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Abstract
Referring expression comprehension aims to localize objects identified by natural language descriptions. This is a challenging
task as it requires understanding of both visual and language domains. One nature is that each object can be described by
synonymous sentences with paraphrases, and such varieties in languages have critical impact on learning a comprehension
model. While prior work usually treats each sentence and attends it to an object separately, we focus on learning a referring
expression comprehension model that considers the property in synonymous sentences. To this end, we develop an end-to-
end trainable framework to learn contrastive features on the image and object instance levels, where features extracted from
synonymous sentences to describe the same object should be closer to each other after mapping to the visual domain. We
conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets, and demonstrate that our
method performs favorably against the state-of-the-art approaches. Furthermore, since the varieties in expressions become
larger across datasets when they describe objects in different ways, we present the cross-dataset and transfer learning settings
to validate the ability of our learned transferable features.

Keywords Referring expression comprehension · Contrastive learning · Transfer learning · Synonymous sentences

1 Introduction

Referring expression comprehension is a task to localize a
particular object within an image guided by a natural lan-
guage description, e.g., “the man holding a remote standing
next to a woman” or “the blue car”. Since referring expres-
sions are widely used in our daily conversations, the ability
to understand such expressions provides an intuitive way for
humans to interact with intelligent agents. One challenge of
this task is to jointly comprehend the knowledge from both
visual and language domains, where there are multiple ways
(i.e., synonymous sentences) to describe and paraphrase the
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same object. In this paper, “synonymous sentences” mean
different statements that describe the sameobject in an image.
That is, synonymous sentences are various descriptions of the
same object in a scene as annotators may use different words
or adjectives. Synonymous sentences in this work are differ-
ent from the general definition of “synonymous” that does not
consider images. For instance, we can refer to an object by its
attribute, location, or interaction with other objects. Refer-
ring expressions also vary in lengths and synonyms. As such,
the varieties of sentences that describe the same object cause
gaps in the language domain, and affect the model training
process.

In this work, we take this language property, synonymous
sentences, into consideration during the training process.
This is different from existing referring expression compre-
hension methods (Liu et al., 2019; Yu et al., 2018; Yang et
al., 2019a; Zhang et al., 2018) that do not explicitly consider
synonymous sentences. Here, our main idea is to learn con-
trastive features when mapping the language features to the
visual domain.That is,while the sameobject canbedescribed
by different synonymous sentences, these language features
should be close to each other after mapping to the visual
domain. On the other hand, for other expressions that do not
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Fig. 1 Overview of the proposed algorithm. An object can be described
in different ways, e.g., by its attribute, location, or interaction with other
objects. For a referring expression S, there are positive expressions S+
describing the same object and negative ones S− for another object.
While prior work considers each expressionway separately, our method

encourages features of synonymous sentences for the same object to
attend nearby in the language-to-visual embedding space (F and F+)
but far away from negative ones (F−). Thus, the proposed framework
can transfer learned features to unseen data

describe that object, our model should also map them further
away from that object (see Fig. 1 for an illustration).

To exploit how synonymous sentences are utilized to help
model training as described above,we integrate feature learn-
ing techniques, e.g., contrastive learning (Hadsell et al., 2006;
He et al., 2020; van den Oord et al., 2018), into our frame-
work. Then, the requirement of (multiple) positive/negative
samples in contrastive learning can be satisfied by the notion
of synonymous sentences. However, it is not trivial to deter-
mine where we learn contrastive features in the model, in
which we find that using language-to-visual features is ben-
eficial to optimizing both the image and language modules.
To this end, we design an end-to-end learnable framework
that enables feature learning on two different levels with
language-to-visual features, i.e., image and object instance
levels, which are responsible for global context and rela-
tionships between object instances, respectively. Moreover,
since there are large varieties of negative samples (i.e., any
languages describing different objects can be negatives), we
explore the option ofmining negative samples to further facil-
itate the learning process.

In our framework, one benefit of learning contrastive fea-
tures from synonymous sentences is to equip the model with
the ability to contrast different languagemeanings. This abil-
ity is important when transferring themodel to other datasets,
as each domain may contain different varieties of sentences
to describe objects. To understand whether the learned fea-
tures are effectively transferred to a new domain, we show
that our model performs better in the cross-dataset setting
(testing on the unseen dataset), as well as in the transfer
learning setting that fine-tunes our pre-trained model on the

target dataset. Note that, although a similar concept of syn-
onymous sentences is also adopted in (Wang et al., 2016)
for retrieval tasks, it has not been exploited in referring
expression comprehension for feature learning and transfer
learning. Specifically, (Wang et al., 2016) uses off-the-shelf
feature extractors and does not consider feature learning
using multiple positive/negative samples on both image and
instance levels like our framework.

We conduct extensive experiments on referring expres-
sion comprehension benchmarks to demonstrate the merits
of learning contrastive features from synonymous sentences.
First, we use the RefCOCO benchmarks, including Ref-
COCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016), and
RefCOCOg (Mao et al., 2016; Nagaraja et al., 2016), to
perform baseline studies with comparisons to state-of-the-
art methods. Second, we focus on cross-dataset and transfer
learning settings using the ReferItGame (Kazemzadeh et al.,
2014) and Ref-Reasoning (Yang et al., 2020a) datasets to
validate the ability of transferable features learned on the
RefCOCO benchmarks.

The main contributions of this work are summarized as
follows: (1) We propose a unified and end-to-end learn-
able framework for referring expression comprehension by
considering various synonymous sentences to improve the
training procedure. (2) We integrate feature learning tech-
niques into our framework with a well-designed sampling
strategy that learns contrastive features on both the image
and instance levels. (3) We demonstrate that our model is
able to effectively transfer learned representations in both
cross-dataset and transfer learning settings.
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2 RelatedWork

Referring Expression Comprehension The task of referring
expression comprehension is typically considered as deter-
mining an object among several object proposals, given the
referring expression. To this end, several methods adopt
two-stage frameworks to first generate object proposals
with a pre-trained object detection network, and then rank
the proposals according to the expression. For example,
CNN-LSTM models have been used to generate captions
based on the image and proposals (Hu et al., 2016; Luo &
Shakhnarovich, 2017; Mao et al., 2016), and the one with
the maximum posterior probability for generating the query
expression is selected. Other approaches (Rohrbach et al.,
2016; Wang et al., 2016) embed proposals and the query
sentence into a common feature space, and choose the object
with the minimum distance to the expression. In addition,
several strategies are adopted to improve the performance,
e.g., analyzing the relationship between an object and its
context (Nagaraja et al., 2016; Yu et al., 2016; Zhang et
al., 2018), or exploring the attributes (Liu et al., 2017) to
distinguish similar objects. To jointly consider multiple fac-
tors, MAttNet (Yu et al., 2018) learns a modular network by
considering three components, i.e., subject appearance, loca-
tion and relationship to other objects. While these two-stage
frameworks achieve promising results, the computational
cost is significantly high due to extensive post-processing
steps and individual models. Furthermore, the model perfor-
mance is largely limited by the pre-trained object detection
network.

Some recent approaches adopt one-stage frameworks to
tackle referring expression object segmentation (Chen et al.,
2019), zero-shot grounding (Sadhu et al., 2019), and visual
grounding (Huang et al., 2021; Yang et al., 2019b, 2020c, b),
where the language features are fused with the object detec-
tor. In these methods, the models are end-to-end trainable
and more computationally efficient. Compared to the meth-
ods mentioned above that consider each individual dataset
separately, we aim to learn contrastive features by consider-
ing synonymous sentences during the training process. In this
work,we adopt a one-stage framework inwhich the represen-
tations in both the language and visual domains are learned
jointly.

Feature Learning Feature learning aims to represent data
in the embedding space, where similar data points are close
to each other, and dissimilar ones are far apart, based on pair-
wise (Sohn, 2016), triplet (Schroff et al., 2015) or contrastive
relationships (Hadsell et al., 2006; He et al., 2020; van den
Oord et al., 2018). This representation model is then used for
downstream tasks such as classification and detection. These
loss functions are computed on anchor, positive and negative
samples, where the anchor-positive distance is minimized,
and the anchor-negative distance is maximized. While the

triplet loss (Schroff et al., 2015) uses one positive and one
negative sample per anchor, contrastive loss (Hadsell et al.,
2006;He et al., 2020; van denOord et al., 2018) includesmul-
tiple positive and negative samples for each anchor, which
makes the learning process more efficient.

For natural language processing tasks, recent studies
(Devlin et al., 2018; Peters et al., 2018) based on the trans-
former (Vaswani et al., 2017) have shown success in transfer
learning. Built upon the transformer-based BERT (Devlin
et al., 2018) model, learning representation for vision and
language tasks by large-scale pre-training methods recently
attracts much attention. These methods (Chen et al., 2020b;
Gan et al., 2020; Lu et al., 2019, 2020; Li et al., 2020; Zhou et
al., 2020) learn generic representations from a large amount
of image-text pairs in a self-supervisedmanner, and fine-tune
the model for the downstream vision and language tasks.
Recently, ViLBERT (Lu et al., 2019) and its multi-tasking
version (Lu et al., 2020) use two parallel BERT-style models
to extract features on image regions and text segments, and
connect the two streams with co-attentional transformer lay-
ers. Moreover, the OSCAR (Li et al., 2020) method uses
object tags as anchor points to align the vision and lan-
guage modalities in a shared semantic space. While these
approaches aim to learn generic representations for vision
and language tasks by training the models on large-scale
datasets, we focus on the referring expression comprehen-
sion, and adopt the feature learning techniques to improve
the performance by considering synonymous sentences.

In this work, with a similar spirit to feature learning, we
integrate the contrastive loss into our model by considering
synonymous sentences for referring expression comprehen-
sion. While it is natural to use the concept of synonymous
expressions in tasks such as image-text retrieval (Wang et al.,
2016) or text-based person retrieval (Yamaguchi et al., 2017),
it has not been exploited in referring expression compre-
hension to improve feature learning and further for transfer
learning. Different from (Wang et al., 2016;Yamaguchi et al.,
2017) that apply hinge loss on triplets, we consider multiple
positive and negative samples for each anchor, and perform
contrastive learning on both image and instance levels.More-
over, we adopt an end-to-end framework, where the visual
and language features are jointly learned, which is differ-
ent from (Wang et al., 2016; Yamaguchi et al., 2017) that use
off-the-shelf feature extractors. Compared toMAttNet (Yu et
al., 2018), our method leverages synonymous sentences via
learning contrastive features, which has not been exploited
in prior art. In addition, we apply contrastive loss differently
in terms of sample construction, feature space and negative
mining strategy. It is also worth mentioning that we apply
the loss on image-level and instance-level features that are
mapped from the language domain to the image domain in
an end-to-end learning manner. With the proposed feature
learning techniques, we demonstrate that our model is able
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to transfer learned representations in both cross-dataset and
transfer learning settings.

3 Proposed Framework

In this work, we address the problem of referring expression
comprehension via using the information in synonymous sen-
tences to learn contrastive features across sentences. Given
an input image I and a referring expression S = {wt }Tt=1
consisting of T words wt , the task is to localize the object
identified by the expression. We design a framework com-
posed of a visual encoder Ev and a language encoder El

for feature extraction in the visual and language domains.
Since our goal is to learn contrastive features after map-
ping the language features to the visual domain, we utilize
the attention modules Aimg and Ains for language-to-visual
features and a graph convolutional network (GCN) G for
aggregating instance-level features, which will be detailed
in the following sections. The output of referring expression
comprehension is predicted by a detection head D. Fig. 2
shows the pipeline of the proposed framework.

Our method learns contrastive features on two levels to
account for both the global context and relationships between
object instances. To this end,we enforce that the language-to-
visual features on either the image or instance level should
be close to each other if the referring expressions are syn-
onymous sentences, and vice versa. Given the image-level
attention map Rl→v obtained from Aimg and the instance-
level attention feature Hl→v inferred from Ains followed by
a GCN module G, we regularize Rl→v and Hl→v by lever-

aging feature learning techniques, guided by the notion of
synonymous sentences. As a result, our language-to-visual
features contrast the attentions from the language domain to
the visual one based on the sentence meanings, which facil-
itates the comprehension task.

3.1 Image-Level Feature Learning

To comprehend the information from the input image and
referring expression, features of the two inputs are first
extracted by each individual encoder. We then use an atten-
tion module Aimg that attends the l-dimensional language
feature Fl = El(S) ∈ R

l to the v-dimensional visual fea-
ture Fv = Ev(I ) ∈ R

h×w×v , where h and w are the spatial
dimensions. A response map Rl→v that contains the mul-
timodal information is obtained accordingly, i.e., Rl→v =
Aimg(Fl , Fv) ∈ R

h×w. The details of the encoders and atten-
tion module Aimg are presented later in Sect. 3.3.

As there are numerous synonymous sentences to describe
the sameobject, the language-to-visual features should attend
to similar regions regardless of how to describe the object.
Intuitively, we can apply a triplet loss on the response
map to encourage the samples with synonymous expres-
sions describing the same object to be mapped closely in
the embedding space. Otherwise, they should be mapped far
away from each other.

Specifically, for each input image I and a referring expres-
sion anchor S, we randomly sample a positive expression S+
that describes the same object, and a negative expression S−
identifying a different object within the same image. The
triplet loss is then computed on the response generated by

Fig. 2 Pipeline of the proposed framework. The features of the input
image I and referring expression S (with its synonymous sentence S+
and a negative expression S−) are first extracted by a visual encoder
Ev and language encoder El , respectively. Then we adopt two atten-
tion modules Aimg and Ains for attending language features to the
visual domain on the image and instance levels, where we apply our

feature learning losses Limg and Lins−cl to contrast positive/negative
pairs, i.e., {R+, R−} and {H+, H−} on two levels, respectively. On the
instance level, a graph convolutional network G is employed to model
the relationships between object proposals. Finally, we generate the
object bounding box with a detection head D
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attending the three expression samples to the image I :

Limg = max(d(R, R+) − d(R, R−) + α, 0), (1)

where R, R+ and R− are the responses of the anchor, positive
and negative samples, respectively. In addition, d is the L2
distance between two response maps and α is the margin.
After this step, we combine Rl→v and Fv via element-wise
multiplication ⊗ to produce the attentive feature Fl→v =
Rl→v ⊗ Fv ∈ R

h×w×v , which is then used as the input to the
detection head D (see Fig. 2). We note that the triplet loss
is applied to the response map Rl→v rather than the feature
Fl→v , since Rl→v is easier to optimize with the much lower
dimension.

3.2 Instance-Level Feature Learning

In addition to applying the triplet loss on the image level for
learning contrastive features, we also consider the features
on the instance level to encourage themodel to focusmore on
local cues. However, through the RoI module that generates
proposals, each proposal (instance) only contains the infor-
mation within the receptive field of its bounding box but does
not provide the local context information (e.g., interactions
with other objects) described in the referring expression.
To tackle this problem, we design a graph convolutional
network (GCN) (Kipf & Welling, 2017) in a way similar
to DGA (Yang et al., 2019a) to model the relationships
between proposals, and then use the features afterGCNas the
input to our instance-level feature learning module. Differ-
ent from DGA that applies pre-trained features to the GCN,
we integrate the GCN in our end-to-end model. More details
regarding the implementation are provided in Sect. 3.3.

Contrastive Feature Learning As shown in Fig. 2, similar
to the image-level in Sect. 3.1,wefirst adopt an instance-level
attention module Ains following (Yu et al., 2018) to attend
the language feature Fl to the RoI proposals, followed by
the GCN module G to aggregate the proposal relationships.
As a result, we obtain the instance-level language-to-visual
features Hl→v = G(Ains(Fl ,RoI(Fl→v))).

Next, we propose to regularize Hl→v guided by the con-
cept of synonymous sentences, where the proposal features
from referring expressions that describe the same object
should be close to each other. Otherwise, they should be apart
from each other. To this end, one straightforwardway to learn
instance-level contrastive features is to apply the triplet loss
similar to (1):

Lins−tr i = max(d(H , H+) − d(H , H−) + α, 0), (2)

where H , H+, and H− represent instance-level features of
the anchor, positive and negative expressions attending on the
visual domain, respectively. Note that each expression may

generate different RoI locations. To use the same proposals
across samples in the triplet, we select the proposal with the
highest IoU score with respect to the ground truth bounding
box.

Contrastive Loss with Negative Mining Although the
triplet loss in (2) can be used to learn instance-level con-
trastive features, it is limited to sample one positive and
negative at a time, which may not fully exploit multiple syn-
onymous sentences. Therefore, we leverage the contrastive
loss (Khosla et al., 2020) with the property that can consider
multiple positive/negative samples. Intuitively, we can treat
synonymous sentences as positives, but the space of negative
samples is large and noisy as any two languages describing
different objects are negatives. Moreover, it has been stud-
ied that finding good negative samples is critical for learning
contrastive features effectively (Kalantidis et al., 2020).

To tackle this issue, we employ the following two strate-
gies to mine useful negative samples: (1) From the perspec-
tive of the visual domain, we mine samples that describe
the same object category but in different images, and then
use the corresponding referring expressions as the negatives.
This encourages our model to contrast features that describe
similar contents across images, as sentences referring to the
same object category usually share common contexts. (2)
Considering the language embedding features, we mine the
top N samples (i.e., N = 8 in this work) that have closer lan-
guage features to the anchor sample but in different images.
This helps the model contrast samples that have a similar
language structure. Overall, our contrastive loss Lins−cl can
be formulated as:

−log

∑

H+∈Q+
eh(H)�h(H+)/τ

∑

H+∈Q+
eh(H)�h(H+)/τ + ∑

H−∈Q−
eh(H)�h(H−)/τ

, (3)

where Q+ and Q− are the sets of positive and negative sam-
ples, and τ is the temperature parameter. In practice, we
follow the SimCLR (Chen et al., 2020a) method and use h(·)
as a linear layer that projects features H to an embedding
space where the contrastive loss is applied.

Discussions Compared to the instance-level triplet loss in
(2), using the contrastive loss in (3) has a few merits. First,
given an anchor sample, it can contrast with multiple positive
and negative samples at the same time, which is much more
efficient than sampling the triplets, as shown in (Khosla et
al., 2020) and our ablation study presented later. Second,
the projection head h(·) provides a learnable buffer before
feeding features to compute the contrastive loss, which helps
the model learn better representations.

In terms of the sampling strategy, different from the neg-
ative mining method in (Chen et al., 2020c) that generates
negatives with the same object category, we also consider
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negatives with similar languages to the anchor language but
containing other object categories. This difference allows us
to sample more negatives with similar language structures,
which is crucial for our contrastive loss in language.

3.3 Model Training and Implementation Details

In this section, we providemore details in training our frame-
work and the design choices.

Overall Objective The overall objective for the proposed
algorithm consists of the aforementioned loss functions (1)
and (3) for learning contrastive features on the image and
instance levels, and the detection loss Ldet as defined in the
Mask R-CNN (He et al., 2017) following the MAttNet (Yu
et al., 2018) method:

Lall = Ldet + Limg + Lins−cl . (4)

Implementation Details For the visual encoder Ev in our
framework and the detection head D, we adopt the Mask
R-CNN (He et al., 2017) as the backbone model, which is
pre-trained on COCO training images, excluding those in
validation and testing splits of RefCOCO, RefCOCO+ and
RefCOCOg. The ResNet-101 (He et al., 2016) is used as the
feature extractor, where the output of the final convolutional
layer in the fourth block is the feature Fv that serves as the
input to the attention module Aimg . For the language encoder
El , we use either the BERT (Devlin et al., 2018) or Bi-LSTM
model. In the image-level attention module Aimg , we adopt
dynamic filters similar to (Chen et al., 2019) to attend lan-
guage features to the visual domain and generate Rl→v .

For the GCN in our method, the object proposals are
generated from Mask R-CNN (He et al., 2017). We keep
the top K detection candidates for each image, where K
is set to 20. We then construct a graph G = (V, E) from
the set of object proposals P = {pi }Ki=1, where each ver-
tex vi ∈ V corresponds to an object proposal pi , and each
edge ei j ∈ E models the pairwise relationship between
instances pi and p j . In the instance-level attention module
Ains , we compute the word attention on each object proposal
to focus on instances that are referred to by the sentence.
The word attention ai on the proposal pi is defined as the
average of all the probabilities that each word wt refers to
pi : ai = 1

T

∑T
t=1 si,t = 1

T

∑T
t=1〈 fwt , f pi 〉, where T is the

number of words in the sentence, and si,t is the inner product
between the feature fwt of word wt and the average pooled
feature f pi of proposal pi . To compute the feature node fvi
at vertex vi , we first concatenate the average pooled feature
f pi and the 5-dimensional location feature (Mao et al., 2016)
[ xtlW ,

ytl
H ,

xbr
W ,

ybr
H , wh

WH ] on proposal pi , where (xtl , ytl) and
(xbr , ybr ) are the coordinates of the top-left and bottom-right
corners of the proposal, h and w are height and width of the
proposal, H andW are height and width of the image. Then,

the concatenated feature ismultiplied by theword attentionai
to form fvi .We use a two-layer GCN to capture second-order
interactions. Features after GCN are duplicated to each spa-
tial location and concatenated with the spatial features after
RoI. Then, the concatenated features are fed to the detection
head D to generate final results. During testing, the detected
object with the largest score is considered as the prediction.
The margin α in the triplet loss (1) and (2) is set to 1. In the
contrastive loss (3), the temperature τ is set to 0.1, and the
projection head h(·) is a 2-layer MLP, projecting the features
to a 128-dimensional latent space.

We implement the proposed model in PyTorch with the
SGD optimizer, and the entire model is trained end-to-end
with 10 epochs. The batch size is set to 8. The initial learn-
ing rate is set to 10−4 and decreased to 10−5 after 3 epochs.
The total training time of our model is about 60 hours. The
inference time is 0.325 seconds per frame. Our framework
is implemented on a machine with an Intel Xeon 2.3 GHz
processor and an NVIDIA GTX 1080 Ti GPU with 11 GB
of memory. We implement our baseline as the same archi-
tecture without using contrastive learning, i.e., only Ldet as
the objective.

4 Experimental Results

We evaluate the proposed framework on three referring
expression datasets, including RefCOCO (Yu et al., 2016),
RefCOCO+ (Yu et al., 2016) and RefCOCOg (Mao et al.,
2016; Nagaraja et al., 2016). The three datasets are collected
on theMSCOCO (Lin et al., 2014) images, but with different
ways to generate referring expressions. Extensive experi-
ments are conducted in multiple settings. We first compare
the performance of the proposed algorithm with state-of-
the-art methods and present the ablation study to show the
improvementmade by each component. Thenwe evaluate the
models on the unseen Ref-Reasoning (Yang et al., 2020a)
dataset to validate the effectiveness on unseen datasets.
Furthermore, we conduct experiments in the transfer learn-
ing setting, where the pre-trained models are fine-tuned on
either the Ref-Reasoning (Yang et al., 2020a) or Refer-
ItGame (Kazemzadeh et al., 2014) dataset. The source code
and trained models will be made available to the public.

Intra- and Inter-Dataset Feature Learning Since synony-
mous sentences exist within one dataset and across datasets1,
we consider both intra- and inter-dataset feature learning
loss. For each input image and referring expression anchor,
we sample positive and negative expressions from the same
dataset for the intra-dataset case, and expressions from dif-

1 RefCOCO, RefCOCO+, and RefCOCOg datasets have the same
images but with different ways to describe the same object using syn-
onymous sentences.
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ferent datasets as inter-dataset samples. In our experiments,
we use the intra-dataset loss for training on a single dataset,
and both the intra- and inter-dataset losses for jointly training
on the three datasets.

4.1 Datasets and EvaluationMetric

RefCOCO contains 19,994 images with 142,209 referring
expressions for 50,000 objects, while RefCOCO+ is com-
posed of 141,564 expressions for 49,856 objects in 19,992
images. Restrictions are not placed on generating expres-
sions for RefCOCO, but put on RefCOCO+ by forbidding
the location information,making it focusmore on the appear-
ance of the target object and its interaction with others. The
two testing splits testA and testB are generated respectively
on images containing multiple people and images contain-
ing multiple objects of other categories. We follow the split
of the training, validation and testing images in (Yu et al.,
2016), and there is no overlap across the three sets.

The RefCOCOg dataset consists of 85,474 referring
expressions for 54,822 objects in 26,711 images with longer
expressions. There are two splits constructed in different
ways. The first split (Mao et al., 2016) randomly partitions
objects into training and validation sets. Therefore, the same
image could appear in both sets. The validation set is denoted
as “val∗” in this paper. The second partition (Nagaraja et
al., 2016) randomly splits images into training, validation
and testing sets, where we denote the validation and testing
splits as “val” and “test”, respectively. In our experiments,
when jointly training on three datasets, to avoid overlaps
between the training, validation and testing images, we cre-
ate another split for RefCOCOg, where each set contains the
images present in the corresponding set of RefCOCO and
RefCOCO+. We denote this split as “RefCOCOg∗”.

The Ref-Reasoning dataset consists of 83,989 images
from the GQA set (Hudson &Manning, 2019) with 791,956
referring expressions automatically generated based on scene
graphs. The ReferItGame dataset is collected in an interac-
tive game interface with images from the ImageCLEF set
(Escalante et al., 2010). It contains 130,525 expressions,
referring to 96,654 objects in 19,894 images. To evaluate the
detection performance, the predicted bounding box is con-
sidered correct if the intersection-over-union (IoU) of the
prediction and the ground truth bounding box is above 0.5.

4.2 Evaluation on Seen Datasets

Table 1 shows the results of the proposed algorithm against
state-of-the-art methods (Chen et al., 2021; Deng et al., 2021;
Huang et al., 2021; Luo & Shakhnarovich, 2017; Liu et al.,
2017, 2019; Liao et al., 2020; Nagaraja et al., 2016; Yu et al.,
2018; Yang et al., 2019a, b, 2020c; Yu et al., 2017; Zhuang et
al., 2018; Zhang et al., 2018). All the compared approaches

except for the recent methods (Deng et al., 2021; Huang et
al., 2021; Liao et al., 2020; Yang et al., 2019b, 2020c) adopt
two-stage frameworks, where the prediction is chosen from
a set of proposals. Therefore, their models are not end-to-
end trainable, while our one-stage framework is able to learn
better feature representations by end-to-end training. More-
over, all of these methods train on each dataset separately
and do not consider the varieties of synonymous sentences
within/across datasets.

The models in the top and middle groups of Table 1 are
trained and evaluated on the same single dataset. We sepa-
rate the methods using different language encoders for fair
comparisons. The results show that the full model trained
with the proposed loss functions consistently improves our
baseline model without considering synonymous sentences.
In addition, our method with either LSTM or BERT as the
language encoder performs favorably against most existing
approaches. Our method also provides better performance
than the transformer-based TransVG (Deng et al., 2021)
method on 6 out of 9 splits. While Ref-NMS (Chen et
al., 2021) outperforms the proposed method, they focus on
improving two-stage methods. Therefore, the applications of
Ref-NMS are limited.

For the runtime comparison, our unified framework (0.325
s per frame) is much faster than the two-stage MAttNet (Yu
et al., 2018) and CM-Att-Erase (Liu et al., 2019) methods
(0.671 and 0.734 s, respectively). While we use the same
backbone (Mask R-CNN with ResNet-101) as MAttNet, our
end-to-end model is more efficient by processing each image
with a single stage. In contrast, MAttNet requires multiple
steps of inference (i.e., 0.302 s for object bounding box gen-
eration, 0.276 s for region feature extraction, and 0.093 s for
prediction).

The bottom group of Table 1 shows the results of our
models jointly trained on the RefCOCO, RefCOCO+ and
RefCOCOg∗ (our split) datasets. Since the three datasets
share the same images but contain expressions of very differ-
ent properties, directly training on all of them as the baseline
would cause training difficulties in a single model due to
the large varieties in language. In contrast, by applying the
proposed loss terms, the performance improves from the
baseline, and the gains are larger than those in the single
dataset setting. We also note that all the training images are
the same, but the varieties of synonymous sentences are dif-
ferent across these two settings.

4.3 Ablation Study

We present the ablation study results in Table 2 to show the
effect of each component in the proposed framework. The
models are jointly trained on the RefCOCO, RefCOCO+ and
RefCOCOg∗ datasets. In the top group of Table 2, we first
demonstrate that applying either the image-level or instance-
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Table 1 Comparisons with state-of-the-art methods

Language RefCOCO RefCOCO+ RefCOCOg
Method Encoder val testA testB val testA testB val∗ val test

Nagaraja et al. (2016) LSTM 57.30 58.60 56.40 – – – – – 49.50

Luo and Shakhnarovich (2017) LSTM – 67.94 55.18 – 57.05 43.33 49.07 – –

SLR (Yu et al., 2017) LSTM 69.48 73.71 64.96 55.71 60.74 48.80 – 60.21 59.63

Liu et al. (2017) LSTM – 72.08 57.29 – 57.97 46.20 52.35 – –

PLAN (Zhuang et al., 2018) LSTM – 75.31 65.52 – 61.34 50.86 58.03 – –

VC (Zhang et al., 2018) LSTM – 73.33 67.44 – 58.40 53.18 62.30 – –

MAttNet (Yu et al., 2018) LSTM 76.65 81.14 69.99 65.33 71.62 56.02 – 66.58 67.27

CM-Att-Erase (Liu et al., 2019) LSTM 78.35 83.14 71.32 68.09 73.65 58.03 – 67.99 68.67

DGA (Yang et al., 2019a) LSTM – 78.42 65.53 – 69.07 51.99 – – 63.28

Darknet-LSTM (Yang et al., 2019b) LSTM 73.66 75.78 71.32 – – – – – –

RCCF (Liao et al., 2020) LSTM – 81.06 71.85 – 70.35 56.32 – – 65.73

Ref-NMS (Chen et al., 2021) GRU 80.70 84.00 76.04 68.25 73.68 59.42 – 70.55 70.62

LBYL-Net (Huang et al., 2021) LSTM 78.76 82.18 71.91 66.67 73.21 56.23 58.72 – –

Ours (baseline) LSTM 76.63 79.59 69.93 63.67 71.26 55.04 61.71 66.24 65.85

Ours (full model) LSTM 79.09 82.86 72.64 66.81 74.23 58.08 64.80 69.14 68.86

Darknet-BERT (Yang et al., 2019b) BERT 72.05 74.81 67.59 55.72 60.37 48.54 48.14 59.03 58.70

ReSC-Large (Yang et al., 2020c) BERT 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20

LBYL-Net (Huang et al., 2021) BERT 79.67 82.91 74.15 68.64 73.38 59.49 62.70 – –

TransVG (Deng et al., 2021) BERT 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73

Ours (baseline) BERT 77.02 80.25 70.53 64.31 71.83 55.20 62.27 66.48 66.34

Ours (full model) BERT 79.63 83.32 73.27 67.49 74.85 58.42 65.23 69.67 69.51

Ours (baseline-all) BERT 75.17 79.53 68.72 63.42 70.55 53.38 – – –

Ours (full model-all) BERT 82.42 85.77 75.29 70.64 78.12 61.49 – – –

The models in the top and middle groups are trained on a single dataset, while those in the bottom group are jointly trained on the RefCOCO,
RefCOCO+ and RefCOCOg∗ (our split) datasets, where same images are shared among three datasets but with more expressions than the top and
middle groups
Bold values denote the best results within the same group of methods

Table 2 Ablation study of jointly training on three datasets

RefCOCO RefCOCO+ RefCOCOg∗
Method Image-level Instance-level val testA testB val testA testB val testA testB

Baseline 75.17 79.53 68.72 63.42 70.55 53.38 60.62 64.57 53.81

w/o instance-level � 77.82 81.34 70.94 66.25 73.18 55.91 63.84 67.12 57.46

w/o image-level Triplet Loss (2) 78.49 81.92 71.35 67.04 74.80 57.32 64.58 67.79 58.31

w/o image-level Contrastive Loss (3) 79.33 83.28 72.64 67.81 75.77 58.63 65.73 68.54 58.89

Final w/Lins−tr i � Triplet Loss (2) 80.61 84.19 73.71 69.28 76.72 59.80 68.26 69.81 61.34

Final w/Lins−cl � Contrastive Loss (3) 82.42 85.77 75.29 70.64 78.12 61.49 69.92 71.75 62.68

Final w/random sample � Contrastive Loss (3) 80.93 84.30 73.65 69.47 76.61 59.87 68.48 70.04 61.52

Final w/same image sample � Contrastive Loss (3) 82.05 85.52 74.89 70.38 77.82 61.17 69.46 71.32 62.23

Final w/o GCN � Contrastive Loss (3) 81.40 84.26 74.52 69.72 77.18 60.57 69.13 70.71 61.67

Final w/Ev fixed � Contrastive Loss (3) 81.56 84.41 74.19 69.30 76.83 60.17 68.64 70.02 60.92

The top and middle groups demonstrate the effectiveness of the proposed feature learning techniques in different levels, and the superiority of
contrastive loss over triplet loss in the instance level. The bottom group shows the influence of the negative mining, GCN and co-training Ev in our
model
Bold values denote the best results within the same group of methods
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“man in maroon shirt
wearing sunglasses”

“woman in black
not with child” “orange cat behind” “bike next to

the girl rider”
“container opposite

of the grapes”

Fig. 3 Sample results of jointly training on the RefCOCO, RefCOCO+ and RefCOCOg* datasets. The green and yellow boxes represent the results
of the baseline and our full model, respectively (Color figure online)

level loss improves the performance from the baseline model
that does not consider the property of synonymous sen-
tences. In themiddle group of the table, the results are further
improved in the full models with the loss on both levels, and
the one with contrastive loss in the instance level achieves
better performance than the one using triplet loss. In the bot-
tom group, we provide the detailed ablation study in our
model. We first show results of different negative sampling
methods, including randomly sampling negatives from all
images and sampling negatives from the same image. These
results demonstrate that our negative mining performs bet-
ter than naive random sampling by a larger margin. When
removing the GCN from the model, the performance is
slightly degraded compared to the full model in the middle
group. This shows that our proposed feature learning tech-
niques play themain role in performance improvement,while
the proposed negative mining and GCN modules also help
achieve better results. In our experiments, the entire model
is trained end-to-end. To analyze the effect of co-training
Ev , we conduct an experiment with Ev fixed during train-
ing. The results are shown in the last row of Table 2. We
observe that the performance of training the entire model is
better than training with Ev fixed. Furthermore, we present
qualitative results in Fig. 3, which show that our full model
better distinguishes between similar objects and understands
relationships across objects.

4.4 Evaluation on the Unseen Dataset

To demonstrate that the proposed framework can transfer
learned features to other unseen datasets, we use our trained
models to evaluate on the Ref-Reasoning (Yang et al., 2020a)
dataset, which contains completely different images and
expressions from our training datasets. The results are shown
in Table 3 and the performance of our model trained on the
Ref-Reasoning dataset using the fully-supervised setting is
provided as a reference. We first train our models on the
RefCOCOg dataset (Nagaraja et al., 2016). When applying
the intra-dataset loss in the full model, the performance is
improved from the baseline and better than the two-stage
MAttNet (Yuet al., 2018) andCM-Att-Erase (Liu et al., 2019)
approaches,wherewe evaluate using their official pre-trained
models. Then we jointly train our models on RefCOCO, Ref-
COCO+ and RefCOCOg∗ (our split) datasets. When more
datasets are used to train our full model, the performance
gains over the baseline increase, which demonstrates the
effectiveness of our feature learning using synonymous sen-
tences.

4.5 Transfer Learning on Unseen Datasets

To validate the feature learning ability of the proposed
method, we conduct experiments on the transfer learning

Table 3 Evaluation on the Ref-Reasoning dataset with models trained on different datasets

Number of objects
Method Training dataset One Two Three

Ours (supervised) Ref-reasoning 76.43 57.37 50.79

MAttNet (Yu et al., 2018) RefCOCOg 49.81 32.17 25.83

CM-Att-Erase (Liu et al., 2019) RefCOCOg 50.34 32.42 26.02

Ours (baseline) RefCOCOg 50.26 31.41 26.16

Ours (full model) RefCOCOg 53.49 33.61 28.09

Ours (baseline) RefCOCO, RefCOCO+, RefCOCOg∗ 54.56 33.11 28.46

Ours (full model) RefCOCO, RefCOCO+, RefCOCOg∗ 57.96 36.82 32.61

Themodels are trained on the Ref-Reasoning (top group), RefCOCOg (middle group), or RefCOCO, RefCOCO+ and RefCOCOg∗ datasets (bottom
group)
Bold values denote the best results within the same group of methods
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Table 4 Transfer learning on the Ref-Reasoning dataset with different settings of pre-training (Pre) and fine-tuning (FT)

Pre-training Our loss in Number of objects
Method Dataset Pre FT One Two Three

SGMN (Yang et al., 2020a)∗ 80.17 62.24 56.24

SGMN (Yang et al., 2020a) 73.86 54.03 45.69

Ours (baseline) 76.43 57.37 50.79

Ours (baseline) RefCOCO, RefCOCO+, RefCOCOg* 76.54 57.43 50.81

Ours RefCOCO, RefCOCO+, RefCOCOg* � 78.72 59.14 52.03

Ours RefCOCO, RefCOCO+, RefCOCOg* � 79.16 59.47 52.39

Ours (full model) RefCOCO, RefCOCO+, RefCOCOg* � � 81.94 62.73 55.86

The models in the top group are directly trained on Ref-Reasoning, while those in the bottom group are pre-trained on RefCOCO, RefCOCO+ and
RefCOCOg∗, and fine-tuned on Ref-Reasoning. Note that ∗ in the first row indicates that SGMN (Yang et al., 2020a) uses ground truth proposals
to generate final outputs, which is served as a reference here. The results of SGMN (second row) are generated from automatically detected objects
Bold values denote the best results within the same group of methods

setting, where the models are pre-trained on the Ref-
COCO, RefCOCO+ and RefCOCOg∗ datasets, and fine-
tuned on the Ref-Reasoning (Yang et al., 2020a) or Refer-
ItGame (Kazemzadeh et al., 2014) dataset. We also note that
the SGMN (Yang et al., 2020a)∗ model in the first row of
Table 4 uses ground truth proposals from the dataset, which
is served as a reference, but is not a direct comparison with
our method that predicts the locations without accessing
ground truth bounding boxes. For fair comparisons, we eval-
uate SGMN with automatically detected objects using the
same detector as ours. The detected objects are generated
fromMask R-CNNwith ResNet-101 pre-trained on COCO’s
training images, excluding those in the validation and testing
sets of RefCOCO, RefCOCO+ and RefCOCOg. The results
are presented in the second row of Table 4. With the same

object detector and training data, our model has better per-
formance than SGMN.

Table 4 shows that two models of “Ours (baseline)” with
or without the pre-training stage, perform very similarly to
each other on Ref-Reasoning (Yang et al., 2020a). These
results show that it is challenging to learn transferable fea-
tures by simplypre-trainingon existingdatasets.However, by
introducing our feature learning schemes, either during pre-
training (Pre) or fine-tuning (FT), our models achieve better
performance. When using our method in both pre-training
and fine-tuning stages, the performance is further improved.

Similar comparisons can be observed in Table 5, where
the models are fine-tuned on the ReferItGame (Kazemzadeh
et al., 2014) dataset. In the bottom group, we demonstrate
that the feature learning technique improves the performance

Table 5 Transfer learning on the ReferItGame dataset with different settings of pre-training (Pre) and fine-tuning (FT)

Pre-training Our loss in Split
Method Dataset Pre FT test

ZSGNet (Sadhu et al., 2019) 58.63

Darknet-LSTM (Yang et al., 2019b) 58.76

Darknet-BERT (Yang et al., 2019b) 59.30

RCCF (Liao et al., 2020) 63.79

ReSC-Large (Yang et al., 2020c) 64.60

LBYL-Net-LSTM (Huang et al., 2021) 65.48

LBYL-Net-BERT (Huang et al., 2021) 67.47

Ours (baseline) 57.04

Ours (baseline) RefCOCO, RefCOCO+, RefCOCOg∗ 57.13

Ours RefCOCO, RefCOCO+, RefCOCOg∗ � 58.54

Ours RefCOCO, RefCOCO+, RefCOCOg∗ � 58.89

Ours (full model) RefCOCO, RefCOCO+, RefCOCOg∗ � � 61.71

The models in the top group are directly trained on ReferItGame, while those in the bottom group are pre-trained on RefCOCO, RefCOCO+ and
RefCOCOg∗, and fine-tuned on ReferItGame
Bold value denotes the best results within the same group of methods
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consistently by using the proposed loss terms. Compared to
results in the top group, despite that our baseline model does
not performbetter than existingmethods,we show significant
improvement by using our proposed loss functions to achieve
better performance. This shows the ability of our method for
transferring learned representations to other datasets.

In Table 1, we have showed that our method has better
or competitive performance to RCCF (Liao et al., 2020),
ReSC (Yang et al., 2020c) and LBYL-Net (Huang et al.,
2021). One reason for their higher performance on Refer-
ItGame is that they do not have the proposal generation step
in the object detector, which is preferred for ReferItGame
specifically. That is, ReSC and LBYL-Net use a one-stage
object detector (Darknet-53), and RCCF directly generates
the object size and offset by regression, which are different
from our two-stage object detector (Mask R-CNN). Such a
performance gap on ReferItGame can also be observed in
previous methods that use two-stage object detectors and is
also pointed out in the papers of RCCF, ReSC and LBYL-
Net, in which handling such a difference is out of the scope of
this paper. Despite the constraint in the object detector, we
show in Table 5 that by applying the proposed contrastive
loss, we can improve the performance from our baseline by
4.5% on ReferItGame, which is similar to the improvement
on Ref-Reasoning (2–4% in Table 3 and 5% in Table 4).

4.6 Analysis of Learned Features

To demonstrate the effectiveness of the proposed loss, we
calculate the similarity (dot product) between the instance-
level features of synonymous sentences when jointly training
on the RefCOCO, RefCOCO+ and RefCOCOg∗ datasets.
We randomly sample a pair of synonymous sentences for
each image, and compute the average value of all samples
in the validation and testing splits of each dataset. Table 6
shows the similarity scores on the RefCOCO, RefCOCO+
and RefCOCOg∗ datasets, while Table 7 provides the sim-
ilarity computed on the Ref-Reasoning and ReferItGame
datasets in the transfer learning setting. From the results, we
observe that the similarity in the embedding space of syn-
onymous sentences is higher when the proposed loss terms

Table 6 Similarity between instance-level features of synonymous sen-
tences

Method RefCOCO RefCOCO+ RefCOCOg∗
Ours (baseline) 0.884 0.873 0.851

Ours (full model) 0.926 0.911 0.885

The models are jointly trained on the RefCOCO, RefCOCO+ and
RefCOCOg∗ datasets

Table 7 Similarity between instance-level features of synonymous sen-
tences

Method Fine-tune Ref-Reasoning ReferItGame

Ours (baseline) 0.762 0.787

Ours (full model) 0.781 0.804

Ours (baseline) � 0.843 0.856

Ours (full model) � 0.881 0.892

All models are jointly trained on the RefCOCO, RefCOCO+ and
RefCOCOg∗ datasets. Only models in the bottom group are fine-tuned
on Ref-Reasoning or ReferItGame

are applied in all the settings, which shows that our model is
able to transfer the learned features to unseen datasets.

4.7 Visualization of Response Maps

To demonstrate the effectiveness of the proposed feature
learning technique, we show the response maps generated
by our model in Fig. 4. The three expressions are anchor,
positive and negative samples respectively. The anchor and
positive sample focus on a similar region, while the negative
sample attends to a different region.

4.8 Qualitative Results

In Figs. 5, 6, and 7, we present more qualitative results gener-
ated by our full model trained on the RefCOCO, RefCOCO+
and RefCOCOg∗ datasets. The proposed method is able to
localize objects accurately given the synonymous sentences
with paraphrases and also distinguish between sentences that
describe different objects.We also provide some failure cases

“right guy” “guy on right with sun visor” “left guy in red”

Fig. 4 Visualization of response maps. The green box represents the
anchor and positive object, while the yellow box indicates the negative
object. The three expressions are anchor, positive and negative sam-

ples respectively. The anchor and positive expression focus on a similar
region, while the negative sample attends to another region (Color figure
online)
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“kid in black” “kid skiing” “woman in blue” “skier in light blue jacket”

“woman on left”

“left elephant” “elephant behind the others” “far right elephant” “elephant most in the water”

“lady in black” “man in front to the right” “green striped shirt”

“girl with dog” “black shirt” “woman bending” “pink skirt”

“right van” “mini van” “white car in front of bus” “old white car”

”trihseulb“”yug“ “animal on right” “the standing cow”

Fig. 5 Sample results of jointly training on the RefCOCO, RefCOCO+ and RefCOCOg* datasets. The yellow boxes are the results of our full
model (Color figure online)
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“left baby” “boy in plaid” “right kid” “strip shirt boy eyes closed”

“right couch with cat on it” “furthest couch” “bottom sofa” “sofa closest”

“man farthest right” “man with gray coat” “woman middle front
white jacket” “white jacket lady off steps”

“boy on left” “kid under purple umbrella” “child on right” “child holding
orange umbrella”

“man in white shirt in
front of white poster board” “guy swinging”“center lady white shirt” “female watching”

“donut in middle on left side” “donut above sprinkles” “chocolate donut second
from right in front row” “nearest chocolate donut”

Fig. 6 Sample results of jointly training on the RefCOCO, RefCOCO+ and RefCOCOg* datasets. The yellow boxes are the results of our full
model (Color figure online)
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“girl right standing” “woman handing cake” “the young child on the left
sitting near the old” “little girl looking up”

“second horse from the left” “black horse next to white” “white horse on left” “white horse with head down”

“the blue jacket dude
on the right” “man in blue shirt” “guy with gray sweater” “man with back to camera”

“zebra on far right” “zebra alone” “left zebra” “zebra closest”

“rightmost person” “baseball player” “man in red” “man wearing red shirt
beside woman”

Fig. 7 Sample results of jointly training on the RefCOCO, RefCOCO+ and RefCOCOg* datasets. The yellow boxes are the results of our full
model (Color figure online)

“man in white
with black hair” “middle orange” “the sheep behind the sheep

looking at the camera” “hands”

Fig. 8 Failure cases of our method. The red and yellow boxes represent the ground truth and our results, respectively (Color figure online)
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of our method in Fig. 8. While the proposed algorithm shows
the effectiveness on referring expression comprehension, it
still suffers from some unfavorable effects, such as objects
sharing similar attributes or ambiguous sentences.

4.9 Limitations and Discussion

Our model operates on the assumption that multiple expres-
sions are available to describe one object. However, we note
that most existing datasets have multiple sentences anno-
tated for each object, due to the nature of how referring
expressions are generated. For example, these expressions
can be automatically generated by expression templates and
scene graphs (Yang et al., 2020a). In addition, if there is
a new dataset without multiple expressions, our model can
still transfer the features learned from existing datasets to the
new dataset. In Sects. 4.4 and 4.5, we show such benefit when
evaluating on the unseen dataset and in the transfer learning
setting.

5 Conclusions

In this paper, we focus on the task of referring expression
comprehension and tackle the challenge caused by the vari-
eties of synonymous sentences. To deal with this problem,
we propose an end-to-end trainable framework that consid-
ers the property in languages for paraphrasing the objects to
learn contrastive features. To this end, we employ the feature
learning techniques on the image level as well as the instance
level to encourage language features describing the same
object to attend closely in the visual embedding space, while
the expressions identifying different objects to be separated.
We design two negative mining strategies to further facilitate
the learning process. Extensive experiments and the ablation
study on multiple referring expression datasets demonstrate
the effectiveness of the proposed algorithm.Moreover, in the
cross-dataset and transfer learning settings, we show that the
proposed method is able to transfer learned representations
to other datasets.
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tation, distribution and reproduction in any medium or format, as
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source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
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ons.org/licenses/by/4.0/.
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