
International Journal of Computer Vision
https://doi.org/10.1007/s11263-019-01288-9

Exploiting Semantics for Face Image Deblurring

Ziyi Shen1,3 ·Wei-Sheng Lai2 · Tingfa Xu3 · Jan Kautz4 ·Ming-Hsuan Yang2,5,6

Received: 2 October 2018 / Accepted: 27 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper,we propose an effective and efficient face deblurring algorithmby exploiting semantic cues via deep convolutional
neural networks. As the human faces are highly structured and share unified facial components (e.g., eyes and mouths), such
semantic information provides a strong prior for restoration. We incorporate face semantic labels as input priors and propose
an adaptive structural loss to regularize facial local structures within an end-to-end deep convolutional neural network.
Specifically, we first use a coarse deblurring network to reduce the motion blur on the input face image. We then adopt
a parsing network to extract the semantic features from the coarse deblurred image. Finally, the fine deblurring network
utilizes the semantic information to restore a clear face image. We train the network with perceptual and adversarial losses to
generate photo-realistic results. The proposed method restores sharp images with more accurate facial features and details.
Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm performs favorably against
the state-of-the-art methods in terms of restoration quality, face recognition and execution speed.

Keywords Face image deblurring · Semantic face parsing · Deep convolutional neural networks

1 Introduction

Single image deblurring aims to recover a clear image from
a single blurred input. Conventional methods formulate the
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blur process (assuming spatially invariant blur) as the con-
volution operation between a latent clear image and a blur
kernel, and solve this problem based on the maximum a pos-
teriori (MAP) framework. As the problem is ill-posed, the
state-of-the-art algorithms typically rely on natural image
priors [e.g., L0 gradient (Xu et al. 2013) and dark channel
prior (Pan et al. 2016b)] to constrain the solution space.

While existing image priors are effective for deblurring
natural images, the underlying assumption may not hold
well for images from specific categories, e.g., text, face and
low-light conditions. Numerous approaches exploit domain
specific visual information, such as designing L0 intensity
(Pan et al. 2017b) priors for text images or detecting light
streaks (Hu et al. 2014a) for extremely low-light images.
As face images contain fewer textures and edges for esti-
mating blur kernels, Pan et al. (2014) search for similar
face exemplars from an external dataset and extract the con-
tour as reference edges. However, reference images may not
always exist for a specific input due to diversity of real-world
face images. Furthermore, those methods based on the MAP
framework typically entail heavy computational cost due to
the iterative optimization process to determine latent images
and blur kernels. The long execution time limits the applica-
tions on resource-sensitive platforms, e.g., mobile devices.

In this work, we propose an efficient and effective solu-
tion to deblur face images via deep convolutional neural
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networks (CNNs). Since face images are highly structured
and composed of similar components, semantic informa-
tion can provide a strong prior for restoration. We propose
to leverage the face semantic labels as global priors and
local constraints to train a deep CNN. The proposed model
consists of three sub-networks: a coarse deblurring net-
work, a face parsing network, and a fine deblurring network.
The coarse deblurring network first predicts a deblurred
image from the given input blurred image. The face pars-
ing network then estimates the semantic labels from the
coarse deblurred image. Finally, the fine deblurring net-
work takes the blurred image, coarse deblurred image, and
semantic labels to restore a clear face image. To encour-
age the network to restore fine details, we propose an
adaptive local structural loss on important face compo-
nents (e.g., eyes, noses, and mouths). Finally, we impose
a perceptual loss (Johnson et al. 2016) and an adversar-
ial loss (Goodfellow et al. 2014) to generate photo-realistic
deblurred results. As our method is end-to-end without any
blur kernel estimation or post-processing, the execution time
is significantly shorter than the conventional MAP-based
approaches.

Tohandle blurred images caused byunknownblur kernels,
we construct a large face blurred image dataset for training
and testing. We first synthesize random blur kernels by mod-
eling the camera trajectories (Chakrabarti 2016; Hradiš et al.
2015). Next, we generate blurred face images using the syn-
thesizedblur kernels and face images from theHelen (Le et al.
2012), CMU PIE (Sim et al. 2002), and CelebA (Liu et al.
2015) datasets. We show that the proposed model trained
on synthetic images generalizes well to images generated by
unseen blur kernels as well as real blurred images. The pro-
posed method reconstructs better facial details and achieves
higher accuracy on face detection and recognition than the
state-of-the-art face deblurring approaches (Shen et al. 2018;
Pan et al. 2014) (see Fig. 1).
In this work, we make the following contributions:

– We propose a deep multi-scale CNN that exploits global
semantic priors and local structural constraints for face
image deblurring. The proposed local structural loss
adaptively adjusts the weights based on the size of each
facial component and greatly improves the quantitative
and qualitative results.

– We develop a large-scale blurred face image dataset. The
training set consists of 130 million blurred images (syn-
thesized from 6464 face images and 20,000 blur kernels)
and the test set has 16,000 blurred images (synthesized
from 200 face images and 80 blur kernels). Our dataset
can serve as a common benchmark for training and eval-
uating face image deblurring.

– We demonstrate that the proposed method performs
favorably against the state-of-the-art deblurring appro-

Fig. 1 Visual comparison on face image deblurring. We exploit the
semantic information of face images within an end-to-end deep CNN
for deblurring. a Ground truth images, b blurred images c Pan et al.
(2014) d Shen et al. (2018), e ours

aches in terms of restoration quality, face detection,
recognition and execution speed.

2 RelatedWork

Ourwork belongs to the single-image blind image deblurring
problem, where the blur kernel is unknown. In this section,
we focus our discussion on generic, domain specific, and
recent CNN-based image deblurring approaches.

2.1 Generic Image DeblurringMethods

The recent advances in single image blind deblurring can
be attributed to the development of effective natural image
priors, including sparse gradient prior (Fergus et al. 2006;
Levin et al. 2009), normalized sparsity measure (Krishnan
et al. 2011), patch prior (Sun et al. 2013a), L0 gradient (Xu
et al. 2013), color-line prior (Lai et al. 2015), low-rank
prior (Ren et al. 2016a), self-similarity (Michaeli and Irani
2014), and extreme channel priors (Pan et al. 2016b; Yan
et al. 2017). Recently, a number of approaches learn data fit-
ting functions (Pan et al. 2017a) or image priors withMarkov
random fields (MRFs) (Liu et al. 2018) to recover latent
images. By optimizing the image priors within the MAP
framework, those approaches implicitly restore strong edges,
and therefore, estimate blur kernels and latent sharp images.
However, solving complex non-linear priors involves several
optimization steps and thus entails high computational loads.
Edge-selection based methods (Cho and Lee 2009; Xu and
Jia 2010) use simple priors (e.g., L2 gradients) with image
filters (e.g., shock filter) to explicitly restore or select strong
edges. In addition, a number of approaches use reference
images as guidance for non-blind (Sun et al. 2014) and blind
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deblurring (Hacohen et al. 2013). However, the performance
of such methods hinges on the similarity of reference images
and quality of dense correspondence.

While generic image deblurring methods demonstrate
the state-of-the-art performance, face images have differ-
ent statistical properties than natural scenes. Fewer edges
or structure on face images can be extracted for blur ker-
nel estimation. The above-mentioned approaches typically
cannot deblur face images well and may generate undesired
visual artifacts.

Another line ofwork proposes variousmotion blurmodels
to handle non-uniform blur (Hirsch et al. 2011; Whyte et al.
2012) and depth variation (Hu et al. 2014b). In this work, we
focus on face images caused by uniform motion blur. Our
method can also be extended to handle non-uniform blur by
synthesizing training data with the non-uniform blur model.

2.2 Domain Specific Image DeblurringMethods

Several domain specific image deblurring approaches have
been developed to handle images from different categories.
As text images usually contain nearly uniform intensity, Pan
et al. (2017b) introduce the L0-regularized priors on both
intensity and image gradients for deblurring text images. To
handle extreme cases such as low-light images, Hu et al.
(2014a) detect the light streaks in images for estimating blur
kernels. Anwar et al. (2015) propose a frequency-domain
class-specific prior to restore the band-pass frequency com-
ponents. Several recent approaches propose outlier detection
methods (Pan et al. 2016a) or robust loss functions (Dong
et al. 2017) to handle images with non-Gaussian noise.

As face images contain fewer textures and edges, exist-
ing algorithms based on implicit or explicit edge restoration
are less effective. Pan et al. (2014) search for similar images
from a face dataset and extract reference exemplar contours
for blur kernel estimation. However, this approach requires
manual annotations of the facial contours and involves
computationally expensive optimization within the MAP
framework. In contrast, we train an end-to-end deep CNN
to bypass the blur kernel estimation step, without requiring
any reference images or manual annotations for face deblur-
ring.

2.3 CNN-Based Image DeblurringMethods

Deep CNNs have been adopted for several image restoration
tasks, such as denoising (Mao et al. 2016), JPEG deblock-
ing (Dong et al. 2015), dehazing (Ren et al. 2016b) and
super-resolution (Kim et al. 2016; Lai et al. 2017). Several
methods apply deep CNNs for image deblurring in different
aspects, including non-blind deconvolution (Schuler et al.
2013; Xu et al. 2014; Zhang et al. 2017), blur kernel estima-
tion (Sun et al. 2015; Schuler et al. 2016; Chakrabarti 2016),

and dynamic scene deblurring (Nah et al. 2017; Tao et al.
2018). the state-of-the-art MAP-based approaches, espe-
cially in the presence of large motion. Several approaches
embed deep CNNs into the conventional MAP-based frame-
work by learning discriminative image priors (Li et al. 2018)
or predicting sharp edges (Xu et al. 2018) to achieve the state-
of-the-art performance. More recently, Nimisha et al. (2017)
andKupyn et al. (2018) train generative adversarial networks
for blind motion deblurring.

A number of methods train end-to-end networks to han-
dle class-specific images, e.g., texts (Hradiš et al. 2015) and
faces (Jin et al. 2018; Chrysos et al. 2019). Xu et al. (2017)
train generative adversarial networks to jointly deblur and
super-resolve low-resolution blurred face and text images,
which are typically degraded by Gaussian-like blur kernels.
A few face deblurring methods (Jin et al. 2018; Chrysos et al.
2019) based on generic CNNs have recently been developed.
Although there are some implementation differences in net-
work architectures and loss functions (e.g., the model of (Jin
et al. 2018) is lightweight conditions), these methods do not
explore face-related prior information to help the deblurring
process. In this work, we focus on deblurring face images
affected by complex motion blur.We exploit global and local
semantic cues as well as the perceptual (Johnson et al. 2016)
and adversarial (Goodfellow et al. 2014) losses to restore
photo-realistic face images with fine details.

3 Semantic Face Deblurring

In this section, we first give an overview of the proposed face
deblurringmethod.We thendescribe the designmethodology
of the network architecture, loss functions, and implementa-
tion details.

3.1 Overview

We aim to utilize the face semantic cues to deblur face
images. In our preliminary work (Shen et al. 2018), we first
apply a face parsing network to extract semantic labels from
the input blurred image and then adopt a deblurring network
for restoration. We also propose a local structural loss to
enforce additional weights on important facial components
to recover fine details. However, the labels extracted from the
blurred images may be erroneous due to severe motion blur.
In this work, we make the following improvements:

– We first construct a coarse deblurring network to reduce
the blur in the input image. The face parsing network
then extracts semantic labels from the coarse deblurred
image. Finally, the fine deblurring network restores a
clear face image from the given blurred input image,
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(a)

(b)

Fig. 2 Overview of the proposed model. The state-of-the-art
method (Shen et al. 2018) extracts the semantic labels from a blurred
image, while we obtain the semantic labels from a coarse deblurred
image. The coarse deblurring network reduces the motion blur from the
input image and leads to more accurate face parsing results

coarse deblurred image, and corresponding semantic
label maps.

– Instead of using a fixed weight for all key components,
we propose an adaptive local structural losswhich adjusts
theweight based on the size of each facial component and
restores more fine details.

Figure 2 shows the differences between the method of Shen
et al. (2018) and proposed model.

3.2 Network Architecture

Given a blurred face image x ∈ R
H×W×3 where H and W

denotes the height and width of the image, our goal is to
recover a clear and sharp face image y which is as simi-
lar as the ground truth image yGT. To this end, we train an
end-to-end deep CNN to deblur the face images efficiently.
The proposed face deblurring model consists of three sub-
networks: a coarse deblurring network Gc, a face parsing
network P , and a fine deblurring network G f .
Coarse deblurring networkTo reduce the influence ofmotion
blur on the face parsing, we first use a network to obtain a
coarse deblurred image yc:

yc = Gc(x). (1)

We use a multi-scale network similar to the model of Nah
et al. (2017), but with several differences. First, as face
images typically have smaller spatial resolutions (e.g., 128×
128or less),weuseonly2 scales insteadof 3 scales for natural
images in (Nah et al. 2017). Second, we use fewer ResBlocks

(reduce from 19 to 6) and a larger filter size (11× 11) at the
first convolutional layer to increase the receptive field. The
first scale takes as input the 2× downsampled blurred image
x(0.5×) (3 channels) and generates a deblurred image y(0.5×)

c .
The input to the second scale contains the blurred image x
(3 channels) and the upsampled deblurred image from the
first scale U2×(y(0.5×)

c ) (3 channels), where U2× is 2× bicu-
bic upsampling operator. The output image from the second
scale is the coarse deblurred result yc.
Face parsing network We use an encoder–decoder architec-
ture with skip connections as our face parsing network. The
face parsing network takes the coarse deblurred image as
input and generates the probability map of face semantic
labels p ∈ R

H×W×K :

p = P(yc), (2)

where K is the number of semantic classes. The semantic
probabilities encode the essential appearance information
and approximate locations of the facial components (e.g.,
eyes, noses andmouths) and serve as a strong global prior for
reconstructing the deblurred face image. We extract K = 14
semantic labels (see Table 3) for each input image.
Fine deblurring network The fine deblurring network has a
similar architecture to the coarse deblurring network. In addi-
tion, we take as input the blurred image x, coarse deblurred
image yc, as well as the semantic probability maps p to
recover a clear face image y:

y = G f (x, yc,p). (3)

Our fine deblurring network also has a similar two-scale
structure to the coarse deblurring network. The input to
the first scale includes the 2× downsampled blurred image
x(0.5×) (3 channels), 2× downsampled coarse deblurred
image y(0.5×)

c (3 channels), and the 2× downsampled seman-
tic probability maps p(0.5×) (11 channels), resulting in a
17-channel input feature. The input to the second scale
includes the blurred image x (3 channels), coarse deblurred
image yc (3 channels), the upsampled deblurred image from
the first scale U2×(y(0.5×)) (3 channels), and the semantic
probability maps p(0.5×) (11 channels), resulting in a 20-
channel input feature. The output image from the second
scale of the fine deblurring network is the final deblurred
result y. Figure 3 shows an overview of our face parsing and
deblurring network.

3.3 Loss Functions

We train the parsing network using a cross-entropy loss and
optimize the deblurring networks with a pixel-wise content
loss and the proposed adaptive local structural loss. As pixel-
wise L2 or L1 loss functions typically lead to overly-smooth
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Fig. 3 Architecture of the proposed model. The face parsing network
is an encoder–decoder architecture with skip connections from the
encoder to the decoder. The fine deblurring network has two scales.
The first scale generates a deblurred image with 0.5× spatial resolu-
tion, and the second scale generates a full-resolution deblurred image.
Each scale of the deblurring network receives the supervision from the

pixel-wise content loss and local structural loss. In addition, we impose
the perceptual and adversarial losses at the output of the second scale.
The coarse deblurring network has a similar architecture to the fine
deblurring network but without taking the semantic label as input and
only receiving supervision from the content loss

results, we further introduce a perceptual loss (Johnson et al.
2016) and an adversarial loss (Goodfellow et al. 2014) to
optimize our deblurring network and generate photo-realistic
deblurred results.
Parsing lossWe adopt a multi-class cross-entropy loss func-
tion to optimize the face parsing network:

Lp = −
K∑

k=1

p(k)
GT log(p

(k)), (4)

where p(k)
GT is the ground truth semantic label for the kth class.

Content loss We adopt the pixel-wise L1 robust function as
the content loss of the coarse and fine deblurring networks:

Lc = ‖yc − yGT‖1 + ‖y − yGT‖1 . (5)

Adaptive local structural loss While the content loss (5)
enforces a holistic supervision from the ground truth clear
image, the key components (e.g., eyes, lips, and mouths) on

faces may be easily ignored as they are typically thin and
small. Solely minimizing the content loss on the whole face
image cannot guarantee to restore the fine details. Thus, we
propose to impose a local structural loss on facial key com-
ponents:

Ls =
K∑

k=1

wk ‖Mk � y − Mk � yGT ‖1 , (6)

where wk is the weight of each component and Mk denotes
the structural mask of the kth component (extracted from
the semantic label p). We apply the local structural losses
on eight important components, including left eye, right eye,
left eyebrow, right eyebrow, nose, upper lip, lower lip, and
teeth, to enhance the local details. We do not apply the local
structural loss on textureless regions, such as hair and skin.
The local structural losses enforce the deblurring network to
restore more details with fewer artifacts on the face images.
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In our preliminary work (Shen et al. 2018), we adopt an
equal weight for all the selected components, i.e., wk =
1, ∀k = 1, . . . , K . However, tiny components (e.g., eyes)
may not be well reconstructed when optimizing the network.
In this work, we propose an adaptive weighting mechanism
based on the size of each component:

wk = c/Ak, (7)

where c is a constant and Ak is the size of the kth component.
The adaptive local structural loss enforces larger weights on
small components and thus helps recover facial details.
Perceptual loss The perceptual loss has been adopted in style
transfer (Gatys et al. 2015; Johnson et al. 2016), image super-
resolution (Ledig et al. 2017) and image synthesis (Chen
and Koltun 2017; Wang et al. 2018b). The perceptual loss
aims to measure the similarity in the high dimensional
feature space of a pre-trained classification network [e.g.,
VGG16 (Simonyan and Zisserman 2015)]. Given the input
image x , we denote φl(x) as the activation at the l-th layer
of the loss network φ. The perceptual loss is then defined as:

LVGG =
∑

l

‖φl(y) − φl(yGT)‖1 . (8)

We compute the perceptual loss on the pool2 and pool5
layers of the pre-trained VGG-Face (Parkhi et al. 2015).

Adversarial lossThe adversarial training frameworkhas been
effectively applied to synthesize realistic images (Goodfel-
low et al. 2014; Ledig et al. 2017; Nah et al. 2017). We treat
our fine deblurring network as the generator and construct
a discriminator based on the DCGAN (Radford et al. 2016)
model. The goal of the discriminator D is to distinguish the
real image from the output of the generator. The generator G
aims to generate images as real as possible to fool the dis-
criminator. The adversarial training is formulated as solving
the following min-max problem:

min
G

max
D

E
[
logD(yGT)

] + E
[
log(1 − D(y))

]
. (9)

When updating the generator, the adversarial loss is:

Ladv = − logD(y). (10)

Our discriminator takes an input image with of 128 × 128
pixels and has 6 strided convolutional layers followed by the
ReLU activation function. In the last layer, we use the sig-
moid function to output a single scalar as the probability
of being a real image. Similar to existing image super-
resolution (Ledig et al. 2017) and motion deblurring (Kupyn
et al. 2018; Nah et al. 2017) methods, the generator of the
proposed model does not take a noise vector as input.

Overall loss function The overall loss function for training
our face deblurring model is:

L = Lc + λsLs + λpLp + λVGGLVGG + λadvLadv, (11)

where λs , λp, λVGG, and λadv are the weights to balance
the local structural losses, parsing loss, perceptual loss and
adversarial loss, respectively. In this work, we empirically set
the weights to λs = 50, λp = 1e−4, λVGG = 1e−5, λadv =
5e−5, and the constant c = 1 in (7).We adopt the content and
local structural losses at all scales of the deblurring network
while only apply the perceptual and adversarial losses to the
final output image, i.e., the output of second scale from the
fine deblurring network.

3.4 Training Strategy

As our model consists of three sub-networks, it is difficult to
jointly optimize the whole model simultaneously. We adopt
the following progressive training strategy:

1. We first train the coarse deblurring network Gc using the
content loss (5) on the coarse deblurred image for 200,000
iterations.

2. We then fix Gc and train the face parsing networkP using
the parsing loss (4) for 60,000 iterations.

3. Next, we fix both Gc and P and train the fine deblurring
network G f using the content loss (5), local structural
loss (6), perceptual loss (8) and adversarial loss (9) for
200,000 iterations.

4. Finally, we jointly optimize all three sub-networks by
minimizing the overall loss (11) for 100,000 iterations.

We demonstrate that such a progressive training strategy can
achieve better performance then jointly training the whole
model from scratch in Sect. 4.

3.5 Implementation Details

Both the coarse and fine deblurring networks have two scales,
where each scale has 6 ResBlock (He et al. 2016) (include
two convolutional layers and one activation layer) and 18
convolutional layers. The first convolutional layer at each
scale has a kernel size of 11 × 11, while all other convolu-
tional layers have a kernel size of 5 × 5 and 64 channels.
The upsampling layer uses a 4× 4 transposed convolutional
layer to upsample the image by 2×. We use the ReLU as the
activation function and do not use any normalization layer
(e.g., batch normalization).

We implement our network using the MatConvNet tool-
box (Vedaldi and Lenc 2015). We use a batch size of 16 and
set the learning rate to 5e−6 for the parsing network and 4e−5
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Table 1 Summary of our face deblurring dataset

Clear images Blur Blurred

Helen CMU PIE CelebA Kernels Images

Training 2000 2164 2300 20,000 130 M

Testing 100 – 100 80 16,000

We collect clear face images from the Helen (Le et al. 2012), CMU
PIE (Sim et al. 2002), and CelebA (Liu et al. 2015) datasets and syn-
thesize blur kernels for generating blurred face images

for the coarse and fine deblurring networks. During the train-
ing process, we apply the following data augmentation: (1)
random scaling between [0.9, 1.1]×, (2) random horizontal
and vertical shiftingwithin 12 pixels, and (3) random rotating
within ± 30◦. The whole training process takes about 5days
on an NVIDIA Titan X GPU card.

3.6 Face Deblurring Datasets

We collect clear face images from the Helen (Le et al. 2012),
CMU PIE (Sim et al. 2002), and CelebA (Liu et al. 2015)
datasets. We align all the face images by first detecting the
facial landmarks using the method of Sun et al. (2013b) and
warping the images based on the aligned landmarks (Kae
et al. 2013). The motion blur kernels are synthesized by
modeling random 3D camera trajectories (Boracchi and Foi
2012). We generate blur kernels with 8 different sizes (from
13 × 13 to 27 × 27). By convolving the clear images with
blur kernels and adding Gaussian noise with σ = 0.01, we
obtain 130 million blurred images for training and 16,000
blurred images for testing. Table 1 summarizes the number
of clear face images, motion blur kernels, and synthesized
blurred images in the training and testing sets. We note that
the 20,000 blur kernels used to generate training images are
different from the 80 blur kernels used in the test set. Both
the clear faces images and blur kernels are disjoint in the
training and testing sets.

4 Analysis and Discussions

In this section, we first demonstrate the effectiveness of using
semantic parsing labels for face image deblurring. We then
conduct ablation studies to analyze the contribution of each
sub-network and loss function.

4.1 Effect of Semantic Parsing

Our key idea is to utilize the face semantic labels as prior
information to facilitate the face deblurring. We first vali-
date the idea by using the ground truth semantic labels as
an additional input to our deblurring network. Since only the

Table 2 Effect of semantic labels on face image deblurring

Model PSNR SSIM F-score

G 24.85 0.849 N.A.

pGT + G 25.85 0.866 1.0

P (fixed) + G 25.32 0.857 0.615

Gc (fixed) + P (fixed) + G f 25.48 0.860 0.628

We evaluate the average labeling accuracy (i.e., F-score), PSNR and
SSIM of the deblurred images on the Helen dataset

Helen dataset contains ground truth face labels, we first train
a face parsing network using the clear images and ground
truth from the Helen dataset. We then use this face parsing
network to generate labels for the clear images in the CMU
PIE and CelebA datasets, which are treated as the pseudo
ground-truth labels to train the proposed face parsing net-
work for deblurring.

We train a baseline model G using the coarse deblurring
network, which does not take any semantic information as
input and does not adopt the local structural loss. Then, we
concatenate the ground truth semantic labels pGT with the
blurred image as input to the baseline model. We evaluate
the PSNR and SSIM on the Helen test set and present the
results in Table 2. The model with prior knowledge from the
ground truth labels (2nd row) significantly outperforms the
baseline model (1st row), which demonstrates the effect of
semantic labels on deblurring face images.

In Shen et al. (2018), the semantic labels are extracted
from theblurred images.While the parsing networkP is fine-
tuned on blurred images for performance gain, the semantic
labels of some small components (e.g., eyebrows, lips, and
teeth) may not be accurate enough when the input image
suffers from large motion blur. In the proposed method,
we first apply a coarse deblurring network Gc to reduce
the motion blur and recover a rough structure of the input
face image. We then fine-tune the parsing network P on the
coarse deblurred images and train the fine deblurring net-
workG f using the labels extracted from the coarse deblurred
images. Table 2 shows the performance difference between
the method of Shen et al. (2018) (3rd row) and the proposed
model (4th row). The proposed method achieves higher label
accuracy and obtains better deblurring results. We note that
we only use the content loss (5) to train themodels in Table 2.
We also fix the coarse deblurring network and parsing net-
work when training the fine deblurring network to rule out
the influence of model parameters.

Figure 4 shows the deblurred images by the models listed
in Table 2. Table 3 shows the parsing accuracy (in terms of
the F-score) of each component, and Fig. 5 visualizes the
parsing results. It is clear that more accurate semantic labels
provide stronger priors to achieve better deblurring results.
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Fig. 4 Deblurred results using different semantic labels. a Blurred
images, b baseline (w/o semantic labels), c using ground truth semantic
labels, d using labels from blurred images, e using labels from coarse
deblurred images

Table 3 Performance of face parsing network

Input image Clear Blurred Deblurred

Face 0.915 0.886 0.881

Left eyebrow 0.733 0.587 0.640

Right eyebrow 0.721 0.596 0.642

Left eye 0.741 0.679 0.655

Right eye 0.774 0.601 0.665

Nose 0.899 0.864 0.872

Upper lip 0.653 0.477 0.502

Lower lip 0.733 0.632 0.625

Teeth 0.397 0.325 0.337

Hair 0.566 0.499 0.466

Average 0.713 0.615 0.628

Wemeasure the F-score for each facial component on the Helen dataset

Fig. 5 Labeling results of face parsing network. a Ground truth clear
images,b input blurred images, c ground truth semantic labels,d seman-
tic labels from blurred images, e semantic labels from coarse deblurred
images

4.2 Ablation Study

In this section, we analyze the contribution of loss functions,
training strategy, and several design choices of the proposed
model, including the kernel size, multi-stage deblurring, and
effective range of hyper-parameters.
Local structural lossShen et al. (2018) adopt an equalweight
in the local structural loss Ls for all the key components,
while we apply adaptive weights based on the size of each

Table 4 Analysis on loss functions

Losses Helen CelebA

PSNR SSIM PSNR SSIM

Lc 25.48 0.860 24.51 0.868

Lc + equal-weight Ls 25.72 0.863 24.72 0.869

Lc + adaptive Ls 25.80 0.866 24.86 0.874

We fix the parsing network and coarse deblurring network and train the
fine deblurring network using the content loss Lc and local structural
loss Ls

Fig. 6 Effects of loss functions. a Ground truth images, b blurred
images, c Lc, d Lc + equal-weight Ls , e Lc + adaptive Ls

component. Herewe train our fine deblurring network (freez-
ing the coarse deblurring network and parsing network) using
the content loss aswell as local structural loss, and present the
results in Table 4.We note that themodel trained solely on the
content loss Lc considers all the pixels, including hair, skin,
and background, equally. The equal-weight local structural
loss significantly improves the performance by encouraging
the network to enhance details on eight key components,
including left eye, right eye, left eyebrow, right eyebrow,
nose, upper lip, lower lip, and teeth. The proposed adaptive
local structural loss further adjusts theweights by considering
the size of key components to prevent the model from sac-
rificing some tiny components, e.g., lips and teeth. Figure 6
shows the deblurred results by the models listed in Table 4.

Training strategy Since the proposed model consists of three
sub-networks, the cascade of all sub-networks becomes a
very deep model. As such, it is not easy to training such a
deep model from scratch. The last row of Table 5 shows that
the model trained from scratch does not perform well. Thus,
we train our model stage-by-stage using the training strategy
described in Sect. 3.4. We show the evaluation results of
each stage in Table 5. With the proposed training strategy,
our model gradually achieves better performance. Figure 7
shows the deblurred results of the models listed in Table 5.
The model using the progressive training strategy recovers
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Table 5 Analysis on training strategy

Model Helen CelebA

PSNR SSIM PSNR SSIM

Gc 25.26 0.855 24.58 0.869

Gc (fixed) + P (fixed) + G f 25.80 0.866 24.86 0.874

Gc + P + G f (fine-tuned) 25.92 0.868 24.89 0.875

Gc + P + G f (scratch) 24.74 0.845 24.08 0.860

We progressively train the coarse deblurring network Gc, face parsing
networkP , and the fine deblurring network G f . Finally, we jointly fine-
tune all three sub-networks. The proposed training strategy achieves
better performance than the training the whole model from scratch

Fig. 7 Effects of training strategy. a Ground truth images, b blurred
images, c Gc, d Gc +P +G f (fine-tuned), e Gc +P +G f (from scratch)

Table 6 Analysis on perceptual and adversarial losses

LVGG Ladv Helen CelebA

PSNR SSIM PSNR SSIM

25.92 0.868 24.89 0.875

� 26.28 0.877 25.14 0.881

� � 26.34 0.876 25.33 0.881

Both perceptual and adversarial losses further improve the performance
by restoring more faithful details

better content and more facial details than the model trained
from scratch.

Perceptual andadversarial lossesWecompare the deblurring
results with and without using the perceptual and adversarial
losses in Table 6 and Fig. 8. The perceptual loss encourages
the images to match the high-level activations of the VGG-
Facenetwork andmakes the output lookmorephoto-realistic.
The adversarial loss further introduces more details on hairs
and beards, which cannot be reconstructed well using the
pixel-wise L2 or L1 loss. As shown in Table 6, both the per-
ceptual and adversarial losses improve the average PSNRand
SSIM on both test sets as more faithful details are recovered.

Kernel size We use a larger kernel size at the first convolu-
tional layer of our coarse and fine deblurring networks. Here

Fig. 8 Effects of perceptual and adversarial functions. a Ground truth
images, b blurred images, c ours w/o LVGG and Ladv, d ours w/ LVGG,
e ours w/ LVGG and Ladv

Table 7 Analysis on kernel size

Kernel size Helen CelebA #Parameters

PSNR SSIM PSNR SSIM

5 × 5 25.63 0.860 24.65 0.868 14.56 M

9 × 9 25.75 0.864 24.72 0.868 14.70 M

11 × 11 25.80 0.866 24.86 0.874 14.80 M

13 × 13 25.80 0.867 24.87 0.876 14.92 M

We evaluate the model performance by changing the kernel size at the
first convolutional layer

we evaluate the performance of the proposed model with dif-
ferent kernel sizes in Table 7. Consistent performance gain
can be achievedwhen using a larger filter size up to the kernel
of 11× 11 pixels. Therefore, we choose to use 11× 11 filter
at the first convolutional layer to have a larger receptive field
for the whole model. In addition, as the first convolutional
layer only contains 64 feature channels, using a larger fil-
ter size does not significantly increase the number of model
parameters.

Hyper-parameters We analyze the effective range of the
hyper-parameters, λs , λp, λVGG, and λadv by changing one
of the hyper-parameters and fixing the others. In Fig. 9a,
we show that the local structural loss effectively improves
the PSNR but saturates at λs = 50. As shown in Fig. 9b,
without the parsing loss (i.e., λp = 0), the face parsing net-
work cannot learn meaningful semantic labels as the facial
priors. However, a larger λp does not further improve the
face restoration performance as the gradient of the parsing
loss is back-propagated to the coarse deblurring network,
which may introduce additional artifacts. Therefore, set-
ting λp = 1e − 4 achieves a good balance for the whole
model. In Fig. 9c, we show that the proposed model obtains
plausible results when choosing 1e − 5 ≤ λp ≤ 1e − 4.
Using a larger weight for the perceptual loss introduces
more checkerboard artifacts and harms the restoration per-
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Fig. 9 Effective range of hyper-parameters. We plot the average PSNR
on both the CelebA and Helen datasets

formance. Finally, in Fig. 9d, we show that using a smaller
weight for the adversarial loss, i.e., λadv ≤ 1e − 4, does not
affect the PSNR too much. However, the model can generate
more facial details to improve visual quality. When increas-
ing λadv, the model generates noise-like artifacts, resulting
in a performance drop. Therefore, we choose λadv = 5e− 5.
Multi-stage deblurring Due to our architecture design, we
are able to extend the proposed model by cascading multiple
fine deblurring networks. Here we construct our model with
one coarse deblurring network, one face parsing network,
and N fine deblurring networks. The N th fine deblurring
network takes as input the blurred image, deblurred image
from the N − 1th fine deblurring network, and the semantic
labels from the face parsing network. We compare the per-
formance, model parameters, and execution time in Table 8.
The performance of our model saturates at N = 2. When
using three fine deblurring networks, the model only slightly
improves the performance but uses 160% more parameters
and runs 1.6× slower than the model with N = 1.

In the last two rows of Table 8, we show the performance
of the proposed model by sharing the weight of the fine
deblurring network. The experimental results show that the
models with shared weights do not perform well. As the fine
deblurringnetwork is already adeep sub-network, sharing the
weight of a large sub-module is not guaranteed to improve
the performance. Instead, sharing the weight of a single con-
volutional layer or a small block (e.g., a residual block)might
be a more reasonable way to design a recurrent structure. As
our goal is to utilize the semantic labels for face deblurring
instead of exploring a better network architecture, we leave
this issue as future work. Overall, the proposed model with a
single fine deblurring network already achieves state-of-the-
art performance.

5 Evaluation Against with the
State-of-the-Art Methods

In this section, we present evaluations against the state-
of-the-art deblurring approaches in terms of the restoration
quality, face detection, face recognition, and execution time.
We also provide visual comparisons on synthetic datasets
and real blurred images. Finally, we discuss the limitation
and failure cases of the proposed method.

5.1 Restoration Quality

We compare the proposed method with the state-of-the-art
deblurring algorithms, including MAP-based methods (Cho
andLee 2009;Krishnan et al. 2011; Shan et al. 2008;Xu et al.
2013;Zhonget al. 2013; Pan et al. 2014, 2017a;Li et al. 2018)
and CNN-based methods (Nah et al. 2017; Tao et al. 2018;
Kupyn et al. 2018; Jin et al. 2018; Shen et al. 2018).We evalu-
ate all the algorithms on both the Helen and CelebA test sets.
Table 9 presents the average PSNR and SSIM for different
sizes of blur kernels, and Table 10 shows the average and the
worst PSNR/SSIMon the entire datasets for eachmethod.We
note that the optimization-based methods (Shan et al., 2008;
Cho and Lee, 2009; Krishnan et al., 2011; Xu et al., 2013;
Zhong et al., 2013; Pan et al., 2014, 2017a) may generate
severe visual artifacts when the blur kernel is not estimated
well and achieve significant lower PSNR/SSIM values. The
proposedmethod performs favorably against existing deblur-
ring approaches and our preliminary method (Shen et al.
2018) on both datasets.

We show the results of the Helen dataset in Fig. 10 and
the CelebA dataset in Fig. 11. Conventional MAP-based
approaches (Cho and Lee 2009; Krishnan et al. 2011; Shan
et al. 2008;Xu et al. 2013; Zhong et al. 2013; Pan et al. 2017a)
do not estimate blur kernels well and therefore generate more
ringing artifacts. The face deblurring approach (Pan et al.
2014) is not robust to noise and the performance depends
heavily on the similarity of the reference image. There are
several ringing artifacts in the deblurred images by Pan
et al. (2014). The method of Li et al. (2018) generates sharp
debluured images, but the faces do not look realistic. The
CNN-based methods (Nah et al. 2017; Kupyn et al. 2018;
Tao et al. 2018; Jin et al. 2018) do not consider the face
semantic information and thus cannot effectively reduce the
motion blur.

Both the method by Shen et al. (2018) and the proposed
model obtain visually pleasing results. However, the method
by Shen et al. (2018) is not robust to the error on seman-
tic labels (which is predicted from blurred images) and less
effective in restoring facial details (e.g., the mouth of the
first and second rows in Fig. 11). In contrast, the proposed
method extracts more accurate semantic priors and restores
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Fig. 10 Visual comparison on Helen dataset. The results from the proposed method contain fewer visual artifacts and more details on key face
components (e.g., eyes and mouths)

better facial structures and details (e.g., the eyes of the second
and third rows in Fig. 10).

In Fig. 12, we show the deblurring results from images
with specific attributes, such as occlusion, mustaches, satu-
ration, and people with different skin colors. As our test set
does not contain imageswith significant saturation, we adjust
the intensity of the blurred images (row 5 and 6 of Fig. 12)
bymultiplying the Y-channel by 1.5×. The proposedmethod
can still recover more facial details than existing approaches
from such an input. Overall, our method performs well in
real-world scenarios.

5.2 Face Recognition

We also demonstrate the performance of the proposed
method by evaluating the face identity distance, face detec-
tion, and recognition accuracy.
Identity distanceWe use the FaceNet (Schroff et al. 2015) to
extract face features and compute the identity distance with
the L2 loss and cosine loss (Wang et al. 2018a) between the
ground truth image and deblurred image. Figure 13 shows
that the deblurred images from the proposed method have

the lowest identity distance on both measurements, which
demonstrates that the proposed method preserves the face
identity well.
Face detection We use the OpenFace toolbox (Amos et al.
2016) to detect the face for each image in the CelebA test
set. We show the success rate of the face detection for
blurred images and the state-of-the-art deblurring approaches
in Table 11. The clear images have a success rate of 96%,
while the success rate on blurred images drops to 77.4% due
tomotion blur. The deblurred images from some of the evalu-
atedmethods have an lower success rate as the images contain
severe ringing artifacts. In contrast, the proposed method has
95.3% success rate, which is close to the upper bound of the
clear images.
Face recognition As the CelebA dataset contains identity
labels, we conduct another experiment on the identity recog-
nition. We consider our CelebA test images as a probe set,
which has 100 different identities. For each identity, we col-
lect additional 9 clear face images as a gallery set. For each
image in the probe set, our goal is to find the most similar
face image from the gallery set and identify whether they
belong to the same identity (Fig. 14).

Table 8 Multi-stage deblurring #Stages Helen CelebA #Parameters Time (s)

PSNR SSIM PSNR SSIM

1 25.80 0.866 24.86 0.874 14.80 M 0.08

2 25.87 0.869 24.88 0.878 26.66 M 0.11

3 25.89 0.866 24.86 0.875 38.52 M 0.13

2 (shared) 25.78 0.864 24.74 0.870 14.80 M 0.11

3 (shared) 25.74 0.861 24.76 0.871 14.80 M 0.13

We apply the fine deblurring network for multiple times and compare the restoration performance, model
parameters, and execution time
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Fig. 11 Visual comparison on CelebA dataset. The results from the proposed method contain fewer visual artifacts and more details on key face
components (e.g., eyes and mouths)

Fig. 12 Visual comparison on imageswith different attributes.We show
that the proposed method is able to generate sharp images and robust to
several scenarios, e.g., occlusion with sunglass or hands (row 1 to 3),

faces with mustaches (row 1 and 4), over-exposed images (row 5 to 6),
and people with different skin colors
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Table 10 Quantitative comparison with the state-of-the-art methods

Method Helen CelebA

Average PSNR Worst
PSNR

Average SSIM Worst
SSIM

Average PSNR Worst
PSNR

Average SSIM Worst
SSIM

Shan et al. (2008) 19.57±2.72 9.97 0.670±0.137 0.109 18.43±2.20 9.72 0.644±0.119 0.040

Cho and Lee (2009) 16.82±2.79 7.83 0.574±0.126 0.215 13.03±1.74 8.21 0.445±0.098 0.097

Krishnan et al. (2011) 19.30±3.42 5.91 0.670±0.167 0.137 18.38±2.74 6.90 0.672±0.146 0.108

Xu et al. (2013) 20.11±3.18 9.45 0.711±0.147 0.075 18.93±2.55 9.92 0.685±0.124 0.106

Zhong et al. (2013) 16.41±3.13 8.25 0.614±0.142 0.140 17.26±2.66 10.41 0.695±0.115 0.278

Pan et al. (2014) 18.66±3.95 8.82 0.677±0.175 0.167 18.59±3.59 9.47 0.677±0.183 0.117

Pan et al. (2017a) 20.93±4.27 7.21 0.727±0.168 0.120 19.57±4.02 8.07 0.664±0.160 0.118

Nah et al. (2017) 24.12±3.46 11.59 0.823±0.107 0.240 22.43±2.82 12.11 0.832±0.103 0.277

Tao et al. (2018) 22.86±3.51 11.68 0.762±0.109 0.259 24.11±2.67 11.21 0.862±0.091 0.245

Li et al. (2018) 21.28±3.65 9.24 0.737±0.143 0.159 17.46±3.39 8.86 0.596±0.166 0.129

Kupyn et al. (2018) 23.63±2.90 11.98 0.781±0.094 0.267 22.45±2.21 12.29 0.729±0.080 0.283

Jin et al. (2018) 25.34±3.17 11.49 0.861±0.078 0.252 24.46±2.77 12.54 0.841±0.075 0.308

Shen et al. (2018) 25.58±2.94 12.45 0.861±0.070 0.403 24.34±2.46 12.03 0.860±0.066 0.303

Ours 25.91±2.91 13.55 0.869±0.062 0.480 24.89±2.32 12.46 0.875±0.063 0.310

We compute the average PSNR and SSIM on the Helen and CelebA test sets. The bold and italic emphasis texts indicate the best and second best
performance
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Fig. 13 Quantitative evaluation on face identity. We compute the L2
and cosine losses on the features extracted from the FaceNet (Schroff
et al. 2015). The proposed method has the lowest values on the CelebA
test sets

Given a blurred or deblurred image from the probe set, we
compute the identity distance with all images in the gallery
set and select the top-K nearest matches. Table 11 shows the
top-1, top-3 and top-5 accuracy. The proposedmethod gener-
ates fewer artifacts and thus achieves the highest recognition
accuracy against other evaluated approaches.

5.3 Real-World Blurred Images

We evaluate the proposed method on face images collected
from the real blurred dataset of Lai et al. (2016). As real
images usually contain outliers that cannot be modeled well
by Gaussian distributions, conventional methods fail to esti-
mate the blur kernel and generate serious ringing artifacts.

Table 11 Face detection and recognition on the CelebA dataset

Method Detection (%) Top-1 (%) Top-3 (%) Top-5 (%)

Clear images 96.0 74.0 86.4 90.0

Blurred images 77.4 29.1 43.4 51.3

Shan et al. (2008) 76.0 32.4 46.9 54.0

Cho and Lee (2009) 52.2 17.2 27.3 32.5

Krishnan et al. (2011) 80.0 33.8 48.9 56.6

Xu et al. (2013) 82.5 41.1 55.4 62.1

Zhong et al. (2013) 69.5 27.6 41.6 48.5

Pan et al. (2014) 78.9 42.0 55.7 62.2

Pan et al. (2017a) 74.3 40.9 48.2 58.3

Nah et al. (2017) 86.0 40.1 55.3 62.4

Tao et al. (2018) 80.5 36.8 53.6 59.8

Li et al. (2018) 78.2 40.7 49.8 56.2

Kupyn et al. (2018) 88.4 43.5 59.6 65.3

Jin et al. (2018) 89.8 42.3 60.2 67.7

Shen et al. (2018) 94.8 48.3 63.2 70.0

Ours 95.3 53.8 68.7 74.2

We show the success rate of face detection and top-1, top-3 and top-5
accuracy of face recognition. The bold and italic emphasis texts indicate
the best and second best performance

The CNN-based generic deblurring method (Nah et al. 2017)
generates overly smooth results. In contrast, both the method
of Shen et al. (2018) and the proposed model restore sharp
and visually pleasing face images.
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Fig. 14 Visual comparison on real blurred images. The proposed method generates visually pleasing deblurred results with fewer artifacts

Table 12 Comparison of execution time and model size

Method Implementation Seconds Parameters

Shan et al. (2008) C++ (CPU) 16.32 −
Cho and Lee (2009) C++ (CPU) 0.41 −
Krishnan et al. (2011) MATLAB (CPU) 2.52 −
Xu et al. (2013) C++ (CPU) 0.31 −
Zhong et al. (2013) MATLAB (CPU) 8.07 −
Pan et al. (2014) MATLAB (CPU) 8.11 −
Pan et al. (2017a) MATLAB (CPU) 10.55 −
Nah et al. (2017) MATLAB (GPU) 0.09 303.6M

Tao et al. (2018) Python (GPU) 0.15 32.2M

Li et al. (2018) MATLAB (CPU) 18.53 558K

Kupyn et al. (2018) Python (GPU) 0.05 45.5M

Jin et al. (2018) Torch (GPU) 0.01 1.4M

Shen et al. (2018) MATLAB (GPU) 0.05 14.8M

Ours MATLAB (GPU) 0.08 26.6M

We report the average execution time on 10 images with the size of
128 × 128

5.4 Execution Time

We evaluate the execution time of the state-of-the-art
approaches and the proposed model on a machine with a
3.4 GHz Intel i7 CPU (64G RAM) and an NVIDIA Titan X
GPU card (12G memory). Table 12 shows the average exe-

cution time based on 10 images with a size of 128 × 128.
Most conventional approaches require solving several itera-
tive optimization problems and therefore are computationally
expensive. Since we use only two scales and fewer residual
blocks, our model is more efficient than the model of Nah
et al. (2017). The proposed model is slightly slower than the
model of Shen et al. (2018) as there is an additional coarse
deblurring network.

5.5 Limitations and Discussions

Our method is likely to fail in two situations. First, when
the input image contains severe non-uniform blur or non-
Gaussian noise, our model may not be able to reduce the blur
effectively, as shown in Fig. 15. A potential solution is to
synthesize more training data with complex motion mod-
els or realistic noise (Foi et al. 2008). Second, when the
face cannot be well aligned (e.g., profile faces in Fig. 15
bottom), the face parsing network may not estimate accu-
rate semantic labels to guide the deblurring network. To
further analyze the performance of the proposed model on
profile faces, we evaluate the face images from the FEI face
database (Thomaz and Giraldi 2010), where each face is cap-
tured under different rotation angles. As shown in Fig. 16, our
model performs well on frontal faces and profile faces which
are rotated by about 60

◦
(i.e., 2nd to 6th columns of Fig. 16).

For extreme cases (e.g., rotated by about 90
◦
as shown in
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Fig. 15 Failure cases. Our method fails when the input image suffers
from extremely large motion blur and the semantic labels cannot be
estimated well

Fig. 16 Deblurring profile faces.We evaluate ourmodel on the FEI face
database (Thomaz andGiraldi 2010). The proposedmodel becomes less
effective when a face is rotated by 90

◦

the 1st and 7th columns of Fig. 16), our deblurred results
contain some visual artifacts around the nose and mouth.
The eyes are not restored well due to the inaccurate semantic
labels.

6 Conclusions

In this work, we propose a multi-scale deep convolutional
neural network for face image deblurring. We exploit the
face semantic information as global priors and local struc-
tural constraints to better restore the shape and detail of
face images. Compared with the preliminary work (Shen
et al. 2018) which obtains the semantic labels from the
input blurred image, we show that the semantic information
extracted from a coarse deblurred image ismore accurate and
leads to better performance on deblurring images. Further-
more, we propose an adaptive local structural loss to balance
the weights of facial key components and restore better con-
tent and details. Experimental results on image deblurring,
execution time and face recognition demonstrate that the pro-
posed method performs favorably against our preliminary
method (Shen et al. 2018) and the state-of-the-art deblurring
algorithms.
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