labels) which contain the same PHOG feature
descriptor (see Fig. 2). Sketches can be easily retrieved by counting the
hit frequencies between the local features of a query and training im-
ages instead of retaining all the feature descriptors. Similar to [28], we
compute the weight of each node by the average entropy (i.e., a node
becomes less distinctive when more training images are included) as
follows:

wi ¼ ln
Nα

ni
; ð6Þ

where Nα is the total number of training images and ni denotes the
number of training images that have local PHOG descriptors belonging
to node i. We compute the sketch descriptor (representation) hs for a
sketch image by

hs ¼ w⊗ h; ð7Þ
where ⊗ denotes the dot product, w=[w1,w2,… ,wi,…] and h is the
histogram of paths in the hierarchical tree with respect to all PHOG fea-
ture descriptors.

3.4. Distance metric

Given a query, we find the closest sketches via the sketch descriptor
hs based on their distance using the χ2 kernel [38,39]. Given a sketch
pair, Iq and Ir, and the corresponding sketch descriptors hq as well as
hr, we compute their distance by

D hq;hr
� � ¼ 1

2

Xn
i¼1

hq ið Þ−hr ið Þ� �2
hq ið Þ þ hr ið Þ : ð8Þ

Thus, for each query sketch Iq, we use DΛ to denote the distance vec-
tor of Iq to a subset Λ of the training sketch images, where each training
image has local PHOG features in the same bin of the hierarchical tree as
the query sketch. Thus, the distance vector computed on the subset Λ



Table 1
Optimal grid search results about the hierarchical tree parameters (K,L) on three test
data sets.

K L

Office Icon Library 6 4
ETHZ Shape Data Set 5 4
TU Berlin Sketch Data Set 9 4
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and retrieval can be performed in sub-linear time. The rank k retrievals
are based on:

rank kð Þ ¼ arg min
1;…;k

DΛ: ð9Þ

4. Experiments

Wepresent experimental results of the proposed algorithm(PHOG-A)
with comparisons to state-of-the-art alternative approaches on afore-
mentioned three data sets. The experimental setup including parameter
settings, representative baseline studies, and evaluation criteria is first de-
scribed (Section 4.1). We discuss experimental results on three data sets
respectively (Section 4.2), and analyze the performance of evaluated
methods (Section 4.3).

4.1. Experimental setup

In order to set the proper number of dense stroke features (N stroke
points of Algorithm 1), we analyze the distribution of the number of
stroke points from sketch images of three data sets. The number of stroke
points typically falls between 1600 and 1800 as shown in Fig. 7. Thus, we
use 1800 stroke points in all the experiments. As we detect N/4 corner
points and 2N randomly sampled stroke points (i.e., N/4 + 2N ≤ 1800 in
Algorithm 3.1), we set the value of N to 800 as a trade-off between dis-
criminative strength with a sufficient number of stroke points and com-
putational burden. The area of local feature patch Sl is set to 1/8 of the
input sketch image. In each patch, we compute the Poisson-based HOG
descriptor in 4× 4 grid cellswith 4 (d=4) orientations. Thus, each stroke
point corresponds to one 64 dimensional feature vector.

To determine the optimal number of cluster centers (K) and depth
(L) for the hierarchical vocabulary tree on each data set, one simple
but effective grid search method is used with 5-fold cross validations.
We initialize K and L as integers within the range of 3 to 10, and search
for the optimal pair with highest average retrieval accuracy. Note that
the total number of tree nodes Nt is

Nt ¼
K KL−1
	 

K−1

: ð10Þ

We further constrain the search pairs Nt to be less than 105 since
the use of an excessive number of nodes is likely to cause the overfitting
problem. The optimal pairs of K and L on three test data sets are shown
in Table 1.
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Fig. 7. Histogram distribution of the number of stroke points each sketch contains over
three data sets. Each sketch is resized to 256 × 256 pixels and raster scanned to a
bitmap image with brush width of 2 pixels.
To capture spatial information of local features, we use a two-level
spatial pyramid kernel. First, we partition each sketch image into two
parts relative to the centroid of sampled stroke points horizontally
and vertically. Next, we index each part with the learned hierarchical
tree and concatenate the four histograms as the final representation of
a sketch image. This spatial kernel is effective as it retainsmost structur-
al information without increasing intra-class differences.

4.2. Experimental results

4.2.1. Office Icon Library
We collect a set of 78 Office icons for flow chart creation for training

and create a set of 38 hand-drawn sketches as the test set. Some icons
in the training set are rather similar with minor shape difference,
e.g., arrows shown in Fig. 8. Meanwhile, the hand-drawn queries con-
tain large shape variation when compared with the counterparts in
the training set. We train a hierarchical tree of depth 4 with 6 clusters
(K=6and L=4). The retrieval results are evaluated by human subjects
(similar to the setup in [6]), and we present the retrieval results and
compute the CMA. The results of the proposed algorithm with compar-
isons to the alternative SPM, SCM and DCM methods are presented in
Fig. 8, and the CMA (rank 1 to 6) is shown in Table 2.

4.2.2. ETHZ shape data set
We use 5 hand-drawn shapes from the ETHZ data set [1] (i.e., apple,

giraffe, swan, bottle and mug shown in Fig. 1) which consists of 1050
sketches drawn by 50 different subjects (210 sketches per category)
for experiments. We train a vocabulary tree (K = 5 and L = 4) and
choose each sketch as query sketch, and compare the CMA of rank 1
to 6 retrieval results as the training set is large.

In addition to comparisonswith the SPM, SCMand DCMmethods, in
Table 3 we present experimental results using variants of the algorith-
mic components including Poisson-based HOG and k-means (PHOG-K,
where k = 500), Poisson-based HOG and a hierarchical tree (PHOG-
T), and proposed stroke points as key points with HOG descriptors as
well as a hierarchical tree (KHOG-T). The proposed sketch retrieval al-
gorithm (PHOG-A) consists of stroke features from Poisson-based
HOG descriptors, a hierarchical tree and a spatial pyramid kernel. Note
that the PHOG-A algorithm differs from the PHOG-K method by the
use of a hierarchical tree. On the other hand, the PHOG-A algorithm dif-
fers from the PHOG-T method by the use of a spatial pyramid.

We show all the failed retrieval cases (7 out of 1050 sketches) from
rank 1–6 in Fig. 9. We note that the first five failure cases can bemainly
attributed to small inter-class differences, e.g., the query hand-drawn
swan in the first row of Fig. 9 is more similar to the retrieved apples or
bottle. On the other hand, large intra-class differences are the prime rea-
sons for the last two failure cases, i.e., two bottles in eighth and ninth
row are both quite different from the most common vertical bottles
(one placed horizontally and the other with 45 degree inclination) in
the training set.

4.2.3. TU Berlin Sketch data set
Eitz et al. [8] collect 20,000 sketches representing 250 different ob-

jects (each object has 80 different sketches) via crowd sourcing. In [8],
the goal is to analyze and compare hand-drawn sketch recognition ca-
pabilities of humans and computers. The bag-of-words approach with



Fig. 8. Rank 6 Office icon retrieval results. From left to right: sampled hand-drawn queries, sketch retrievals by the proposed algorithm, SPM, SCM and DCM methods, respectively. The
most similar retrievals are marked by green squares.

Table 3
Cumulativematching accuracy on ETHZ Shape data set from rank 1–6 (%). Bold data high-
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dense SIFT features and a codebook with k-means clustering is used for
sketch representation, which is the same as the above-mentioned SPM
method except that the spatial pyramid kernel is not used as it is
shown to provide little performance improvement [8]. We use the last
20 sketches per category as the query set, and use the others to train
the vocabulary tree (K=9 and L=4) for experiments. We additionally
compare with the CSGC method [40], where the stroke lines are linked
as chains to compute the similarity scores for sketch retrieval. Fig. 10
shows the CMA and CBMA curves of all evaluated methods. Some re-
trieved sketches by the proposed PHOG-A are presented in Fig. 11. To
demonstrate the effectiveness of the Harris corner points for reducing
randomness of retrieval results, we carry out experiments 100 times re-
spectively on the TU-Berlin Sketch data set using: (1) only the randomly
selected points and (2) the Harris corners together with randomly
selected points. We report the mean and variance of cumulative match
accuracy with rank 16 (a larger rank value is more sensitive to such ran-
domness) as 81.6% ± 0.058 (only randomly selected points) against to
83.3% ± 0.010 (Harris corners with randomly selected points). These ex-
perimental results show that the proposed key points not only improve
the retrieval accuracy but also reduce randomness of retrieval results.

4.3. Discussion

The DCM, SCM and CSGC methods are based on holistic representa-
tions which capture global spatial information of sketch images. For
sketches with simple shapes, the layout information becomes more
important, and these holistic methods are effective for sketch retrieval.
As shown in the experiments with the office icon and ETHZ data sets,
these methods achieve comparable results with the proposed algo-
rithm. However, they do not perform well for more complex sketches
Table 2
Cumulative matching accuracy on Office Icon Library from rank 1–6 (%). Bold data high-
light the best results.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

DCM [2,4] 36.84 52.63 65.79 71.05 71.05 73.68
SCM [26] 71.05 78.95 81.58 81.58 92.11 94.74
SPM [17] 52.63 63.16 73.68 81.58 86.84 86.84
PHOG-A 76.32 92.11 97.37 100 100 100
(e.g., the ones in the TU Berlin data set). Another issue with the SCM
method is the high computational load and thus it cannot be applied
to large-scale sketch retrieval.

The proposed algorithm and the SPM methods are based on local
features with a codebook indexing scheme. In the SPM method, local
features are dense SIFT descriptors and the codebook is trained with
the k-means clustering algorithm. The SPM method has been shown
to be effective for representing object images with rich appearance
and texture information [17,33]. However, hand-drawn sketches con-
sist of strokes with no texture information. We sample local features
on stroke lines instead of uniformly sampling over the entire image,
and use Poisson-based HOG descriptors with coarsely quantized histo-
grams. As shown in Table 3, the PHOG-K method performs better
(rank 1) than the SPMmethod which demonstrates the sampled stroke
features aremore effective for sketch representation. On the other hand,
the comparisons of the PHOG-T and KHOG-T methods demonstrate the
effectiveness of coarse quantization (PHOG) in accounting for large
shape variation of sketches.

We note that it is of great importance to properly capture spatial in-
formation of local features for sketch retrieval, although Eitz et al. show
that the use of spatial layout information does not improve the perfor-
mance in sketch recognition [8] based on a bag-of-words approach. Ex-
perimental results show that better accuracy can be achieved by the
proposed two-level spatial pyramid kernel especially for rank 1 tests.
Table 3 and Fig. 10 show that the PHOG-A method outperforms the
PHOG-T method due to the use of spatial information. In addition, the
hierarchical tree facilitates retaining structural information of visual
light the best results.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

DCM [2,4] 95.14 97.33 97.71 98.19 98.38 98.48
SCM [26] 92.86 96.38 97.81 98.38 98.57 98.57
SPM [17] 96.19 97.52 98.10 98.29 98.38 98.48
PHOG-K 96.48 97.52 97.90 98.10 98.48 98.67
KHOG-T 96.48 97.81 98.19 98.48 98.67 99.05
PHOG-T 96.67 98.38 98.67 98.67 99.14 99.14
PHOG-A 97.14 98.48 98.67 98.67 99.05 99.14
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Fig. 9. Rank 6 failure cases (7 out of 1050 sketches) on the ETHZ shape data set. In the first column are query sketches (blue) and in the remaining columns are the corresponding failure
retrievals (rank 1–6).
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words. In Table 3, the results of the PHOG-T method over the PHOG-K
approach demonstrate that the use of a vocabulary tree helps improve
retrieval accuracy.

Since users are not aware of the retrieval contents of the training
dataset, the query sketches may be significantly different or with incom-
plete shapes.We attribute this issue to the large intra-class difference be-
tween query and retrieval pairs. We qualitatively discuss two examples,
where large intra-class differences exist in the query and retrieved sketch
pairs. The first one is shown in Fig. 6(a) and Fig. 8 (12th row): the query
sketch of a left bracket is not drawn well, i.e., the long sharp curve is
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missing (which may be considered as an incomplete query). Fig. 9
shows another example that the giraffes and swans on the last row
have fewer stroke lines compared to those on the third row. For these
cases, the proposed algorithm exploits a hierarchical tree to index the dis-
criminative local features and thus effectively suppresses such intra-class
difference and retrieves the most holistically similar sketches.

Failure retrieval cases using the proposed algorithmare presented in
Fig. 9 and11. The proposed PHOG-Amethod for sketch retrieval is based
on a local representation scheme. Although a hierarchical tree retains
structural information, someuseful holistic information is not exploited.
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ves with the TU Berlin sketch data set.



Fig. 11. Sample retrieval results on the TU Berlin sketch database. In the left column are the query sketches (blue) and in the right columns are the corresponding rank 16 retrievals. The
retrievals with the same category as the corresponding query sketch are marked by otherwise marked by .
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For example, the giraffe query sketch in the fifth row of Fig. 9 has few
spots, while the first, third and fifth ranked retrievals have many spots
(i.e., the holistic shape difference is not exploited by the local represen-
tation scheme). Likewise, the query pumpkin sketch in the first row of
Fig. 11 has some vertical stripes, while the second, sixth and seventh
ranked retrievals have few stripes. In addition, sketches with consider-
ably smaller inter-class differences are readily categorized as the same
class, e.g., the query sketch in fifth row in Fig. 11 is a pickup truck,
while the third, fourth and twelfth retrievals are race cars; the eighth
and sixteenth retrievals are SUVs; and the thirteenth retrieval is a truck.

Overall, the proposed algorithm PHOG-A performs favorably
against other state-of-the-art methods and alternatives. Implement-
ed in MATLAB on a desktop computer with a 3.1 GHz CPU and 4 GB
memory, each retrieval takes less than 0.01 s on the ETHZ data set
which is nearly the same as the PHOG-K, KHOG-T, PHOG-T and
SPM methods and an order magnitude faster than DCM (0.21) and
SCM (0.56) approaches. For the TU Berlin data set, it takes less
than 0.1 s for each retrieval as opposed to other methods (PHOG-T:
0.08, SPM: 0.06, DCM: 1.04, and SCM: 2.57 s).
5. Conclusion

In this paper, we propose a novel representation for hand-drawn
sketches based on stroke features. Local features are detected via dense-
ly sampled stroke points and described by a quantized histogramof gra-
dients interpolated by the Poisson equation. A codebook is organized in
a hierarchical tree, which maintains structural information of visual
words and enables efficient retrieval in sub-linear time. Experimental
results on three benchmark data sets demonstrate that the proposed al-
gorithm performs favorably against other state-of-the-art methods for
sketch retrieval.
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