
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Vision-Based Positioning for Internet-of-Vehicles
Kuan-Wen Chen, Chun-Hsin Wang, Xiao Wei, Qiao Liang, Chu-Song Chen, Ming-Hsuan Yang, and Yi-Ping Hung

Abstract—This paper presents an algorithm for ego-positioning
by using a low-cost monocular camera for systems based on
the Internet-of-Vehicles (IoV). To reduce the computational and
memory requirements, as well as the communication load, we
tackle the model compression task as a weighted k-cover problem
for better preserving the critical structures. For real-world
vision-based positioning applications, we consider the issue of
large scene changes and introduce a model update algorithm to
address this problem. A large positioning dataset containing data
collected for more than a month, 106 sessions, and 14,275 images
is constructed. Extensive experimental results show that sub-
meter accuracy can be achieved by the proposed ego-positioning
algorithm, which outperforms existing vision-based approaches.

Index Terms—Ego-positioning, model compression, model up-
date, long-term positioning dataset.

I. INTRODUCTION

INTELLIGENT transportation systems have been exten-
sively studied in the last decade to provide innovative and

proactive services for traffic management and driving safety
issues. Recent advances in driving assistance systems mostly
provide stand-alone solutions to these issues by using sensors
limited to the line of sight. However, many vehicle accidents
occur because of other vehicles or objects obstructing the
view of the driver. Had the visual information of all nearby
vehicles been available via the Internet-of-Vehicles (IoV),
such accidents could have been avoided. To achieve this goal
with IoV, one of the main tasks is constructing a neighbor
map [1] that estimates the positions of all the surrounding
vehicles by integrating the positioning information obtained
from the nearby vehicles via vehicle-to-vehicle or vehicle-to-
infrastructure communication. Chen et al. [1], [2] have pro-
posed a neighbor map construction algorithm, whose accuracy
highly depends on the ego-positioning results of each vehi-
cle. While most vehicular communication methods are non-
directional, sharing information with other vehicles becomes
challenging if their accurate location cannot be detected.

Ego-positioning aims at locating an object in a global
coordinate system based on its sensor inputs. With the growth
of mobile or wearable devices, accurate positioning has be-
come increasingly important. Unlike indoor positioning [3],

K.-W. Chen is with the Department of Computer Science, National Chiao
Tung University, Taiwan, e-mail: kuanwen@cs.nctu.edu.tw.

C.-H. Wang, X. Wei, and Q. Liang are with Graduate Institute of Network-
ing and Multimedia, National Taiwan University, Taiwan.

C.-S. Chen is with the Institute of Information Science and Research Center
for Information Technology Innovation, Academia Sinica, Taiwan and also
with the Institute of Networking and Multimedia, National Taiwan University,
Taiwan, e-mail: song@iis.sinica.edu.tw.

M.-H. Yang is with the School of Engineering, University of California,
Merced, USA, e-mail: mhyang@ucmerced.edu.

Y.-P. Hung is with the Institute of Networking and Multimedia and the
Department of Computer Science and Information Engineering, National
Taiwan University, Taiwan, e-mail: hung@csie.ntu.edu.tw.

For	
 image	
 collec,on	

For	
 image	
 collec,on	

For	
 local	
 model	

construc,on

Structure	

from	
 mo,on

For	
 image	
 collec,on	

(a)

For	
 image	
 matching	

and	
 posi1oning

Download	
 	
 local	
 3D	

scene	
 model

Upload	
 newly	

acquired	
 images	
 for	

model	
 update

(b)

Fig. 1. Overview of the proposed vision-based positioning algorithm: (a)
training phase: images from passing vehicles are uploaded to a cloud server for
model construction and compression; (b) ego-positioning phase: SIFT features
from images acquired on vehicles are matched against 3D models previously
constructed for ego-positioning. In addition, the newly acquired images are
used to update 3D models.

[4], [5], [6], considerably less efforts have been put into
developing high-accuracy ego-positioning systems for outdoor
environments. Global Positioning System (GPS) is the most
widely used technology implemented in vehicles. However,
the precision of GPS sensors is approximately 3 to 20 meters
[7], [8], which is not sufficient for distinguishing the traffic
lanes and highway lane levels critical for intelligent vehicles.
In addition, existing GPS systems do not work properly in
urban areas where signals are obstructed by high rise buildings.
Although GPS-based systems using external base stations
(e.g., RTK satellite navigation [9]) and positioning methods
using expensive sensors (e.g., radar sensors and Velodyne 3D
laser scanners) can achieve high positioning accuracy, they
are not widely adopted because of cost issues. Hence, it is
important to develop accurate ready-to-deploy IoV approaches
for outdoor environments.

In this paper, we introduce a vision-based positioning al-
gorithm that utilizes low-cost monocular cameras. It exploits
visual information from the images captured by vehicles to
achieve sub-meter positioning accuracy even in situations of

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

huge traffic jams. An overview of the proposed algorithm is
shown in Fig. 1.

The proposed algorithm includes the training and ego-
positioning phases. In the training phase, if a vehicle passes
an area that can be roughly positioned by GPS, the captured
images are uploaded to a cloud server. In the proposed
algorithm, GPS is only used for roughly positioning as prior
information to narrow down the search region, i.e., we know
the local models to be used, matched and updated, rather than
matching all images or local models. In our experiments, the
range of a local model is at most 800 meters, and thus we only
need to have estimation with error less than 400 meters. After
numerous vehicles passing through that area, the cloud server
collects a sufficient number of images to construct the local 3D
point set model of the area by using a structure-from-motion
algorithm [10], [11], [12].

In the ego-positioning phase, the vehicle downloads all the
local 3D scene models along the route. When driving, the
approximate position of the vehicle can be known by using the
GPS module, and the current image of the vehicle is matched
with the associated local 3D model for ego-positioning. Note
that our algorithm only needs a vehicle to download the scene
models via I2V communication in the ego-positioning phase,
and upload the collected images for model update via V2I
communication when the wireless bandwidth is available. Both
I2V and V2I wireless communications can be carried out using
LTE communication as the bandwidth of 4G technology is
sufficient for such tasks. Although there may be hundreds of
vehicles in the same area, and the bandwidth would not be
enough for all transmissions at the same time. In the proposed
algorithm, for I2V communication, the scene models can be
preloaded when a fixed driving route is provided. Furthermore
the model size of one scene can be compressed significantly
in our experiments. For V2I communication to upload images
for update, the problem can be alleviated by transmitting a
number images from a few vehicles.

Although model-based positioning [13], [14], [15] has been
studied in recent years, most of the approaches construct
a single city-scale or close-world model and focus on fast
correspondence search. As feature matching with large scale
models is difficult, the success rate for registered images is
under 70% with larger positioning errors (e.g., on average 5.5
meters [13] and 15 meters [14]). Fundamentally, it is difficult
to construct and update a large-scale (or world-scale) model
for positioning.

The main contributions of this work are summarized as
follows. First, we propose a vision-based ego-positioning
algorithm within the IoV context. We tackle the above-
mentioned issues and practicalize model-based positioning for
real-world situations. Our approach involves constructing local
and update models, and hence sub-meter positioning accuracy
is attainable. Second, a novel model compression algorithm
is introduced, which solves the weighted k-cover problem to
preserve the key structures informative for ego-positioning. In
addition, a model update method is presented. Third, a dataset
including more than 14,000 images from 106 sessions over
one month (including sunny, cloudy, rainy, night scenes) is
constructed and will be made publicly available. To the best

of our knowledge, the proposed vision-based ego-positioning
system is the first to consider large outdoor scene changes over
a long period of time with sub-meter accuracy.

II. RELATED WORK AND PROBLEM CONTEXT

Vision-based positioning aims to match current images with
stored frames or pre-constructed models for relative or global
pose estimation. Such algorithms can be categorized into
three types according to the registered data for matching. i.e.,
consecutive frames, images sets, and 3D models. In addition,
we discuss related work on compression of 3D models and
long-term positioning.

A. Vision-Based Positioning

1) Matching with Consecutive Frames: Positioning meth-
ods based on visual odometry, which involves matching the
current and previous frames for estimating relative motion,
are widely used in robotics [16], [17], [18]. These methods
combine the odometry sensor readings and visual data from a
monocular or stereo camera for the incremental estimation of
local motion. The main drawbacks of these methods are that
only the relative motion can be estimated, and the accumulated
errors may be large (about 1 meter a movement of 200
meters [18]) with the drifting problems. In [19] Brubaker et
al. incorporate the road maps to alleviate the problem with
accumulated errors. However, the positioning accuracy is low
(i.e., localize objects with up to 3 meter accuracy).

2) Matching with Image Sets: Methods of this category
match images with those in a database to determine the
current positions [20], [21]. Such approaches are usually used
in multimedia applications where accuracy is not of prime
importance, such as non-GPS tagged photo localization and
landmark identification. The positioning accuracy is usually
low (between 10 and 100 meters).

3) Matching with 3D Models: Methods of this type are
based on a constructed 3D model for positioning. Arth et al.
[22] propose a method to combine a sparse 3D reconstruction
scheme and manually determine visibility information to es-
timate camera poses in an indoor environment. Wendel et al.
[23] extend this method to an aerial vehicle for localization in
the outdoors scenarios. Both these methods are evaluated in
constrained spatial domains in a short period of time.

For large-scale localization, one main challenge is matching
features efficiently and effectively. Sattler et al. [14] propose
a direct 2D-to-3D matching method based on quantized visual
vocabulary and prioritized correspondence search to quicken
the feature matching process. This method is extended to both
2D-to-3D and 3D-to-2D search [15]. Lim et al. [24] propose
the extraction of more efficient descriptors at every 3D point
across multiple scales for feature matching. Li et al. [13] deal
with a large scale problem including hundreds of thousands of
images and tens of millions of 3D points. As these methods
focus on efficient correspondence search, the large number
of 3D point cloud models results in a registration rate of
70% and mean of localization error of 5.5 meters [13]. Thus,
these approaches are not applicable to IoV systems because

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

of position accuracy, and computational and memory require-
ments. Recently, methods that use a combination of local
visual odometry and model-based positioning are proposed
[25], [26]. These systems estimate relative poses of mobile
devices and carry out image-based localizations on remote
servers to overcome the problem of accumulative errors.

However, none of these model-based positioning approaches
considers outdoor scene changes and evaluates images taken
in the same session as that of the model being constructed.
In this paper, we present a system that deals with large scene
changes and updates models for long-term positioning within
the IoV context.

B. Model Compression

In addition to feature matching for self-positioning, com-
pression methods have been developed to reduce the com-
putational and memory requirements for large-scale models
[27], [28], [29]. Irschara et al. [27] and Li et al. [28] use
greedy algorithms to solve a set cover problem to minimize
the number of 3D points while ensuring a high probability of
successful registration. Park et al. [29] further formulate the
set cover problem as a mixed integer quadratic programming
problem to obtain an optimal 3D point subset. Cao and Snavely
[30] propose a probabilistic approach that considered both
coverage and distinctiveness for model compression. However,
these approaches only consider point cloud coverage without
taking the spatial distribution of 3D points into account. To
overcome this problem, a weighted set cover problem is
proposed in this work to ensure that the reduced 3D points not
only have large coverage, but are also fairly distributed in 3D
structures, thereby facilitating feature matching for accurate
ego positioning.

C. Long-Term Positioning

Considerably less attention has been paid to long-term
positioning. Although a few methods [31], [32] in robotics
consider outdoor scene changes for localization and mapping,
only 2D image matching is carried out across time spans.
In terms of these applications, correct matching is defined
as when the distance between a pair of matched images is
less than 10 or 20 meters by GPS measurements, which
is significantly different from estimating the 3D absolute
positions addressed in this work.

III. SYSTEM OVERVIEW

The proposed system consists of two phases, as illustrated
in Fig. 2. The training phase is carried out on local machines
or cloud systems. It includes three main components, which
are processed off-line by using batch processing. First, 3D
point cloud models are constructed from the collected images.
Second, structure preserving model compression reduces the
model size not only for computational and memory require-
ments, [27], [28], [29] but also for minimizing communication
overheads for IoV systems. In addition, the models are updated
with newly arrived images. In this study, a model pool is
constructed for update. This has been discussed in further
detail in Section IV-D.

TRAINING	
 PHASE	
 (Run	
 on	
 Server/Cloud)

Image	
 from	
 vehicle

2D-­‐to-­‐3D	
 Image	

Matching	
 and	

LocalizaFon

PosiFon	
 of	
 Vehicle

EGO-­‐POSITIONING	
 PHASE	
 (Run	
 on	
 Vehicle)

Image-­‐Based	

Modeling

Structure	

Preserving	

Model	

Compression

3D	
 Point	

Cloud	
 Model	

Sparse	
 3D	
 Point	

Cloud	
 Model	

Images	
 from	
 vehicles

Fig. 2. Overview of the proposed vision-based positioning system. The blue
dotted lines denote wireless communication links.

The ego-positioning phase is carried out on vehicles.
The 2D-to-3D image matching and localization component
matches images from a vehicle with the corresponding 3D
point cloud model of an area roughly localized by GPS to
estimate 3D positions. There are two communication links
in the proposed system. One is to download 3D point cloud
models to a vehicle, or preload them when a fixed driving
route is provided. However, the size of each uncompressed
3D point model (ranging from 105.1 MB to 12.8 MB in our
experiments) is critical as numerous models are required for
real-world long-range trips. The other link is to upload images
to a cloud server for model update.

IV. VISION-BASED POSITIONING SYSTEM

There are four main components in the proposed system;
they are described in detail in the following sections.

A. Image-based Modeling

Image-based modeling aims to construct a 3D model from
a number of input images [33]. A well-known image-based
modeling system is the PhotoTourism [10] approach, which
estimates camera poses and 3D scene geometry from images
by using the structure from motion (SfM) algorithm. Subse-
quently, a GPU and multicore implementation of SfM and
linear-time incremental SfM are developed for constructing
3D point cloud models from images [11], [12].

After images from vehicles in a local area are acquired,
the SIFT [34] feature descriptors between each pair of images
are matched using an approximate nearest neighbors kd-tree.
RANSAC is then used to estimate a fundamental matrix for
removing outliers that violate the geometric consistency.

Next, an incremental SfM method [12] is used to avoid
poor local minimal solutions and reduce the computational
load. It recovers the camera parameters and 3D locations of
feature points by minimizing the sum of distances between
the projections of 3D feature points and their corresponding
image features based on the following objective function:

min
cj ,Pi

n∑
i=1

m∑
j=1

vijd (Q (cj , Pi) , pij) , (1)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

●

●

●

●

Fig. 3. An example of image-based modeling from 400 images. Given a set
of images, the 3D point could model is constructed based on SfM.

where cj denotes the camera parameters of image j, m is the
number of images, Pi denotes the 3D coordinates of feature
point i, n is the number of feature points, vij denotes the
binary variables that equal 1 if point i is visible in image j
and 0 otherwise, Q(cj , Pi) projects the 3D point i onto the
image j, pij is the corresponding image feature of i on j, and
d(.) is the distance function.

This objective function can be solved by using bundle ad-
justment. A 3D point cloud model P is constructed. It includes
the positions of 3D feature points and the corresponding SIFT
feature descriptor list for each point. An example of the
proposed image-based IoV positioning system is shown in Fig.
3.

B. Structure Preserving Model Compression

Compressing the model in a manner that it retains the
essential information of an ego-positioning model is a key
issue in reducing the computational, memory, and commu-
nication loads. A feasible approach to address this issue is
to sort the 3D points by their visibility and keep the most
observed points. However, it may result in non-uniform spatial
distribution of the points, as the points visible to many cameras
are likely to be distributed in a small region in the image.
Positioning based on these points thus leads to inaccurate
estimation of the camera pose. A few methods [30], [27],
[28], [29] address this problem as a set k-cover problem to
find a minimum set of 3D points that ensures at least k points
are visible in each camera view. However, these approaches
focus on point cloud coverage and do not consider the non-
uniform spatial distribution in 3D structures with each view,
as discussed above. The situation deteriorates when we use
the local area models constructed in our system. In this work,
we address these issues with a weighted set k-cover algorithm
where the weights are given to ensure that the selected points
are fairly distributed on all planes and lines in the area. The
compressed model better preserves the spatial structure of the
scenes, which is crucial for our system to achieve sub-meter
positioning accuracy.

Let a 3D point cloud reconstructed be P = {P1,...,PN},
Pi ∈ R3 and N is the total number of points. First, we
detect planes and lines from a 3D point cloud by using the
RANSAC algorithm [35]. This method selects points randomly
to generate a plane model and evaluate it by counting the

(a) (b)

Fig. 4. (a) An example of plane and line detections. (b) An example of point
cloud model after model compression.

number of points consistent to that model (i.e. with the point-
to-plane distance smaller than a threshold). This procedure is
repeated numerous times, and the plane with the most number
of consistent points is selected as the detected plane. After a
plane is detected via this method, the 3D points belonging to
this plane are removed, and the next plane is detected from
the remaining points. This process is repeated until there are
no more planes with sufficient consistent number of points.
Line detection is carried out after plane detection in a similar
manner unless two points are selected to generate a line
hypothesis in each iteration. An example of plane and line
detections from the model in Fig. 3 is shown in Fig. 4(a).

By using the RANSAC with the one-at-a-time strategy (one
line or one plane), the detected planes and lines are usually
distributed evenly over the scenes because the main structures
(in terms of planes or lines) are identified first. This facilitates
selecting the non-local common-view points for compressing
a 3D point model. The planes and lines detected in the original
point cloud model are denoted as rl (l = 1 · · ·L), where L is
the total number of planes and lines. The remaining points that
do not belong to any plane or line are grouped into a single
category L+ 1. Given a 3D point Pi in the 3D reconstructed
model, we initially set its weight wi as follows:

wi =

{
σl, if Pi ∈ rl,
σL+1, otherwise ,

(2)

with
σl = |{Pi|Pi ∈ rl,∀i}| /N, (3)

σL+1 = |{Pi|Pi /∈ rl,∀i,∀l}| /N. (4)

That is, the plane or line having a larger portion of points is
given a higher weight for point selection.

Based on the weights computed by (2), a weighted set
k-cover problem is formulated. However, the minimum set
k-cover problem is NP-hard. Therefore, we use a greedy
algorithm to solve it efficiently. Let {c1,...,cm} be the m
camera views for the 3D model reconstruction in Section IV-A.
We aim to select a subset of points from P such that there are
at least k points viewable for each camera, and the sum of
weights of the selected points is maximized.

Following this greedy principle for solving a set cover
problem, our method iteratively selects the most visible point
until at least k points are selected for every camera. We first

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

Algorithm 1 Structure preserving model compression
Input: 3D point cloud model P = {P1,...,PN}, cameras
{c1,...,cm}, integer k

1: Initialize the compressed model M ← ∅, number of
covered points C[j] = 0, for all camera cj

2: Detect planes and lines r1,...,rL in P by RANSAC
3: Assign weight wi to each point Pi by (2)
4: while C[j] < k, for all camera cj do
5: Select Ps by (5)
6: M← Ps

7: P← P\Ps

8: for all cameras cj do
9: if Ps ∈ cj then

10: C[j] = C[j] + 1
11: end if;
12: end for;
13: for all 3D points Pi do
14: if Ps ∈ rl and Pi ∈ rl then
15: wi = wi/2
16: end if;
17: if Ps /∈ cj for all j s.t. C[j] < k then
18: wi = 0
19: end if;
20: end for;
21: Normalize wi

22: end while;
23: Return: compressed model M

find one point from P. This point (denoted as Ps) satisfies the
following criterion:

Ps = argmax
P∈P

m∑
j=1

wiv(P, cj), (5)

with

v(P, cj) =

{
1, if P ∈ cj ,
0, otherwise ,

(6)

being the visibility of the point P from the j-th camera. Hence,
Ps, as shown in (5), is the most commonly visible point in
terms of the respective weights. We then remove Ps from
P by using P ← P\Ps in the proposed greedy approach.
Our approach continues to identify the most visible point
(Ps) based on the new point set P; this procedure is iterated
accordingly.

For the method described in the above paragraph, we
assume that the weights {wi} are fixed. Although the planes
and lines identified by our approach are usually distributed
over the scene, the selected points may still be centralized in
a local region inside a single plane or line. Thus, we propose
to adapt the weights in every iteration of our greedy algorithm.
Once the point Ps is selected in an iteration, we reduce the
probability of this point being part of a line or a plane as
follows. If Ps ∈ rl, then wi is divided by 2 for all points
Pi ∈ rl in the next iteration. In this way, the plane or line from
which the points have already been selected are weighted less,
and the other planes or lines will have a higher probability
of being selected. Algorithm 1 describes the main steps of

Run	
 on	
 Server/Cloud

M1/15	

10:00

Ac5ve	
 Model	

3D	
 Point	
 Cloud	
 Model	
 Pool	

M1/15 15:30
 M1/21 17:30
 M1/30 19:00
M1/30 10:00

Model	
 Removed	

If	
 one	
 model	
 is	
 not	
 used	
 for	
 a	
 long	
 1me	

Image-­‐Based	

Modeling

Model	

Compression

Model	
 Construc5on

Model	

Replacement

Images

2D-­‐to-­‐3D	
 Image	
 Matching	

and	
 Localiza5on
 Posi5on
Model	

Verifica5on

Invalid

Valid

Run	
 on	
 Vehicle

Fig. 5. Overview of our model update algorithm.

(a) (b)

Fig. 6. The distributions of positioning error (a) to number of correspondences
and (b) to inlier ratio, respectively.

this method. An example of model compression is shown in
Fig. 4(b), where the main structure is maintained as most of
the noisy points are removed The model size is significantly
reduced from 105.1 MB to 14.4 MB.

When a 3D point cloud model is constructed in advance,
a visual word tree can be constructed for efficient feature
matching in the ego-positioning phase. A visual word is a
cluster of similar feature descriptors grouped by the k-means
algorithm. In this work, a kd-tree is constructed for fast
indexing.

C. 2D-to-3D Image Matching and Localization

Given a test image, the interesting 2D points are detected
and their SIFT descriptors are computed. The 2D-to-3D
matching determines the correspondence of the 2D points in
the test image and the 3D points in the compressed model.
The camera position can then be estimated based on the
correspondence. In our approach, a 2D-to-3D correspondence
is determined if the first and second nearest neighbors in the
terms of descriptors pass the ratio test with a threshold (e.g.,
0.7 in this work). To speed it up, a prioritized correspon-
dence search [14] is applied. After finding correspondences
{{p1, P1}, ..., {pNc , PNc}}, where p is the corresponding 2D
feature point of P and Nc is number of correspondences, we

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Fig. 7. Four scenes: Scene #1, Scene #2, Scene #3, and Scene #4 from left to right respectively. The first row is the images of the scenes. The second row
shows the constructed models, and the compressed models by our method are shown in the third row.

use the 6-point Direct Linear Transform (DLT) algorithm [36]
with RANSAC to compute the camera pose.

D. Model Update

As the outdoor scenes are likely to change owing to lighting,
occlusion and other factors, it is necessary to update the model
such that a test image can be well matched for camera pose
estimation. In contrast to the existing methods that assume 3D
models are up-to-date, we tackle this problem by presenting
an update method for real-world scenarios.

Fig. 5 shows an overview of the proposed model update
algorithm. Instead of using only one 3D point cloud model,
a pool of them constructed at different scenarios and time is
maintained for every local area in our system. Here, we do not
combine more observations into a single model as in addition
to increasing the size, it might introduce more ambiguities
while matching features. Furthermore, only one active model
is selected and transmitted in our model update method.
There are two main components in the update process: model
verification and model replacement. In the ego-positioning
phase, the model verification component verifies whether the
input image can be registered properly with the model by using
the following criterion,

(Nc > T1) and (NI/Nc > T2), (7)

where Nc is number of correspondences, and NI is the number
of inliers determined by the DLT algorithm. Furthermore, T1
and T2 are acquired from the training data; in our experiments
they are set to 50 and 0.5, respectively. Fig. 6 shows the po-
sitioning error with respect to the number of correspondences
and the inlier ratio from our experiments. The positioning error
decreases when the number of correspondences and inlier ratio

are increased up to certain number. The results also show
why the model compression works as only a sufficiently large
number of point correspondences are used for camera pose
estimation.

If multiple observations cannot be matched properly by the
current model (i.e., large errors in camera pose estimation),
it is replaced by one from the pool. First, all the models in
the pool are evaluated by (7) with the test images. Second,
the best matched model is selected as the new active one if
the number of correspondences is above a threshold. Third, if
no model satisfies the criterion, a new model is constructed
by using the images collected in this session to replace the
current one. Finally, if a model in the pool is not used for a
long duration, it is removed so that the pool size does increase
too much.

Empirically, we determine that a pool of eight models is
sufficient for daytime scenarios. In addition, it is rare for a
new model to be created to replace an existing one.

V. EXPERIMENTAL RESULTS

In this section, we first evaluate the positioning of a single
still image with both local and up-to-date models in four
scenes and compare the proposed algorithm with state-of-the-
art methods [28], [30]. Next, image sequences with ground
truth positions in a controlled environment are evaluated.
Third, the proposed algorithm is evaluated using real-world
image sequences. Finally, a dataset with more than 14,000
images of session data with 106 sessions is constructed for
evaluation of the proposed algorithm with model update.

The ground truth positions in our experiments are all
measured manually in real scenes. For each scene, we define
a world coordinate system with x- and y-axes on the ground

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

Fig. 8. Example test images in four scenes.

22.9	 21.6	

35.9	 33.7	

68.7	

38.2	
30.9	

40	

21.3	

38.2	
46.2	 42.9	

24.7	 27.7	

41.1	 40.1	

25.9	 24.9	

39	
33.2	

0	

20	

40	

60	

80	

100	

120	

Scene	#1	 Scene	#2	 Scene	#3	 Scene	#4	

Po
si
/o

ni
ng
	E
rr
or
	(c
m
)		
(+
/-
	S
ta
nd

ar
d	
De

vi
a/

on
)

original	model	 compressed	by	baseline	method	

compressed	by	[27]	 compressed	by	[29]	

compressed	by	our	method	

Fig. 9. Positioning error (cm) (+/- standard deviation) of single still image
after model compression by different methods.

plane. We measure the 2D coordinates of cameras with a
tape measure while acquiring images. As each 3D model is
constructed by the SfM algorithm with a monocular camera,
the scale of the model compared to real world can be esti-
mated. For each sequence, at least four training images are
acquired with manually measured ground truth to estimate the
transformation between the image and real world coordinates
based on the 3D model. This process can also be carried out
by camera auto-calibration algorithms [36].

Unlike the recent methods [24], [25], [26] using the image
results generated offline by an SfM algorithm as the ground
truth, all test images are registered by using physical measure-
ments. We note that although pose estimations can be assessed
accurately in terms of image pixels by using SfM algorithms,
these results do not correspond to physical metrics (e.g., meter
or foot). As the goal of SfM algorithms is to build the 3D
models, images with insufficient feature correspondences are
removed. Therefore, only the images which can be matched
well during SfM are retained and evaluated. For example, less
than 50% images are registered in the night scene after SfM
in our experiments. If we use the results of SfM as the ground
truth, only the images with features matched are evaluated.

A. Positioning Evaluation of Single Still Images

We demonstrate the ego-positioning performance of the
proposed algorithm by evaluating it in four different scenar-
ios. Fig. 7 shows the scenes, uncompressed and compressed
3D point cloud models by our algorithm. The models are
reconstructed with 400, 179, 146, and 341 training images,
respectively. The test images are acquired in the same session

TABLE I
POSITIONING ERROR (CM) OF SINGLE STILL IMAGE AND NUMBER OF

POINTS AND MODEL SIZE AFTER MODEL COMPRESSION. RED AND BLUE
FONT SHOW THE MINIMUM AND SECOND MINIMUM MEAN, STANDARD

DEVIATION., OR MODEL SIZE OF FOUR COMPRESSION METHODS.

Scene #1 #2 #3 #4
Mean 22.9 21.6 35.9 33.7
Stdev. 8.1 10.8 15.6 9.8

points 187,572 53,568 33,190 85,447
original
model

Size(MB) 105.1 21.5 12.8 26.4
Mean 68.7 38.2 30.9 40.0
Stdev. 143.5 49.2 40.5 38.3

points 8,397 4,329 3,268 8,263

compressed
by baseline
method Size(MB) 10.2 2.5 1.5 5.4

Mean 21.3 38.2 46.2 42.9
Stdev. 7.9 20.1 27.1 72.8

points 8,580 5,101 3,345 8,272
compressed
by [28]

Size(MB) 17.8 3.0 1.6 4.8
Mean 24.7 27.7 41.1 40.1
Stdev. 19.4 17.5 23.5 48.5

points 8,519 4,557 3,149 8,166
compressed
by [30]

Size(MB) 19.9 2.7 1.7 5.0
Mean 25.9 24.9 39.0 33.2
Stdev. 11.7 12.9 21.8 14.0

points 7,781 4,351 3,228 8,196

compressed
by
our method Size(MB) 14.4 2.2 1.5 4.3

(a) (b)

(c) (d)

Fig. 10. Model compression results of (a) baseline method, (b) Li’s method
[28], (c) Cao’s method [30] and (d) our method, in scene #4.

of the training images. There are 50, 24, 28, and 88 test images
in 4 scenes, and some examples are shown in Fig. 8.

We evaluate the k-cover method [28] (k = 720, 500, 250,
and 200 for each scene), the probabilistic k-cover approach
[30] (k = 430, 300, 250, and 200 for each scene), and the
proposed weighted set k-cover algorithm (k = 500, 300, 370,
and 185 for each scene) where we select a proper value of k for
each method to ensure that the number of points after model
compression is similar for all methods for fair comparisons.
More details about the number of points and model sizes
are shown in Table I. Fig. 9 shows the positioning results
with comparisons to different compression methods where the
baseline scheme is to set to be 5% (for scene #1) or 10% (for
other scenes) mostly seen points on each plane or line.

As shown in Fig. 9, high positioning accuracy can be
achieved when model compression is performed for a local

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

(a) (b)

Our method
VICON

Indoor Video #1 Indoor Video #2

(c)

frame

100
 200
 300
 400
 500
 600
 700
 800

0

1

2

3

4

er
ro

r
(c

m
)

(d)

frame

100
 200
 300
 400
 500
 600
 700
 800

0

2

4

6

8

er
ro

r
(c

m
)

(e)

Fig. 11. Evaluation results using image sequences from an indoor environment. (a) Sample image acquired in the environment. (b) Constructed model from
two training image sequences. (c) Results of our method compared with those estimated by Vicon. (d)-(e) Error distribution of each frame for indoor video
#1 and #2.

and up-to-date model by the proposed system. Furthermore,
the proposed system performs better in terms of position-
ing accuracy and model size reduction, when compared to
other methods; thus, more stable positioning results can be
obtained when an essential structure is preserved from model
compression (or equivalently noisy features are removed). The
proposed system efficiently performs large reduction of model
size with compression ratio of 86%, 90%, 88%, and 83% for
four scenes, respectively. In addition, the standard deviation
of the positioning error by the proposed system is smaller
than that of the other methods. Fig. 10 shows the compressed
models for scene #4, and our system maintains more structural
information than other methods.

As the main goal of this study is to achieve sub-meter
accuracy for vision-based ego-positioning, real-time process-
ing is not the prime concern. The average execution time
of an image with 900 × 600 pixels on a desktop computer
with Intel Core i7-4770K processor and 16G ram is 1.4089
seconds (including SIFT feature extraction 1.274 seconds,
feature matching 0.1319 seconds, and RANSAC pose estima-
tion 0.0003 seconds). Most of the computational load is from
extraction of SIFT features, which can be improved by GPU or
multicore implementations. For example, Wu [37] implements
SiftGPU to construct Gaussian pyramids and detect DoG
keypoint for SIFT with GPU, and shows about 20 fps can be
achieved for images with 800 × 600 pixels. In addition, other
features may be tried to improve system efficiency such as
ORB features [38] which have achieved similar performance
but much faster than SIFT in certain tasks.

B. Positioning Evaluation of Image Sequences
We evaluate two image sequences taken by a smartphone in

an indoor environment where we install four Vicon cameras to

TABLE II
POSITIONING ERROR (CM) OF IMAGE SEQUENCES.

Image sequence #1 #2
Frame number 200 281

Single still image Mean 60.1 88.4
Stdev. 53.8 116.7

Temporal smoothing Mean 37.2 41.8
Stdev. 18.3 26.3

provide ground truth positions. The error of the Vicon motion
capture system is less than 1 mm, and we use it as the ground
truth for higher precision evaluation. Fig. 11(a) shows the
environment, and Fig. 11(b) shows the constructed model by
two training image sequences. We test two image sequences
taken by a person walking along a loop where the camera is
pointed either at the chair in the center or forward. Fig. 11(c)
shows the estimated trajectories by our method (red points)
and Vicon (blue points). Fig. 11(d) and (e) shows the frame-
by-frame error of our method for both image sequences. The
mean and standard deviation of positioning error are 1.78 cm
and 0.77 cm, and 2.09 cm and 1.14 cm, respectively. The test
image sequences and positioning results of our method are
available at https://youtu.be/iLJXzCCllCQ (video #1).

We then evaluate two image sequences in scene #4. For
each experiment, we record the sequences from two cameras
at 10 frames per second. One sequence is acquired by a
camera placed on the third floor of a nearby building, which
gives a bird’s-eye view, as shown in the bottom left panel of
Fig. 12(b), We manually label the coordinates of the person’s
foot on the ground plane in each image and transform the
coordinates to the ground plane as the ground truth positions.
The other sequence is acquired by a smartphone, and it gives

https://youtu.be/iLJXzCCllCQ

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

(a) (b)

Fig. 12. (a) Setup for acquiring image sequences. (b) An example of results of video evaluation. Bottom-right: image from smartphone; bottom-left: image
from camera on third floor; upper-left: positioning results.

Fig. 13. Evaluation results using image sequences. Right column: an image
from a dash camera. Left column: an image from a camera on third floor
where red and green circles are the positioning results with still images and
the results after temporal smoothing by the Kalman filter.

the first-person view (bottom right panel of Fig. 12(b)), which
is used for vision-based ego-positioning. The upper left panel
of Fig. 12(b) shows the estimation results, where the red and
green circles are the positioning results with still images and
the results after temporal smoothing by the Kalman filter
[39], respectively. The positioning results can be found at
https://youtu.be/iLJXzCCllCQ (video #2 and #3) and Table
II shows the quantitative results. Due to occlusions or motion
blurs in the videos, there are outliers or noisy estimations by
positioning using still images, and they can be smoothed out
temporally using sequences.

In addition, we evaluate the proposed algorithm on image
sequences acquired from a dash camera on a moving vehicle.
Fig. 13 shows sample results; additional results can be seen in
the demo video (video #4) on the above mentioned website.
Although we do not have quantitative results for these image
sequences as it is difficult to determine the ground truth

(a) (b)

(c)

Fig. 14. Evaluation results using image sequences from urban scenes. (a)
The aerial view and the red arrow shows the test routes. (b) The constructed
model from 235 images. (c) An example of positioning results. The image on
the right hand side is the image taken by a smartphone, and the image on the
left hand side shows the estimated positions projected onto the model, where
the red and green circles are the positioning results with still images and the
results after temporal smoothing by the Kalman filter, respectively.

positions by using a dash camera, experimental results show
that high accuracy is achieved as the estimated positions match
the that of vehicle well. Please note that the test video is
recorded on different days and the proposed model update
algorithm is used for feature matching. More results of model
update are shown in Section V-E.

https://youtu.be/iLJXzCCllCQ

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

(a)

(b)

(c)

Fig. 15. Evaluation results using sequences at two traffic scenes: (a) expressway, (b) bridge, (c) downtown. First column: sample images used for training.
Second column: the reconstructed 3D models, where the red lines indicate the motion paths of training videos. Third column: aerial views of each scene.
Fourth column: ego-positioning results where the green lines are the estimated positions with temporal smoothing applied.

TABLE III
POSITIONING ERROR (CM) OF THE SESSION DATA IN OTHER MONTHS.

Test date & time M2/3
10:30

M2/4
17:30

M2/5
15:00

M2/6
12:00

M2/7
14:00

M2/8
22:30

M2/9
18:30

M2/10
10:00

M3/4
14:30

Weather Cloudy Dusk Sunny Sunny Cloudy Night Night Cloudy Rainy
Mean 72.4 NaN 74.2 171.4 91.6 1136 NaN 135.9 4107.8Fixed model

(M1/20 15:30) Stdev. 40.4 NaN 42.5 318.6 174.7 850 NaN 180.2 1264.7
Mean 30.6 39.3 33.7 28.2 30.8 441.5 34.2 41.5 36.2
Stdev. 12.5 16.8 12.8 11.7 14.3 352.1 28 13.3 15.8Model

update
applied

Selected
model

& weather

M1/27
16:00

Cloudy

M1/30
19:00
Night

M1/30
14:30
Sunny

M1/16
11:00
Sunny

M1/27
16:00

Cloudy

M1/30
19:00
Night

M1/30
19:00
Night

M1/27
16:00

Cloudy

M1/27
16:00

Cloudy

C. Positioning Evaluation in Real Traffic Scenes

We evaluate the proposed system on seven image sequences
acquired in four real traffic scenes. The first test contains
images collected at an intersection in an urban area. Fig. 14(a)
shows its aerial view of the scenes. We use 235 images for
training and two image sequences acquired from a smartphone
on the routes shown by the red arrow in Fig. 14(a) for
evaluation. Fig. 14(b) and (c) show the constructed model
and sample positioning results. In the other traffic scenes
(expressway, bridge, and downtown), the training (three for
each scene) and test (two for expressway, two for bridge,
and one for downtown) image sequences are acquired from
a dash camera. During the test phase, the car is allowed to
change lanes and our method performs well as shown in the
first two columns of Fig. 15. Thus, for vehicles traveling on
multi-lane highways, it is feasible to use a model with training
data covering these multiple lanes. Once 3D models are
constructed, the corresponding vehicle positions from different

lanes can be estimated as long as features are extracted and
matched. While the view angles of acquired images change to
certain extent when vehicles change lanes, SIFT features are
known to be robust in accounting for large pose variation (e.g.,
view angle change from different cameras within 20 degrees).
Although the ground truth of the test videos is not available,
the positioning results qualitatively match the scenes well as
shown at https://youtu.be/iLJXzCCllCQ (video #5, #6, #7 and
#8).

D. Long-Term Positioning Dataset

To evaluate the performance of ego-positioning methods
over a long duration of time, a large amount of data is
collected over two months. It contains videos collected from
106 sessions with 14,275 images and 9,720 of them are
manually measured with ground truth positions. To the best of
our knowledge, this is by far the largest dataset that contains
videos acquired in different lighting conditions (e.g., sunny,

https://youtu.be/iLJXzCCllCQ

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

Month 1 Month 2 Month 3
8 9 13 14 15 16 17 20 21 22 23 24 26 27 28 29 30 31 2 3 4 5 6 7 8 9 10 4

9 108 108
10 108 108 108 108 108 108 277 108 301 108
11 108 373 108 108 108 108
12 108 108 108 108 108 108 108 108
13 108 108 108 108 108 108 108 237 108 108
14 108 334 108 108 108 255 373 108 281 108 108 108 108
15 108 108 108 288 108 108 108 108 108
16 108 108 108 108 376 108 108 108 292 108 108 108 230 108
17 108 108 108 108 108 108 108 108 108
18 108 263 284 108 108 108
19 108 108 108 391 108 108
20 108 108 108
21 108
22 108 108 108 108 108 108
23 108
24 108

Sunny Cloudy Rainy Dusk Night

date
time

(a)

(b)

Fig. 16. Long-term positioning dataset. (a) Session distribution with the number of images. (b) Example images.

M1/15	
 10:00
 M1/15	
 15:30
 M1/21	
 17:30
 M1/30	
 19:00
M1/30	
 10:00

Fig. 17. Constructed 3D point models using images acquired at different sessions.

rainy, day, and night scenes). The session distribution and
some sample images are shown in Fig. 16, and more details
can be seen at http://imlab.tw/positioning/dataset/.

E. Positioning Evaluation with Model Update

We demonstrate the effectiveness of the proposed model
update algorithm by using a long-term dataset collected over
the span of two months. At the end of the first month, there
are 21 models in the model pool, of which, 8 models are
for daytime, and the others for night scenes. Fig. 17 shows
some of constructed 3D models. It is clear that a few models
are sufficient for accurate ego-positioning in the daytime but
it is difficult to register images at night. Table III presents
evaluation results using test images acquired in other months.
Note that all models are selected automatically with the first
ten images in a session by using the proposed update algorithm
discussed in Section IV-D. Experimental results in Table III
show that our method can select a suitable model, and higher
positioning accuracy can be achieved using the model update
approach, e.g., the improvement at M3/4 14:30 (the rightmost
column in the table) is hundredfold. The positioning accuracy
with a static model is significantly inferior and cannot be
registered in some sessions (e.g. M2/4 17:30). Furthermore, we

find positioning in the night scenes even more challenging. The
proposed algorithm performs well on night scenes (columns in
blue) with sufficient lighting, e.g., M2/9 18:30 shown in Fig.
18(a). However, it does not perform well for scenes under poor
lighting conditions (e.g. M2/8 22:30 shown in Fig. 18(b)).

VI. CONCLUSIONS

In this paper, we propose a vision-based ego-positioning
system within the IoV framework. To achieve higher position-
ing accuracy with lower computational load, we compress 3D
point cloud models by using the proposed weighted k-cover
method, which preserves the essential structural information.
To account for large scene changes over time, we present
a model update algorithm. In addition, a large long-term
positioning dataset is developed for performance evaluation.
Experimental results show that sub-meter positioning accuracy
can be achieved based on the compressed models for both still
images and videos over long durations of time.

ACKNOWLEDGMENTS

This work is supported in part by the Ministry of Sci-
ence and Technology and National Taiwan University un-
der Grants MOST 105-2633-E-002-001, MOST 104-2622-

http://imlab.tw/positioning/dataset/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

(a) (b)

Fig. 18. Examples of test images in the night scene at: (a) M2/9 18:30 and
(b) M2/8 22:30.

8-002-002, MOST 104-2627-E-002-001 and NTU-ICRP-
105R104045. The work of M.-H. Yang is supported in part
by the NSF CAREER Grant (No. 1149783).

REFERENCES

[1] K. W. Chen, H. M. Tsai, C. H. Hsieh, S. D. Lin, C. C. Wang, S. W. Yang,
S. Y. Chien, C. H. Lee, Y. C. Su, C. T. Chou, Y. J. Lee, H. K. Pao, R. S.
Guo, C. J. Chen, M. H. Yang, B. Y. Chen, and Y. P. Hung, “Connected
vehicle safety - science, system, and framework,” IEEE World Forum
on Internet of Things, 2014. 1

[2] K. W. Chen, S. C. Chen, K. Lin, M. H. Yang, C. S. Chen, and Y. P. Hung,
“Object detection for neighbor map construction in an iov system,” IEEE
International Conference on Internet of Things, 2014. 1

[3] Google, “Google project tango,” https://www.google.com/atap/
project-tango/. 1

[4] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning
systems for wireless personal networks,” IEEE Communications Survey
and Tutorials, vol. 11, no. 1, pp. 13–32, 2009. 1

[5] H. Koyuncu and S. H. Yang, “A survey of indoor positioning and
object locating systems,” International Journal of Computer Science and
Network Security, vol. 10, no. 5, pp. 121–128, 2010. 1

[6] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Transactions on Systems,
Man, and Cybernetics - Part C, vol. 37, no. 6, pp. 1067–1080, 2007. 1

[7] T. Driver, “Long-term prediction of gps accuracy: Understanding the
fundamentals,” ION GNSS International Technical Meeting of the Satel-
lite Division, 2007. 1

[8] M. Modsching, R. Kramer, and K. Hagen, “Field trial on gps accuracy in
a medium size city: The influence of built-up,” Workshop on Positioning,
Navigation and Communication, 2006. 1

[9] A. Rietdorf, C. Daub, and P. Loef, “Precise positioning in real-time using
navigation satellites and telecommunication,” Workshop on Positioning,
Navigation and Communication, 2006. 1

[10] N. Snavely, S. Seitz, and R. Szeliski, “Photo tourism: Exploring photo
collections in 3d,” ACM Transactions on Graphics, vol. 25, no. 3, pp.
835–846, 2006. 2, 3

[11] C. Wu, S. Agarwal, B.Curless, and S. M. Seitz, “Multicore bundle adjust-
ment,” IEEE Conference on Computer Vision and Pattern Recognition,
2011. 2, 3

[12] C. Wu, “Towards linear-time incremental structure from motion,” Inter-
national Conference on 3D Vision, 2013. 2, 3

[13] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose
estimation using 3d point clouds,” European Conference on Computer
Vision, 2012. 2

[14] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization
using direct 2d-to-3d matching,” International Conference on Computer
Vision, 2011. 2, 5

[15] ——, “Improving image-based localization by active correspondence
search,” European Conference on Computer Vision, 2012. 2

[16] L. Kneip, M. Chli, R. Siegwart, R. Siegwart, and R. Siegwart, “Robust
real-time visual odometry with a single camera and an imu,” British
Machine Vision Conference, 2011. 2

[17] H. Lategahn and C. Stiller, “Vision-only localization,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1246–
1257, 2014. 2

[18] K. Schmid and H. Hirschmuller, “Stereo vision and imu based real-
time ego-motion and depth image computation on a handheld device,”
International Conference on Robotics and Automation, 2013. 2

[19] M. Brubaker, A. Geiger, and R. Urtasun, “Lost! leveraging the crowd
for probabilistic visual self-localization,” IEEE Conference on Computer
Vision and Pattern Recognition, 2013. 2

[20] D. M. Chen, G. Baatz, K. Koser, S. S. Tsai, R. Vedantham, T. Pyl-
vanainen, K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and
R. Grzeszczuk, “City-scale landmark identification on mobile devices,”
IEEE Conference on Computer Vision and Pattern Recognition, 2011.
2

[21] A. Zamir and M. Shah, “Accurate image localization based on google
maps street view,” European Conference on Computer Vision, 2010. 2

[22] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg,
“Wide area localization on mobile phones,” International Symposium on
Mixed and Augmented Reality, 2009. 2

[23] A. Wendel, A. Irschara, and H. Bischof, “Natural landmark-based
monocular localization for mavs,” International Conference on Robotics
and Automation, 2011. 2

[24] H. Lim, S. Sinha, M. Cohen, and M. Uyttendaele, “Real-time image-
based 6-dof localization in large-scale environments,” International
Symposium on Mixed and Augmented Reality, 2012. 2, 7

[25] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt, “Scalable 6-
dof localization on mobile devices,” European Conference on Computer
Vision, 2014. 3, 7

[26] J. Ventura and T. Hollerer, “Wide-area scene mapping for mobile visual
tracking,” International Symposium on Mixed and Augmented Reality,
2012. 3, 7

[27] A. Irschara, C. Zach, J. Frahm, and H. Bischof, “From structure-from-
motion point clouds to fast location recognition,” IEEE Conference on
Computer Vision and Pattern Recognition, 2009. 3, 4

[28] Y. Li, N. Snavely, and D. Huttenlocher, “Location recognition using
prioritized feature matching,” European Conference on Computer Vision,
2010. 3, 4, 6, 7

[29] H. S. Park, Y. Wang, E. Nurvitadhi, J. C. Hoe, Y. Sheikh, and M. Chen,
“3d point cloud reduction using mixed-integer quadratic programming,”
Computer Vision and Pattern Recognition Workshops, 2013. 3, 4

[30] S. Cao and N. Snavely, “Minimal scene descriptions from structure
from motion models,” IEEE Conference on Computer Vision and Pattern
Recognition, 2014. 3, 4, 6, 7

[31] E. Johns and G. Z. Yang, “Dynamic scene models for incremental,
long-term, appearance-based localisation,” International Conference on
Robotics and Automation, 2013. 3

[32] ——, “Feature co-occurrence maps: Appearance-based localisa- tion
throughout the day,” International Conference on Robotics and Automa-
tion, 2013. 3

[33] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering architec-
ture from photographs: a hybrid geometry- and image-based approach,”
ACM SIGGRAPH, 1996. 3

[34] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004. 3

[35] M. Y. Yang and W. Forstner, “Plane detection in point cloud data,”
International Conference on Machine Control Guidance, 2010. 4

[36] R. Hartley and A. Zisserman, “Multiple view geometry in computer
vision,” Cambridge University Press, 2004. 5, 7

[37] C. Wu, “Siftgpu: A gpu implementation of scale invariant feature
transform (sift),” http://www.cs.unc.edu/∼ccwu/siftgpu/. 8

[38] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” International Conference on Computer Vision,
2011. 8

[39] R. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960. 9

https://www.google.com/atap/project-tango/
https://www.google.com/atap/project-tango/
http://www.cs.unc.edu/~ccwu/siftgpu/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

Kuan-Wen Chen is an assistant professor in Depart-
ment of Computer Science at National Chiao Tung
University, Hsinchu, Taiwan. He received the B.S.
degree in computer and information science from
National Chiao Tung University, Hsinchu, Taiwan,
in 2004, and the Ph.D. degree in computer science
and information engineering from National Taiwan
University, Taipei, Taiwan, in 2011. He was an
postdoc researcher (from 2012 to 2014) and an
assistant research fellow (from 2014 to 2015) in
Intel-NTU Connected Context Computing Center at

National Taiwan University, Taipei, Taiwan. His current research interests
include computer vision, pattern recognition, multimedia, and internet-of-
vehicles.

Chun-Hsin Wang received the B.S. degree in elec-
trical engineering from University of Washington,
USA, in 2012, and the master degree in Graduate
Institute of Networking and Multimedia from Na-
tional Taiwan University, Taipei, Taiwan, in 2015.

Xiao Wei received the B.S. degree in information
display from University of Electronic Science and
Technology of China, China, in 2012, and the master
degree in Graduate Institute of Networking and Mul-
timedia from National Taiwan University, Taipei,
Taiwan, in 2014.

Qiao Liang is a master student in Graduate Institute
of Networking and Multimedia at National Taiwan
University, Taipei, Taiwan. He received the B.S. de-
gree in information and communication engineering
from Beijing Jiaotong University, China, in 2014.

Chu-Song Chen is currently a Research Fellow with
the Institute of Information Science and the Research
Center for IT Innovation, Academia Sinica, Taiwan.
He is an Adjunct Professor with the Graduate Insti-
tute of Networking and Multimedia, National Taiwan
University. His research interests include computer
vision, signal/image processing, and pattern recogni-
tion. He is on the Governing Board of the Image Pro-
cessing and Pattern Recognition Society, Taiwan. He
served as an Area Chair of ACCV’10 and NBiS’10,
the Program Chair of IMV’12 and IMV’13, the

Tutorial Chair of ACCV’14, and the General Chair of IMEV’14, and will
be the Workshop Chair of ACCV’16. He is on the Editorial Board of the
Journal of Multimedia (Academy Publisher), Machine Vision and Applications
(Springer), and the Journal of Information Science and Engineering.

Ming-Hsuan Yang is an associate professor in
Electrical Engineering and Computer Science at
University of California, Merced. He received the
PhD degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign in 2000. Prior
to joining UC Merced in 2008, he was a senior
research scientist at the Honda Research Institute.
Yang served as an associate editor of the IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence from 2007 to 2011, and is an associate editor
of the International Journal of Computer Vision,

Computer Vision and Image Understanding, Image and Vision Computing
and Journal of Artificial Intelligence Research. He received the NSF CAREER
award in 2012, Senate Award for Distinguished Early Career Research at UC
Merced in 2011, and Google Faculty Award in 2009. He is a senior member
of the IEEE and the ACM.

Yi-Ping Hung received the B.S. degree in electri-
cal engineering from National Taiwan University,
Taipei, Taiwan, in 1982, the M.S. degree from the
Division of Engineering, Brown University, Prov-
idence, RI, in 1987, the M.S. degree from the
Division of Applied Mathematics, Brown University,
in 1988, and the Ph.D. degree from the Division of
Engineering, Brown University, in 1990. From 1990
to 2002, he was with the Institute of Information
Science, Academia Sinica, Taipei, where he became
a Tenured Research Fellow in 1997, and is currently

a Joint Research Fellow. He served as the Deputy Director of the Institute
of Information Science from 1996 to 1997, and the Director of the Graduate
Institute of Networking and Multimedia with National Taiwan University from
2007 to 2013. He is currently a Professor with the Graduate Institute of
Networking and Multimedia, and the Department of Computer Science and
Information Engineering, National Taiwan University. His current research
interests include computer vision, pattern recognition, image processing,
virtual reality, multimedia, and human-computer interaction. He was the
Program Cochair of ACCV’00 and ICAT’00, and the Workshop Cochair of
ICCV’03. He has been an Editorial Board Member of the International Journal
of Computer Vision since 2004. He will be the General Chair of ACCV’16.

