
International Journal of Computer Vision
https://doi.org/10.1007/s11263-023-01920-9

FlowNAS: Neural Architecture Search for Optical Flow Estimation

Zhiwei Lin1 · Tingting Liang1 · Taihong Xiao2 · Yongtao Wang1 ·Ming-Hsuan Yang2

Received: 3 November 2022 / Accepted: 19 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Recent optical flow estimators usually employ deep models designed for image classification as the encoders for feature
extraction and matching. However, those encoders developed for image classification may be sub-optimal for flow estimation.
In contrast, the decoder design of optical flow estimators often requires meticulous design for flow estimation. The disconnect
between the encoder and decoder could negatively affect optical flow estimation. To address this issue, we propose a neural
architecture search method, FlowNAS, to automatically find the more suitable and stronger encoder architecture for existing
flow decoders. We first design a suitable search space, including various convolutional operators, and construct a weight-
sharing super-network for efficiently evaluating the candidate architectures. To better train the super-network, we present a
Feature Alignment Distillation module that utilizes a well-trained flow estimator to guide the training of the super-network.
Finally, a resource-constrained evolutionary algorithm is exploited to determine an optimal architecture (i.e., sub-network).
Experimental results show that FlowNAS can be easily incorporated into existing flow estimators and achieves state-of-the-
art performance with the trade-off between accuracy and efficiency. Furthermore, the encoder architecture discovered by
FlowNAS with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI, an 8.4% reduction of
RAFT baseline, surpassing state-of-the-art handcrafted GMA and AGFlowmodels, while reducing the model complexity and
latency. The source code and trained models will be released at https://github.com/VDIGPKU/FlowNAS.
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1 Introduction

Optical flow estimation aims tomeasure per-pixel 2Dmotion
between consecutive video frames, which is widely used
in vision tasks, e.g., action recognition (Sun et al., 2018c),
object tracking (Tan et al., 2022; Biswas et al., 2022), and
video understanding (Fortun et al., 2015). One key compo-
nent for accurate optical flow estimation is constructing a
discriminative cost volume for matching features.

Recently, deep neural networks have been applied to
optical flow estimation by extracting more effective fea-
tures (Dosovitskiy et al., 2015; Sun et al., 2018b; Teed and
Deng, 2020). The flow estimation can be further refined
with the pyramid coarse-to-fine decoder architecture design.
While most flow estimation methods focus on construct-
ing better cost volumes (Yang and Ramanan, 2019; Xiao
et al., 2020; Jiang and Learned-Miller, 2021) or designing
a more delicate decoder (Jiang et al., 2021a), we show that
the encoder architectures are also essential for two reasons.
First, the cost volume and flow decoder rely on the feature
representation extracted by the encoder. A stronger encoder
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can provide feature representations with more semantic and
motion information for cost volume construction or flow
estimation. Second, the encoder constitutes a considerable
parameter component of a flow network model. For exam-
ple, the model parameters of the encoder in RAFT (Teed and
Deng, 2020) amount to 58% of the entire network. However,
recent state-of-the-art flow estimation methods still adopt
encoders designed for image classification to extract features
of input images.Due to the natural differences between image
classification and flow estimation tasks, the encoder directly
adopted from that designed for classification tasks is sub-
optimal, likely negatively affecting flow estimation. Thus,
finding an encoder architecture suitable for flow estimation
is very important.

In a separate line of research, to reduce human efforts
in designing neural networks, Neural Architecture Search
(NAS) has been successfully applied to various high-level
vision tasks (Bender et al., 2018; Tan et la., 2020; Liu et al.,
2019a; Saikia et al., 2019). Nevertheless, much less atten-
tion has been paid to using NAS for low-level vision tasks.
This can be attributed to several factors. In general, NAS
requires selecting network components (e.g., kernel size of
convolution in a particular layer) through many possible
architectures. This entails heavy computational loads (e.g.,
earlyNAS algorithms (Zoph andLe, 2017) require thousands
of GPU hours to find an architecture on the CIFAR dataset
(Krizhevsky et al., 2009)). In addition to the heavy compu-
tational requirements, existing NAS methods are designed
for specific tasks with different priors. To our knowledge,
NAS has not been employed to determine optimal archi-
tecture for flow estimation. Since the decoder architecture
design involvesmuchprior knowledge of optical flowestima-
tion, changes in the decoder architecturesmay cause negative
effects (See Sect. 4.6). Furthermore, the modules designed in
existing flowdecoders are highly coupledwith their flow esti-
mation pipelines. It is challenging to separate independent
decoder operation modules and construct a search space for
flow decoder search. Nevertheless, these two problems exist
outside the encoder design of flow estimators.

In this paper, we present a neural network architecture
search method, FlowNAS, specifically for better encoder
designs within the context of optical flow estimation. We
leverage human knowledge in flow estimation as priors
in architecture search and design. To handle the issue
of computational overheads, we first determine a suitable
search space by exploring the effective convolutional oper-
ators and then construct a super-network that comprises
all weight-sharing sub-network modules. We then propose
the baseline FlowNAS following (Gou et al., 2020) within
two steps: (1) constraint-free super-network pre-training,
(2) resource-constrained sub-network search. However, due
to the large number of sub-networks sharing weights and
thus causing interference, the weights inherited directly from

super-network are often sub-optimal. Hence, retraining the
discovered architecture from scratch is usually required,
introducing additional computational overheads. Further-
more, due to the sub-optimal weights of the super-network,
there exists a low correlation problem between the per-
formance of weight-inherited and retrained sub-networks,
i.e., the best-performing sub-network determined by the
resource-constrained search is not necessarily the best archi-
tecture for the overall performance of flow estimation.

To address all the issues mentioned above, in contrast to
existing NAS algorithms that use sophisticated pruning or
sampling strategies (Cai et al., 2020; Yu et al., 2020; Wang
et al., 2021) to mitigate interference between sub-networks,
we propose a Feature Alignment Distillation (FAD) method
to fully utilize human priors in flow estimation and achieve
much better performance. We take pre-trained weights of
handcrafted optical flow estimator, e.g., RAFT (Teed and
Deng, 2020), as our teacher model and super-network as our
student model. In each training iteration, we sample one sub-
network from the super-network, and the extracted feature
map pyramid is trained under the guidance of the teacher
model. Specifically, Channel-wise Alignment is applied to
the feature map of both teacher and student to make the dis-
tillation process independent of the number of channels. It
is worth mentioning that using existing open-source weights
as teacher guidance will not limit the performance of Flow-
NAS. Instead, it leads to fast convergence and performance
improvement of the super-network. By using FAD, for any
discovered architecture, inheriting weights directly from the
super-network can achieve similar or even better perfor-
mance than retraining from scratch, reducing the overall
training time by twice. Meanwhile, we avoid the low corre-
lation problem since we do not have to retrain the discovered
sub-networks from scratch to get their actual performance.
Although we introduce an additional teacher model into
FlowNAS, it brings marginal computational overheads dur-
ing training (∼ 0.2× training cost), since we only need to
calculate the features of the encoder for the teacher model.
The teachermodel is discarded during inference, and no addi-
tional computational cost is introduced.

With the evolutionary algorithm,we simultaneously obtain
outstanding model architectures and their corresponding
weights. In practice, for any existing decoder of optical
flow estimation, FlowNAS can find a more lightweight
and powerful encoder that can directly replace the origi-
nal one. Experimental results demonstrate that our searched
encoder outperforms handcrafted encoders with several dif-
ferent kinds of decoders (Fig. 1). The main contributions of
this work are:

• We analyze the importance of the encoders of flow
estimators and propose a neural architecture search
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Fig. 1 Model parameters,
GFLOPs, latency vs. KITTI
F1-all error. FlowNAS achieves
better accuracy-efficiency
trade-offs than handcrafted
approaches

framework, FlowNAS, to automatically design a stronger
encoder for optical flow estimation.
To our knowledge, this is the first work introducing NAS
to this challenging task.

• We present an efficient search space for FlowNAS
and propose a Feature Alignment Distillation module
to enhance the representation capability of the super-
network by effectively leveraging prior information.

• We show that FlowNAS can be easily incorporated with
existing flow estimators for better performance.
For example, FlowNAS-RAFT achieves an F1-all error
of 4.67% on KITTI, an 8.4% error rate reduction of
RAFT (Teed and Deng, 2020), surpassing existing mod-
els including GMA (Jiang et al., 2021a) and AGFlow
(Luo et al., 2022) while reducing model complexity and
latency.

2 RelatedWork

2.1 DeepModels for Optical Flow

Recent optical flowestimationmethods havebeen inspiredby
the success of deep models for vision tasks. FlowNet (Doso-
vitskiy et al., 2015) uses convolutional neural networks to
extract and correlate features extracted from two frames for
flow estimation. As it requires a large amount of annotated
samples for training, a synthetic dataset is created to fascinate
the training process. In (Ilg et al., 2017), FlowNet2.0 stacks
multiple basic FlowNet modules for iterative refinement and
achieves better results. Exploiting a coarse-to-fine refinement
paradigm, SpyNet (Ranjan and Black, 2017) uses a spatial
pyramid network that warps images at different scales to deal
with large motions. On the other hand, PWC-Net (Sun et al.,
2018b) extracts the feature through pyramid processing and
builds a cost volume at each level, where the estimated flow
is iteratively refined.

Aside from the pyramid architecture design, numerous
methods have developed effective cost volume modules for
feature matching to estimate optical flow. VCN (Yang and
Ramanan, 2019) presents a cost volume scheme by decou-
pling the 4D convolution into a 2D spatial filter and a 2D
winner-take-all filter. In (Xiao et al., 2020), LCV shows the

performance of flow estimation methods can be improved
by learning an effective cost volume for feature matching
based on Cayley representations. In (de Jong et al., 5555), a
grid search is performed to determine the highest response
in the spatiotemporal frequency domain for analyzing how
deep neural networks estimate optical flow. DCVNet (Jiang
and Learned-Miller, 2021) proposes dilated cost volumes to
capture small and large displacements.

Another line of work on flow refinement focuses on
designing effective decoder modules. In (Hur and Roth,
2019), IRR introduces an iterative residual refinement scheme
for joint estimation of occlusion and flow. RAFT (Teed
and Deng, 2020) proposes a lightweight recurrent decoder
by sharing weights across the iterative refinement process,
which facilitates feature matching of all pairs of pixels for
accurate flowestimation.Recently,GMA(Jiang et al., 2021a)
has introduced a global motion aggregation to capture long-
range self-similarity in the reference frames.

In contrast to the methods mentioned above, where the
model architectures are hand-crafted based on some princi-
ples, we propose to learn better feature representations by
searching for a better network architecture specifically for
optical flow estimation.

2.2 Neural Architecture Search

NAS for High-level Vision Tasks: Neural Architecture
Search (NAS) aims to replace the efforts of human experts
in the architecture design of deep neural networks with
machines. It has achieved significant success in numerous
high-level vision tasks such as classification (Bender et al.,
2018; Brock et al., 2018; Chu et al., 2021; Liu et al., 2019b;
Chu et al., 2020; Cai et al., 2019), object detection (Tan et
la., 2020; Liang et al., 2021), and semantic segmentation
(Liu et al., 2019a; Zhang et al., 2019). Early NAS meth-
ods (Liu et al., 2018; Liu et al., 2018b; Real et al., 2019)
explore thousands of candidate architectures fromscratch (on
a smaller proxy task) and select the most promising regions
in the search space based on a predefined metric. Recent
approaches (Bender et al., 2018;Brock et al., 2018;Gou et al.,
2020; Chu et al., 2021) amortize the cost by training a single
super-network. The sub-networks of these methods can be
efficiently ranked by using shared weights to estimate their
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relative accuracy. To speed up the search process, gradient-
based approaches (Liu et al., 2019b; Chu et al., 2020) are
proposed for continuous relaxation of the search space,which
enables differentiable optimization in architecture search.
One main issue with super-network-based methods is the
low-rank correlation between sub-networks and the super-
network. To improve the rank correlation, FairNAS (Chu
et al., 2021) uses a sampling strategy to train sub-networks.
ReNAS (Xu et al., 2021) proposes to train an architecture
performance predictor to give the final performance of an
architecture. However, FairNAS needs to retrain the sub-
networks from scratch after obtaining the best sub-network
architecture. ReNAS (Xu et al., 2021) trains a performance
predictor for architecture search. Nevertheless, it requires a
large number of ground truth architecture-performance pairs
(423 pairs in (Xu et al., 2021)) to train the predictor, which is
a substantial computational overhead. CTNAS (Chen et al.,
2021) devises a scheme to evaluate architectures via pairwise
comparisons. Although reducing the requirement of ground
truth architecture-performance pairs, it still needs 100 pairs
to achieve a favorable result.

All the approaches mentioned above require retraining:
first, training a super-network to determine the optimal archi-
tecture (sub-network) configuration, and then retraining this
architecture from scratch to obtain the final result, introduc-
ing additional training costs. To alleviate these issues, several
pruning and training schemes (Cai et al., 2020; Yu et al.,
2020;Wang et al., 2021) have been developed to improve the
performance of the super-network, where each sub-network
performs on par with its stand-alone performance. OFA (Cai
et al., 2020) pre-trains a single whole network and then pro-
gressively distills it to obtain a smaller network, and BigNAS
(Yu et al., 2020) utilizes sandwich rule as well as distillation
to handle a wider set of models. Recently, AttentiveNAS
(Wang et al., 2021) uses a Pareto front sampling strategy to
optimize the super-network better.
NAS for Low-level Vision Tasks: Advances in NAS have
led to numerous applications in low-level vision tasks (Zhang
et al., 2020; Li et al., 2020b; Cheng et al., 2020; Liu et al.,
2021). Currently, gradient-based differentiable architecture
search (DARTS)-type methods (Liu et al., 2019b) are often
used. LEAStereo (Cheng et al., 2020) presents an end-to-end
NAS framework for deep stereo matching by incorporat-
ing task-specific human knowledge into the architecture
framework. It designs a task-specific architecture search
space and uses differentiable optimization for architecture
search. HiNAS (Zhang et al., 2020) uses primitive search
space (e.g., 3 × 3 separable convolution) to address syn-
thetic Gaussian noise removal for image restoration. In (Liu
et al., 2021), RUAS designs an unrolling-type architecture
search to handle low-light image enhancement. On the other
hand, AutoDispNet (Saikia et al., 2019) constructs a cell-
based search space for disparity estimation and introduces a

hyper-parameter optimization method to train the searched
architecture.

We note that existing NAS methods for low-level vision
mainly require two-stage training: super-network training
and sub-network retraining, introducing an additional 1×
computational overhead. In our work, we first employ NAS
to determine model architectures for flow estimation and
exploit the potential of NAS simultaneously. Specifically,
we propose FAD to train a stronger super-network. In this
training approach, we can remove the retraining stage. The
weights inherited from the super-network can achieve simi-
lar or even better performance than retraining from scratch
for any searched architecture.
NAS for Model Compression: In addition to construct-
ing a better network architecture, NAS can be applied to
prune model parameters. NAT (Gou et al., 2022) exploits
graph convolutional networks to build the architecture
optimization process and removes the redundant opera-
tions. DCP/DKP (Liu et al., 2022) introduces additional
discrimination-aware losses to guide the channel/kernel
selection. On the other hand, NPPM (Gao et al., 2021)
prunes channels for CNNs by maximizing the accuracy of
sub-networks with the help of a performance prediction net-
work. Similar to ReNAS (Xu et al., 2021) and CTNAS (Chen
et al., 2021), NPPM (Gao et al., 2021) also requires ground
truth architecture-performance pairs for network training.
The aforementioned model compression methods take an
existing arbitrary architecture as the input and then output
the pruned version of the architecture. They can only remove
redundant parameters or structures by reducing kernel sizes
or channels. In contrast, FlowNAS discovers an optimal
architecture from scratch and must carefully design a suit-
able search space for optical flow estimation. Thus, we allow
sub-networks to choose more diverse structures, including
larger filters and expanded channels. FlowNAS and model
compression methods are not mutually exclusive. Both can
be utilized together to obtain a more lightweight model. For
instance, FlowNAS can be employed to search for an opti-
mized architecture. The searched architecture can then be
further pruned using existing model compression techniques
to reduce the model size.

3 NAS for Optical Flow Estimation

In this section,we present the proposedNASmethod for opti-
cal flow. We construct a compact and efficient search space
by leveraging task-specific human knowledge. By utilizing
the pre-trained weights of the handcrafted architecture, the
trained super-network can achieve a representation model
without requiring additional retraining. Figure 2 shows the
overall pipeline of FlowNAS.
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Fig. 2 Illustration of
FlowNAS pipeline. (1)
super-network training. (2)
optimal architecture search. The
searched architecture and its
weights inherited from the
super-network can achieve
better results than its
stand-alone training

Table 1
Search Space of FlowNAS

Block Width Depth Kernel Size Expansion Ratio Stride

First Conv2d {64} {1} {7} – 2

SepConv-1 {56,64} {1,2} {3,5} {1} 1

SepConv-2 {64,72} {1,2,3} {3,5} {1,2,4} 1

SepConv-3 {88,96} {1,2,3} {3,5} {4,5,6} 2

SepConv-4 {96,104,112} {1,2,3} {3,5} {4,5,6} 1

SepConv-5 {112,120,128} {2,3,4} {3,5} {6} 2

SepConv-6 {128,136} {1,2} {3,5} {6} 1

Last Conv2d {128} {1} {1} – 1

Width refers to the number of channels. Depth is the number of repeated blocks. The expansion ratio denotes
the channel expansion ratio in the first 1×1 convolution of each SepConv Block

3.1 Problem Formalization

Assuming the weights of the super-network as W and the
architectural configurations as A = {αi }, we formulate the
problem as:

W ∗ = arg min
W

Eαi∈A[Errortrain(C(W , αi ))].
α∗ = arg min

αi∈A
Errorval(C(W ∗, αi )),

s.t. Param(αi ) < P, ∀i . (1)

where C(W , αi ) denotes a selection scheme that selects part
from super-network W to form a sub-network with architec-
tural configuration αi , and P is the parameter upper bound.
The overall training objective is to optimizeW to ensure each
supported sub-network maintains the same error rate level as
its stand-alone performance. The selection scheme aims to
find the sub-network C(W ∗, α∗) with the lowest error that
satisfies the resource constraint.

3.2 Search Space

Encoder Design: We note that the deep models for optical
flow estimation are usually based on the encoder-decoder
structure (Teed and Deng, 2020; Jiang et al., 2021a; Zhang
et al., 2021). While most flow estimation methods focus on
constructing better cost volumes or designing more effec-
tive decoders, we show the importance of encoder design for
extracting features while integrating and optimizing differ-

ent decoders in one super-network is not the focus of this
paper. Motivated by the success of RAFT (Teed and Deng,
2020) and CNNmodels (He et al., 2016; Xie et al., 2017), we
propose a CNN model of a sequence of units with gradually
reduced feature maps and expanded channels. Each unit con-
sists of a sequence of convolution layers. Similar to recent
NAS approaches (Liu et al., 2019b; Gou et al., 2020), we
treat each unit as a searching cell, and the entire search space
is a regular stack of these searching cells.
Cell Level Search Space: We allow each searching cell to
use an arbitrary number of convolution blocks (denoted as
dynamic depth) and each block to use an arbitrary number
of channels (denoted as dynamic width) and kernel sizes
(denoted as dynamic kernel size). For example, the depth of
each cell is chosen from {1, 2, 3, 4}. While for each convolu-
tion operation in the block, the width ranges from 56 to 136
with a stride 8, the kernel size is chosen from {3, 5}, and the
expansion ratio is selected from {1, 2, 4, 5, 6}. The summary
of the search space is shown in Table 1. With 6 cells, we have
roughly ((10×2×5)1+(10×2×5)2+(10×2×5)3+(10×2×
5)4)6 ≈ 1048 different neural network architectures. For each
convolution operation in a convolution block, the weights of
kernel sizes and channels in different sub-network architec-
tural configurations are shared. In practice, we pre-allocate a
weight tensor with the maximum number of kernel sizes and
channels. Then,we slice out the corresponding sub-tensor for
convolution for a specific architectural configuration choice.
As such, all these sub-networks share the same weights from
W . We only require 8.1M parameters to store all of them.
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Without sharing, the total model size will be computation-
ally prohibitive.

We summarize the essential convolution operations for
dense image prediction into three types: standard convo-
lution, separable convolution (Chollet, 2017), and shuffle
convolution (Zhang et al., 2018). A straightforward approach
is to combine them all in the search space, which will
be expanded by over 1000 times, further increasing the
optimization difficulty of the super-network. Instead,we con-
duct simple experiments to compare these convolutions and
choose themost suitable one, separable convolution, for opti-
cal flow estimation. More details can be found in Sect. 4.3.

3.3 Baseline FlowNAS

Training a super-network can be a multi-objective problem,
where each objective corresponds to one sub-network. A
naive training approach optimizes the super-network by enu-
merating all sub-networks in each update step. However, it is
computationally prohibitive for a vast search space, as con-
sidered in our model. Another naive training approach is to
sample one sub-network at each update step, thereby alle-
viating the prohibitive cost issues. Similar to (Gou et al.,
2020), we propose a baseline FlowNAS model consisting
of constraint-free training and resource-constrained search.
Since the Sintel and KITTI datasets do not provide official
validation subsets, we split the respective training sets into
training and validation subsets as carried out by FlowNet
(Dosovitskiy et al., 2015) and VCN (Yang and Ramanan,
2019). For constraint-free training, we use the training subset
to train the super-network. During the resource-constrained
search,we evaluate the performance of the sub-networkswith
the validation subsets.
Constraint-free Training: At each update step, we ran-
domly sample one sub-network architecture configuration
αi from the search space. According to the configuration αi ,
we slice out the sub-tensors of weights in super-network W
to compute the flow predictions. The weights of sub-tensors
are then updated by backpropagation.
Resource-constrained Search: We conduct the resource-
constrained sub-network search with the evolutionary algo-
rithm. Specifically, we randomly sample N sub-network
architecture configurations that satisfy the resource con-
straint to form a population. For each configuration, we
slice out the sub-tensors of weights in super-network W
and evaluate the performance of this configuration on the
validation set. Note that evaluating a sub-network requires
only inferencewithout training.We rank the sub-networks by
their performance. Then, we repeatedly generate another N
new sub-networks satisfying the resource constraint through
crossover and mutation on top k performing sub-networks.
Similar to SPOS (Gou et al., 2020), crossover means that
two randomly selected sub-networks are crossed to produce a

new one, and mutation denotes that a randomly selected sub-
network mutates its every cell with probability p to construct
a new sub-network. Finally, the new sub-networks are added
to the population. We repeat the above process T times until
convergence. In our experiments, we set N = 50, k = 10,
p = 0.1, and T = 20.

However, with such a large number of sub-networks shar-
ing weights and thus interfering with each other, weights
directly inherited from super-network are often sub-optimal
(Gou et al., 2020; Chu et al., 2021). Hence, retraining the
discovered architecture from scratch is usually required,
introducing additional computational overhead. Further-
more, the rank correlation between the performance of
weight-inherited and retrained sub-networks is low due to
the sub-optimal weights. This leads to the sub-optimal of
discovered architecture by the resource-constrained search.
In the following, we introduce the Feature Alignment Distil-
lation method to address this issue.

3.4 Feature Alignment Distillation

A super-network comprises numerous sub-networks of dif-
ferent sizes. Existing methods typically adopt sophisticated
training strategies (Cai et al., 2020; Yu et al., 2020; Wang
et al., 2021) to alleviate the interference among sub-networks.
However, applying them directly to flow estimation has two
limitations: (1) it requires 2 to 3 times more training time to
pre-train or samplemore thanone sub-network in eachupdate
step; and (2) such training strategies are designed for image
classification, and may not be optimal for dense image pre-
diction such as flow estimation. More analysis can be found
in Sect. 4.3.

As our goal is to enhance the representation strength
of the super-network and prevent interference among sub-
networks, we exploit human knowledge to guide the training
process. Specifically, we use pre-trained weights of a hand-
crafted flowestimator as a teacher to guide our super-network
training, making the best use of human priors. To this end, we
propose the Feature Alignment Distillation (FAD) method
in this work. FAD can guide the feature outputs of all sub-
networks sampled from the super-network to converge into
the same feature space, which reduces the decoder’s training
instability and facilitates the whole super-network’s training
process.

As shown in Fig. 3, FlowNAS takes a handcrafted estima-
tor with the pre-trained weights, e.g., RAFT (Teed and Deng,
2020), as a teacher model, and a super-network as the student
model. The feature pyramids extracted by the teacher model
and the sub-network are denoted as { f Ti ∈ RcTi ×h×w | i =
1, 2, ..., n} and { f Si ∈ RcSi ×h×w | i = 1, 2, ..., n}. Since each
sub-network has dynamicwidth in the search space, the chan-
nel number of f Si varies and does not align with f Ti . Thus,
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Fig. 3 Overview of FlowNAS super-network training with Feature Alignment Distillation. It uses pre-trained weights of handcrafted flow
estimator (below) as a teacher to guide super-network (above) training

we apply a channel-wise alignment operation g(·) to f Ti and
f Si to align the number of the channel of two features. We
then perform L2 distance to estimate the difference between
g( f Ti ) and g( f Si ).
Distillation Supervision: The distillation loss computes the
L2 distance of g( f Ti ) and g( f Si ) with exponentially increas-
ing weight γ N−i :

LD =
N∑

i=1

γ N−i · L2(g( f
T
i ), g( f Si )). (2)

The final training loss for FlowNAS is:

L = L f low + λLD, (3)

whereL f low is the original loss function for the flowmethod,
and λ is the weight to balance two losses. λ is set to 1 in our
experiments.

3.5 Channel-Wise Alignment

We present four types of channel-wise alignment operations
in this section.
Dynamic Channel Projection: A straightforward approach
to align the dynamicwidth of the studentwith the teacher is to
use a weight-sharing dynamic linear layerWi ∈ RcSi ×cTi (Yu
et al., 2019) to adjust the channel dimension of the sampled
sub-network to be the same as the teachermodel, where g( fi )
is

g( fi ) =
{
WT

i · fi , if fi comes from the student,

fi , if fi comes from the teacher.
(4)

Spatial Attention: Attention modules play a critical role in
knowledge transfer. In (Zagoruyko and Komodakis, 2017), it
significantly improves the performance of the student model
by forcing it to mimic the attention maps of the teacher in
image classification. Similar to (Zagoruyko and Komodakis,
2017), we conduct a non-local module (Wang et al., 2018)
for each layer of extracted feature map of the teacher and
student model, reducing the channel dimension to 4.
Channel Maximize: Another simple scheme is to com-
press the width of both student and teacher into one without
any learnable parameters. We provide two types of channel
compression methods: maximize and average. The Channel
Maximize operation selects a channel with maximum acti-
vation for each feature point along the spatial dimension (x ,
y), where g( fi ) can be expressed as:

g( fi )x,y = max
k=1,2,...,ci

| fk,x,y |. (5)

ChannelAverage: Instead of focusing on themaximumacti-
vated channel, the average operation estimates the global
average, where g( fi ) can be formulated as:

g( fi )x,y = 1

ci

ci∑

k=1

| fk,x,y |. (6)

We choose the Channel Maximize operation as the final
channel-wise method for FlowNAS. More details can be
found in Sect. 4.3.2.

4 Experimental Results

We present experimental results on the Sintel (Butler et al.,
2012) andKITTI (Geiger et al., 2013) benchmarks to demon-
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strate the effectiveness of FlowNAS. We show that the pro-
posed method achieves state-of-the-art accuracy-efficiency
trade-offs. In addition, we conduct ablation studies to dis-
cuss the effect of search space selection and FAD.

4.1 Implementation Details

Basic Setups: We use RAFT (Teed and Deng, 2020) as our
baseline method and use the same training schedule if not
otherwise specified. Specifically, we pre-train the network
on FlyingChairs (Dosovitskiy et al., 2015) for 100k iterations
and then on FlyingThings (Mayer et al., 2016) for another
100k iterations. We then finetune the network for Sintel eval-
uation on the combination of FlyingThings (Mayer et al.,
2016), Sintel (Butler et al., 2012), KITTI-2015 (Menze and
Geiger, 2015) andHD1K (Kondermann et al., 2016) for 100k
iterations. Finally, we finetune the network on KITTI-2015
for an additional 50k iterations before evaluation.

Our primary evaluation metric is an average end-point
error (AEPE), the mean pixel-wise flow error. In addition,
KITTI uses the F1-all (%)metric, which refers to the percent-
age of optical flow vectors whose end-point error is greater
than 3 pixels or over 5% of ground truth.
FlowNAS Setups: To search for the architecture with the
best generalization ability and avoid overfitting, we split
Sintel and KITTI training sets into training and validation
subsets as performed by FlowNet (Dosovitskiy et al., 2015)
and VCN (Yang and Ramanan, 2019). In the following, the
referred training set and validation set of Sintel and KITTI
are the corresponding set after splitting. In addition, the orig-
inal training set officially provided is denoted as trainval set.
For fair comparisons with other methods, we report the final
results of FlowNAS trained on the trainval set after selecting
the best architecture.During the resource-constrained search,
the parameter upper bound P is set to 5.3M in this paper. To
prevent finding localminimal solutions,we combine the FAD
loss and the prediction error of the sub-network as regulariza-
tion terms. The entire architecture search optimization takes
about 1.4 GPU days for Sintel and 0.25 GPU days for KITTI
on an RTX 8000 GPU, which is negligible compared to the
overall training time.

4.2 Main Results

Table 2 shows the performance of FlowNAS against state-of-
the-art approaches on Sintel and KITTI-2015. As FlowNAS
can be easily incorporated with existing flow estimators to
find a better encoder, we apply it to PWC-Net, RAFT, and
GMFlow. We use the resource-constrained search described
in Sect. 3.3 to find the two most suitable sub-network archi-
tectures on Sintel and KITTI validation sets separately. The
searched architectures are distinguished by the “-S” and “-
K”.

Baseline FlowNAS: We train the searched architecture of
baseline FlowNAS from scratch using the same protocol
as (Teed and Deng, 2020). Compared with RAFT (Teed
and Deng, 2020), the baseline FlowNAS-RAFT has already
achieved better results on both Sintel and KITTI-2015. The
AEPE of Sintel is reduced from 2.86 to 2.74, and the F1-all of
KITTI is reduced from 5.10% to 4.98%. The results demon-
strate the necessity of redesigning the encoder for optical flow
estimation and the effectiveness of the baseline FlowNAS.
FlowNAS: FlowNAS equipped with FAD further improves
the accuracy of the baseline FlowNAS without retraining
the sub-network. Table 2 shows, on the training set of Fly-
ingChairs (C) + FlyingThings (T), by using the encoder
searched by FlowNAS, FlowNAS-PWCNet-S achieves the
APEP of 1.83 on clean pass and 3.44 on the final pass of Sin-
tel, improving the performance of PWCNet by 28.2% (from
2.55 to 1.83) and 12.5% (from 3.93 to 3.44). FlowNAS-
RAFT-S obtains 1.31 AEPE on the clean pass and 2.68
on the final pass of Sintel, which is comparable to RAFT-
based state-of-the-art methods, GMA (Jiang et al., 2021a)
and AGFlow (Luo et al., 2022), and lower than RAFT (Teed
and Deng, 2020) by 8.4% (from 1.43 to 1.31) and 0.1%
(from 2.71 to 2.68). Furthermore, GMFlow (Xu et al., 2022)
achieves state-of-the-art performance on Sintel. Neverthe-
less, FlowNAS-GMFlow-S improves its performance even
further, from 1.08 to 1.01 on the clean pass and 2.48 to 2.42
on the final pass, achieving new state-of-the-art results. For
KITTI, FlowNAS-RAFT-K achieves an AEPE of 4.88 and
F1-all score of 17.1% on the KITTI trainval set, which sig-
nificantly surpasses SCV(Jiang et al., 2021b) by28.1% (from
6.80 to 4.89) and 11.4% (from 19.3 to 17.1), respectively.

For online evaluation on KITTI, FlowNAS-RAFT-K
improves RAFT by 8.4% (from 5.10% to 4.67%) on F1-all,
outperforming the state-of-the-art handcrafted GMA (Jiang
et al., 2021a), SCV (Jiang et al., 2021b) and AGFlow (Luo
et al., 2022). FlowNAS-RAFT-Kachieves comparable results
with SeparableFlowonKITTI F1-all errorwhile reducing the
number of parameters from 6.0M to 5.2M. It is worth not-
ing that SeparableFlow and GMA share the same encoder
as RAFT, with changes made only on the decoder. Thus, the
performance gain from a better encoder (FlowNAS) is com-
parable to that of the existing state-of-the-art decoder (GMA
and SeparableFlow), as shown in Table 3. On the synthetic
dataset Sintel, for three baseline decoders of optical flow esti-
mation, PWCNet, RAFT, and GMFlow, FlowNAS achieves
a lower AEPE than handcrafted encoders, proving that Flow-
NAS can search for a better encoder architecture.

Overall, the results demonstrate the excellent cross-
dataset generalization of FlowNAS and the strong represen-
tation ability of the discovered architectures. Meanwhile, the
results show that the encoder design is essential for optical
flow estimation, and there is much room for improvement
with existing modules.
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Table 3 Comparison of the effects brought by decoder and encoder

Training Data Encoder Decoder KITTI-15 (test) Params GFLOPs
F1-all

C+T+S+K+H RAFT (Teed and Deng, 2020) RAFT (Teed and Deng, 2020) 5.10 5.3M 388

RAFT (Teed and Deng, 2020) GMA (Jiang et al., 2021a) 4.93 5.9M 435

RAFT (Teed and Deng, 2020) SeparableFlow (Zhang et al., 2021) 4.63 6.0M 495

FlowNAS RAFT (Teed and Deng, 2020) 4.67 5.2M 368

C+T+S+K+H indicates the results trained on combining Sintel, KITTI, and HD1K
The performance improvement brought by a better encoder is comparable to that of the existing state-of-the-art decoder

Table 4 Ablation experiments
of search space

Training Data Search Space Sintel (trainval) KITTI-15 (trainval)

Clean Final F1-epe F1-all

C + T Conv 1.68±0.09 2.91±0.14 6.60±0.27 20.8±0.51

SepConv 1.64±0.13 2.96±0.13 6.46±0.20 20.4±0.41

ShuffleConv 1.89±0.16 3.16±0.19 7.59±0.84 23.8±1.56

Combination 1.72±0.13 2.99±0.18 6.59±0.37 20.5±0.78

The SepConv search space performs the best for the flow estimation task

Table 5 Ablation experiments
for Channel-wise Alignment
operation

Training Data Feature alignment operation Sintel (val) KITTI-15 (val)

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H Dynamic Channel Projection 1.88 5.06 1.75 4.80

Spatial Attention 22.3 30.1 26.8 83.0

Channel Maximize 1.52 3.59 1.31 3.63

Channel Average 1.60 3.98 1.41 3.89

The Channel Maximize operation achieves the best results

4.3 Ablation Study

In this section, we conduct ablation experiments to ana-
lyze the main modules of FlowNAS. Due to the submission
limits of Sintel and KITTI, we present more experimental
results based on our validation split. We choose RAFT (Teed
and Deng, 2020) as our decoder for the ablation study. For
illustration purposes, the results of two optimal sub-network
architectures on Sintel and KITTI in the following tables
(from Table 4 to Table 16) are listed in the same row.

4.3.1 Search Space

In Table 4, we evaluate four search spaces: Conv, SepConv,
ShuffleConv, and combination. In these experiments, the
width, depth, and kernel size are the variable of each search
space. We randomly sample 15 architectures for each search
space and report their average results where the models are
trained from scratch. To save computational overhead, the
sampled sub-networks are trained on FlyingChairs (C) + Fly-
ingThings (T).

As SepConv performs best among all search space can-
didates for the flow estimation task, we choose SepConv as

the essential convolution operation for FlowNAS. Further-
more, combining different convolution operations does not
lead to better performance than SepConv. The results can be
attributed to two factors. First, the search space of combina-
tions is 63 times larger than that of SepConv, which causes
insufficient training. Second, the coupling of SepConv and
other operations brings difficulties for the evolutionary algo-
rithm to converge into a better local minimum.

4.3.2 Feature Alignment Distillation

We conduct the following experiments to validate the pro-
posed FAD module.
Channel-wiseAlignment:We trainFlowNASsuper-network
with the proposed alignment operations on the combinedSin-
tel, KITTI, and HD1K datasets, and report the performances
of their best-searched architectures by directly inheriting
weights from super-networks. As shown in Table 5, the
operations with learnable parameters (Dynamic Channel
Projection and Spatial Attention) are less effective than non-
parametric operations (Channel Maximize and Average). It
can be attributed that the additional learnable weights from
these operations may negatively affect the training process
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Fig. 4 KITTI-15 validation results of several random sub-network
architectures. The weights are obtained from From-scratch, baseline
FlowNAS, and FlowNAS

of the super-network since the number of parameters is large.
For example, the parameters of the Non-local modules are
17% of those of the super-network. Thus, it is prone to
overfit the encoder feature. In addition, the Channel Max-
imize operation performs better than Channel Average. This
can be explained that the Channel Maximize operation pay-
ing more attention to the most discriminate parts in feature
maps (Zagoruyko and Komodakis, 2017) (e.g., the fore-
ground objects) compared to Channel Average. Based on
the experiment results and analysis, we choose the Chan-
nel Maximize operation as the final channel-wise method for
FlowNAS.
Effectiveness of FAD: Fig. 4 shows the performance of
sub-networks from From-scratch, baseline FlowNAS, and
FlowNAS. We randomly sample 12 sub-networks and report
their performance with inherited weights from the baseline
FlowNAS super-network and FlowNAS super-network. In
addition, we randomly sample 6 sub-networks and train
them from scratch as their stand-alone performance. For
all sampled architectures, FlowNAS reduces their F1-all
error by 0.18∼0.51 compared with baseline FlowNAS,
demonstrating the effectiveness of FAD for better super-
network optimization. Furthermore, super-network weights
from FlowNAS achieve similar or even lower F1-all errors

Table 7 Kendall’s Tau (KTau) correlation coefficient

Dataset Method KTau

Sintel Baseline FlowNAS 0.213

FlowNAS 0.590

KITTI Baseline FlowNAS 0.451

FlowNAS 0.768

With FAD, FlowNAS achieves a higher rank correlation than Baseline
FlowNAS

than their stand-alone performance, showing the strong rep-
resentation ability of FlowNAS.

Table 6 shows the performance of the two best archi-
tectures searched by the baseline FlowNAS and FlowNAS,
namely baseline FlowNAS-RAFT and FlowNAS-RAFT.
When inheriting weights from their corresponding super-
networks, the performance of baseline FlowNAS-RAFT and
FlowNAS-RAFT are shown in lines 1 and 3. FlowNAS-
RAFT achieves a lower F1-all error of 0.42 than the
baseline FlowNAS-RAFT, validating the effectiveness of
FAD for super-network training. Finally, the performance
of FlowNAS-RAFT when trained with or without FAD is
shown in lines 4 and 5. It is worth noting that FAD can also
improve the training of sub-network by reducing 0.06 F1-
all error, demonstrating the effectiveness of FAD for flow
estimator training.

In addition to the performance improvement of the super-
network, FAD can improve the rank correlation. We ran-
domly sample 24 architecture configurations and calculate
the Kendall’s Tau (KTau) correlation coefficient between the
performance ofweight-inherited and retrained sub-networks.
Table 7 shows that FAD can improve the KTau rank correla-
tion from 0.213 to 0.590 on Sintel and from 0.451 to 0.768 on
KITTI. The proposed FAD uses feature distillation in each
encoder block and guides the features from all sub-network
blocks to converge into the same feature space. As such,
the optimal objective of a sub-network can be factorized
into several independently block-wise feature optimization
problems (Li et al., 2020a). Thus, the training interference
between each block is alleviated, and the rank correlation is
improved. In addition, FADcan reduce the training instability
of the encoder and accelerate the whole super-network train-

Table 6 Ablation experiments
for distillation

Training Data Method Weight KITTI-15 (val)

F1-epe F1-all

C+T+S (train)+K (train)+H Baseline FlowNAS-RAFT Inherit 1.52 4.05

Baseline FlowNAS-RAFT From-scratch 1.36 3.69

FlowNAS-RAFT Inherit 1.31 3.63

FlowNAS-RAFT From-scratch 1.38 3.84

FlowNAS-RAFT From-scratch* 1.36 3.78

The entry “from-scratch*” denotes training the sub-network with Feature Alignment Distillation
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Table 8 Ablation experiments
for additional supervision

Training Data Supervision Loss Sintel (val) KITTI-15 (val)

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H L f low 1.64 4.06 1.52 4.05

L f low + LD 1.52 3.59 1.31 3.63

Lsimple + LD 30.8 39.8 32.3 98.7

L f low + Lsimple + LD 1.90 5.51 1.50 3.94

The simple decoder does not help refine the super-network

Table 9 Performance comparison using two knowledge distillation methods

Training Data Knowledge Distillation Method Sintel (val) KITTI-15 (val) Training Time

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H None 1.64 4.06 1.52 4.05 1×
Conventional Knowledge Distillation 1.58 4.02 1.50 4.04 1.6×
Feature Alignment Distillation 1.52 3.59 1.31 3.63 1.2×

FAD achieves better results than conventional knowledge distillation with less training time

Table 10 Ablation experiments for the teacher model in FAD

Training Data Teacher Model Sintel (val) KITTI-15 (val)

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H None 1.64 4.06 1.52 4.05

Largest Sub-network of FlowNAS 1.68 3.99 1.75 4.12

PWC-Net+ 1.67 3.90 1.69 4.09

RAFT 1.52 3.59 1.31 3.63

SeparableFlow 1.58 3.70 1.38 3.70

GMA 1.55 3.68 1.47 3.98

GMFlow 1.62 3.87 1.49 4.00

Using RAFT as the teacher model can obtain the best results on both Sintel and KITTI validation sets

ing process, enabling the weights from the super-network to
be closer to the optimal weights for the sub-networks. Thus,
the performance of the sub-networks with inherited weights
from the super-network is closer to their stand-alone perfor-
mance (Fig. 4). This can further improve the rank correlation.
Other Supervision from the Decoder: Similar to the exist-
ing dense image prediction method (Zhao et al., 2017), we
try to refine the initial features of the super-network fol-
lowing. Specifically, we simplify the decoder by directly
estimating optical flow based on the similarities between two
pyramid feature maps from the super-network, namely the
simple decoder. The supervision loss of the simple decoder is
denoted asLsimple. As shown inTable 8, unlike the additional
loss of other tasks, e.g., semantic segmentation, our super-
network performs worse when using the simple decoder for
supervision. The reason is that the simple decoder does not
learn from training data, as opposed to the decoder of recent
deep methods that can progressively refine flow estimation
based on two pyramids of features and cost volumes.

Aside from the simple decoder, we use the outputs of the
original decoder in RAFT to perform knowledge distillation
using the conventional knowledge distillation in (Gou et al.,
2021). Table 9 shows that performing conventional knowl-
edge distillation achieves worse results than FAD and takes
more time for super-network training.Although conventional
knowledge distillation is simple, distilling knowledge on
feature is shown to be important for representation learn-
ing (Romero et al., 2015;Gou et al., 2021), since intermediate
feature maps provide more favorable information and super-
vision for the learning of the student model. In this work,
FlowNAS aims to find a better encoder architecture for
optical flow estimation and thus relies much on feature repre-
sentation learning. Compared with conventional knowledge
distillation, FAD can simultaneously guide and facilitate the
feature learning process of all sub-networks. In addition, the
output of a high-performing teacher network is similar to the
ground truth. As such, only learning the output of a teacher
network in conventional knowledge distillation for the stu-
dent is similar to training with the ground truth.
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Table 11 Overall comparison
with cutting edge handcrafted
flow estimators

Method Params GFLOPs Time KITTI (test)
Fl-all (%)

PWCNet+ (Sun et al., 2018a) 9.4M 90.8 0.02 7.72

VCN(Yang and Ramanan, 2019) 6.2M 96.5 0.11 6.30

RAFT (Teed and Deng, 2020) 5.3M 388 0.17 5.10

GMA (Jiang et al., 2021a) 5.9M 435 0.20 4.93

SeparableFlow (Zhang et al., 2021) 6.0M 495 0.23 4.63

FlowNAS-RAFT-K 5.2M 368 0.19 4.67

FlowNAS enables the most advanced accuracy-efficiency trade-off

Fig. 5 Trade-offs between
accuracy and GFLOPs.
FlowNAS obtains a better
Pareto front

Selection of the Teacher Model: The teacher model is an
important component in the proposed FADmethod. We train
FlowNAS super-network with the supervision of different
teacher models. Table 10 shows that using the handcrafted
estimators (such as PWC-Net+, RAFT, and SeparableFlow)
as the teacher can obtain better results than the largest
sub-network in our searched space. The reason is that the
handcrafted estimators with pre-trained weights as a teacher
model can provide stronger human prior knowledge to guide
the super-network training. The ablation studies show that
while SeparableFlow, GMA, and GMFlow yield better flow
estimation results than RAFT, employing RAFT as the
teacher model for FlowNAS yields the optimal performance
in terms of super-network performance. This result can be
explained by the consistency of the architecture between the
teacher and student models (Yuan et al., 2021; Yang et la.,
2022), i.e., the decoder architecture of FlowNAS is the same
as RAFT. When teacher and student models have a similar
architecture, it is easy for the student to learn the teacher’s
feature map. The distinct decoder architecture employed by
SeparableFlow, GMA, and GMFlow models makes it diffi-
cult to transfer knowledge to FlowNAS through distillation.

4.4 Model Parameter and Inference Time

FlowNAS improves the performance of the baseline model
and reduces the number of parameters, inference latency, and
GFLOPs. We measure the inference time of existing flow
networks on the same machine with one RTX 8000 GPU.
We set the input size as 384×1280 to measure GFLOPs

and inference time. The iterations of RAFT (Teed and
Deng, 2020), GMA (Jiang et al., 2021a), SperarableFlow
(Zhang et al., 2021), and FlowNAS-RAFT-K is set to 24.
As shown in Table 11 and Fig. 1, FlowNAS achieves the
best accuracy-efficiency trade-offs. In addition, FlowNAS
achieves comparable results as SperarableFlow while reduc-
ing 13% parameters and 26% FLOPs.

Since RAFT decoder has an iterative module, we jointly
search the encoder architecture and iteration number of the
decoder to obtain the Pareto front of accuracy andGFLOPs of
FlowNAS, as shown in Fig. 5.We adjust the iteration number
of RAFT to obtain its Pareto fronts. As a result, we can find
that FlowNAS achieves a better Pareto front of accuracy and
GFLOPs than RAFT (Teed and Deng, 2020).

4.5 Cross-Model Generalization

FlowNAS can find a more effective encoder with fewer
parameters and GFLOPs for existing methods for optical
flow estimation. Table 12 shows the results when apply-
ing FlowNAS to existing top-performing flow estimators. By
replacing with the encoder from FlowNAS, the performance
of these methods on the clean pass of the Sintel and KITII
test set is improved.

4.6 NAS for Decoder

Decoder design plays an essential role in deep models for
optical flow estimation. However, the decoders are tightly
coupled with the pipeline of flow estimation in the existing
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Table 12 Cross-model generalization of FlowNAS

Training Data Encoder Decoder Sintel (test) KITTI-15 (test) Params GFLOPs
Clean Final F1-all

C+T+S+K+H PWC-Net+ (Sun et al., 2018a) PWC-Net+ (Sun et al., 2018a) 3.45 4.60 7.72 9.4M 90.8

FlowNAS 3.23 4.41 7.02 9.3M 78.2

RAFT (Teed and Deng, 2020) RAFT (Teed and Deng, 2020) 1.94 3.18 5.10 5.3M 388

FlowNAS 1.88 3.18 4.67 5.2M 368

SeparableFlow (Zhang et al., 2021) SeparableFlow (Zhang et al., 2021) 1.70† 2.79† 4.93† 6.0M 495

FlowNAS 1.63 2.76 4.72 6.0M 482

GMA (Jiang et al., 2021a) GMA (Jiang et al., 2021a) 1.89† 2.94† 5.14† 5.9M 435

FlowNAS 1.63 2.75 5.03 5.8M 417

GMFlow (Xu et al., 2022) GMFlow (Xu et al., 2022) 1.74 2.90 9.32 4.2M 226

FlowNAS 1.68 2.83 8.77 4.1M 208

C+T+S+K+H indicates the results trained on the combination of Sintel, KITTI, and HD1K. † means our reproduced results by consulting the
authors

deep models. For example, VCN uses a warp module to fuse
features and predicted flows for the feature pyramid, RAFT
adopts a motion encoder module for the GRU-based update
module, andGMFlowdirectly enhances the encoded features
by a transformer module. Thus, it is challenging to separate
decoder operationmodules fromsuch amodel and construct a
search space. To avoid this problem, we propose to search the
connections of flow decoders, namely the connection search.

4.6.1 Connection Search

Existing flowdecoders are usually constructed in a coarse-to-
fine manner. For example, RAFT uses the recurrent decoder
to refine the flow predictions. The output of the RAFT
decoder is regarded as the input for the next iteration:

fi = Decoder( fi−1). (7)

Thus, the connection of RAFT decoder can be viewed as a
plain structure. In the connection search, we add searchable
skip connections from each output of previous iterations to
the input of the current iteration. The output of i-th iteration
can be expressed as:

fi = Decoder(h( fi−1, wi,i−2 fi−2, . . . , wi,1 f1)), (8)

where w ∈ {0, 1} is the searchable binary weight, h(·) is
the fusion function to aggregate features. The value of wi, j

indicates the availability of the skip connection between the
output obtained by j-th iteration and the input in i-th iter-
ation. During architecture sampling, the value of wi, j is
chosen form {0, 1}.

The number of iterations and searchable binary weightsw

arefixed after initialization.Thus,we cannot directly increase
the number of iterations during inference. Otherwise, wewill
introduce extra binary weights w and skip connections for
additional iterations. To address this issue, we introduce the
inner and outer loop by repeating the searched connections
for additional iterations. The inner loop is the iteration pro-
cess mentioned in Equation (8), and the number of iterations
in the inner loop is fixed after initialization. The outer loop
consists of several inner loops, i.e., the output of one inner
loop is the input of the next inner loop. Thus, assuming the
number of iterations after initialization in the inner loop is n,
we can obtain the results of (n × k + i)-th iteration (the i-th
iteration in the (k + 1)-th inner loop) by:

fn×k+i = Decoder(h ( fn×k+i−1, wi,i−2 fn×k+i−2,

. . . , wi,1 fn×k+1)). (9)

Table 13 Ablation experiments
for the fusion function of
decoder search

Training Data Fusion Function Sintel (val) KITTI-15 (val)

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H None 1.52 3.59 1.31 3.63

Average 1.78 4.51 1.63 4.10

Summation 1.61 3.89 1.40 3.78

Dynamic Summation 1.54 3.57 1.29 3.50

“None” denotes the original RAFT decoder without NAS. Dynamic summation achieves the best results
among the three fusion functions
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Table 14 Ablation experiments of iteration number and decoupled search for decoder search

Training Data Number of Iterations Decoupled Search Sintel (val) KITTI-15 (val)

in One Inner Loop Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H 1 – 1.52 3.59 1.31 3.63

4 × 1.54 3.57 1.29 3.50

� 1.54 3.57 1.29 3.50

6 × 1.57 3.62 1.33 3.78

� 1.56 3.62 1.30 3.79

12 × 1.60 3.78 1.35 4.00

� 1.57 3.71 1.32 3.89

Decouple search brings a better sub-network architecture. The best result is achieved when the number of iterations in one inner loop is 4

Table 15 Connection search for the flow decoder

Training Data Encoder Decoder Sintel (test) KITTI-15 (test)

Clean Final F1-all

C+T+S+K+H RAFT (Teed and Deng, 2020) RAFT (Teed and Deng, 2020) 1.94/1.61* 3.18/2.86* 5.10

Connection Search 1.92/1.64* 3.10/3.00* 4.99

FlowNAS RAFT (Teed and Deng, 2020) 1.88/1.60* 3.18/2.98* 4.67

Connection Search 1.95/1.63* 3.20/2.82* 4.73

*Results are evaluated with the “warm-start” strategy mentioned in RAFT (Teed and Deng, 2020). NAS has limited benefits for the flow decoder

4.6.2 Fusion Function

To minimize additional parameters and computation of
fusion function h(·), we design three simple fusion functions:
average, summation, and dynamic summation. The average
or summation fusion function fuses features from previous
iterations by averaging or summing all features in the chan-
nel dimension.Dynamic summation fusion functionfirst uses
a 1 × 1 convolution layer followed by batch normalization
and a ReLU layer to re-weight the value of each channel for
input features. It then sums up the new features in the chan-
nel dimension. We can formulate the Dynamic summation
fusion function as:

h( fi−1, wi,i−2 fi−2, ..., wi,1 f1)

= fi−1 +
i−2∑

j=1

wi, j ReLU (BN (W f Tj )). (10)

The results using three fusion functions are shown in
Table 13. Overall, the method using the dynamic summa-
tion function performs best.

4.6.3 Number of Iterations and Decoupled Search

We study the effect of iteration number in one inner loop
for the searchable flow decoder. We set the total number of
iterations during training to be 12 following RAFT. Experi-
ment results show that the configuration of the connections

during the architecture search is more difficult to converge
with a larger number of iterations in one inner loop. In
contrast, the encoder architecture can easily converge in a
few epochs. To alleviate this issue, we propose decoupled
evolutionary search algorithm. Specifically, we first use the
proposed resource-constrained search in Sect. 3.3 to search
the encoder and decoder architecture configuration together
for T epochs. The encoder architecture converges (i.e., the
encoder architectures are the same for the top 5 sub-network
architecture) during the first search stage. Then, in the second
search stage, we fix the encoder architecture and only search
decoder connections for other T epochs.

Table 14 shows that, with the proposed decoupled search,
we can obtain better sub-networks for the different number
of iterations. However, the results worsen when the number
of iterations in one inner loop is large. This can be attributed
to a decoder with complicated connections likely resulting
in unstable training.

4.6.4 Connection Search Results

To evaluate the effect of the proposed connection search,
we equip it with two flow encoders, i.e., RAFT, and Flow-
NAS, and test the networks on Sintel and KITTI benchmark
datasets. The results are shown in Table 15. For both
encoders, the decoder with connection search has marginal
improvement on Sintel. However, on KITTI, the decoder
with connection search decreases the performance from 4.67
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Table 16 GRU search for the
flow decoder

Training Data Decoder Sintel (val) KITTI-15 (val)

Clean Final F1-epe F1-all

C+T+S (train)+K (train)+H RAFT 1.52 3.59 1.31 3.63

Connection Search 1.54 3.57 1.29 3.50

GRU Search 1.52 3.56 1.33 3.61

GRU search brings marginal improvements on Sintel

Fig. 6 Visualization results on
the KITTI 2015 test-dev. The
left column is the input image.
The middle column shows the
estimated flow and error maps
of FlowNAS. The right column
presents the estimated flow and
error maps of RAFT baseline.
From blue to red, the error of the
estimated flow increases in the
error map (Color figure online)

to 4.73 for FlowNAS. These results indicate that NAS has
limited benefits for the flow decoder. The reason is that
the current flow decoder design involves much human prior
knowledge. The designed decoder architecture is rather del-
icate and reaches a bottleneck. Thus, the modification from
NAS for the decoder architecture may bring negative effects.
In contrast, with the proposed FlowNAS, which designs a
more suitable encoder for optical flow estimation, we can
significantly boost the performance of any existing flow esti-
mators (Table 12).

4.6.5 GRU Search

One possible reason for the connection search not perform-
ing well for the RAFT decoder is that the GRU may already
model the connection between past iterations. Thus, we
redesign the search space of the decoder architecture, i.e.,
only searching the GRU architecture, including the kernel
size and channels of the convolution in GRU, and maintain-
ing the overall structure of the decoder unchanged. It isworth
noting that DARTS (Liu et al., 2019b) and ENAS (Pham
et al., 2018) undertake architecture explorations on recurrent
cells. However, these approaches apply NAS on recurrent
cells only for 1D text data, while we mainly focus on NAS
for 2D images. In addition, the constructed search space in

DARTS (Liu et al., 2019b) and ENAS (Pham et al., 2018)
for recurrent cells is simple. Within the search space, non-
parametric activation functions and node connections are
searchable operations, whereas the type of convolutional
operations in recurrent cells remains fixed. In contrast, the
RAFT decoder adopts a complex recurrent cell structure (i.e.,
GRU), consisting of a MotionEncoder and a SepConvGRU
module with horizontal and vertical convolution layers for
feature updates. This complex cell structure allows us to con-
struct a more complicated search space, which DARTS and
ENAS may not handle.

Table 16 shows that only searching the GRU architecture
achieves slightly better results on Sintel while performing
worse on KITTI than the connection search. The reason is
that GRU search introduces more trainable parameters in
the search space than the connection search (4M vs. 0.3M).
GRU Search is prone to overfit during the training process
on KITTI, which only contains 160 image pairs on our split
training set. In contrast, the split training set of Sintel has
1600 image pairs, which alleviates the overfitting problem
and allows the network to find a better GRU architecture.
Overall, the strategies for a better decoder achieve marginal
improvements to the encoder search. As a result, we only
keep the NAS method for the flow encoder design.
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4.7 Visualization

We present the flow results of FlowNAS and RAFT on
the KITTI test-dev in Fig. 6. The figures are input images,
flow visualization, and error maps of FlowNAS and RAFT
from left to right. With a better encoder, FlowNAS improves
the flow details of the background. Furthermore, for a fast-
moving object (the car in the last row of Fig. 6), FlowNAS
can capturemore accuratemovement than the original RAFT
encoder.

5 Conclusions

In thiswork,we address the problemof designingoptical flow
estimators automatically. We propose the FlowNAS model
to find the optimal encoder structure specifically for opti-
cal flow. We study different search spaces and construct the
super-network on the best search space for neural architec-
ture search. To improve the accuracy of the super-network
and remove the retraining stage of sub-networks, we propose
the Feature Alignment Distillation module, which guides
the training of all sub-networks of the super-network. The
proposed FlowNAS model can be easily incorporated with
existing methods to find a better encoder. In addition, we
discuss the effect of NAS on the flow decoder search and
show that NAS plays a lesser role in the flow decoder design.
Extensive experimental results show that FlowNAS achieves
state-of-the-art performancewith the trade-off between accu-
racy and efficiency on the Sintel and KITTI benchmark
datasets.
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