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Abstract
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for this
task: (1) lack of aligned training pairs and (2) multiple possible outputs from a single input image. In this work, we present an
approach based on disentangled representation for generating diverse outputs without paired training images. To synthesize
diverse outputs, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information
across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given
input and attribute vectors sampled from the attribute space to synthesize diverse outputs at test time. To handle unpaired
training data, we introduce a cross-cycle consistency loss based on disentangled representations. Qualitative results show that
our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative
evaluations, we measure realism with user study and Fréchet inception distance, and measure diversity with the perceptual
distance metric, Jensen–Shannon divergence, and number of statistically-different bins.
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1 Introduction

Image-to-Image (I2I) translation aims to learn the map-
ping between different visual domains. Numerous vision and
graphics problems can be formulated as I2I translation prob-
lems, such as colorization (Larsson et al. 2016; Zhang et al.
2016) (grayscale→ color), super-resolution (Lai et al. 2017;
Ledig et al. 2017; Li et al. 2016, 2019) (low-resolution →
high-resolution), and photorealistic image synthesis (Chen
and Koltun 2017; Park et al. 2019; Wang et al. 2018) (label
→ image). In addition, I2I translation can be applied to syn-
thesize images for domain adaptation (Bousmalis et al. 2017;
Chen et al. 2019; Hoffman et al. 2018; Murez et al. 2018;
Shrivastava et al. 2017).

Learning themappingbetween twovisual domains is chal-
lenging for two main reasons. First, aligned training image
pairs are either difficult to collect (e.g., day scene ↔ night
scene) or do not exist (e.g., artwork ↔ real photo). Second,
many such mappings are inherently multimodal—a single
input may correspond to multiple possible outputs. To han-
dle multimodal translation, one possible approach is to inject
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a random noise vector to the generator for modeling the
multimodal data distribution in the target domain. However,
mode collapsemay still occur easily since the generator often
ignores the additional noise vectors.

Several recent efforts have been made to address these
issues. The Pix2pix (Isola et al. 2017) method applies con-
ditional generative adversarial network to I2I translation
problems. Nevertheless, the training process requires paired
data. A number of recent approaches (Choi et al. 2018;
Liu et al. 2017; Taigman et al. 2017; Yi et al. 2017; Zhu
et al. 2017a) relax the dependency on paired training data for
learning I2I translation. These methods, however, generate a
single output conditioned on the given input image.As shown
in Isola et al. (2017) and Zhu et al. (2017b), the strategy of
incorporating noise vectors as additional inputs to the gen-
erator does not increase variations of generated outputs due
to the mode collapse issue. The generators in these methods
are likely to overlook the added noise vectors. Most recently,
the BicycleGAN (Zhu et al. 2017b) algorithm tackles the
problem of generating diverse outputs in I2I translation by
encouraging the one-to-one relationship between the output
and the latent vector. Nevertheless, the training process of
BicycleGAN requires paired images.

In this paper, we propose a disentangled representation
framework for learning to generate diverse outputs with
unpaired training data. We propose to embed images onto
two spaces: (1) a domain-invariant content space and (2) a
domain-specific attribute space as shown inFig. 2.Our gener-
ator learns to perform I2I translation conditioned on content
features and a latent attribute vector. The domain-specific
attribute space aims to model variations within a domain
given the same content, while the domain-invariant content
space captures information across domains. We disentangle
the representations by applying a content adversarial loss to
encourage the content features not to carry domain-specific
cues, and a latent regression loss to encourage the invertible
mapping between the latent attribute vectors and the corre-
sponding outputs. To handle unpaired datasets, we propose
a cross-cycle consistency loss using the proposed disentan-
gled representations. Given a pair of unaligned images, we
first perform a cross-domain mapping to obtain intermediate
results by swapping the attribute vectors from both images.
We can then reconstruct the original input image pair by
applying the cross-domain mapping one more time and use
the proposed cross-cycle consistency loss to enforce the con-
sistency between the original and the reconstructed images.
Furthermore,we apply themode seeking regularization (Mao
et al. 2019) to further improve the diversity of generated
images. At test time, we can use either 1) randomly sampled
vectors from the attribute space to generate diverse outputs
or 2) the transferred attribute vectors extracted from exist-
ing images for example-guided translation. Figure 1 shows
examples of diverse outputs produced by our model (Fig. 2).

We evaluate the proposed model with extensive quali-
tative and quantitative experiments. For various I2I tasks,
we show diverse translation results with randomly sam-
pled attribute vectors and example-guided translation with
transferred attribute vectors from existing images. In addi-
tion to the common dual-domain image-to-image translation,
we extend our proposed framework to the more general
multi-domain image-to-image translation and demonstrate
diverse translation among domains. We measure realism
of our results with a user study and the Fréchet inception
distance (FID) (Heusel et al. 2017), and evaluate diver-
sity using perceptual distance metrics (Zhang et al. 2018b).
However, the diversity metric alone does not effectively
measure similarity between the distribution of generated
images and the distribution of real data. Therefore, we use
the Jensen-Shannon Divergence (JSD) distance which mea-
sures the similarity between distributions, and the Number
of Statistically-Different Bins (NDB) (Richardson andWeiss
2018) metric which determines the relative proportions of
samples within clusters predetermined by real data.

We make the following contributions in this work:

(1) We introduce a disentangled representation framework
for image-to-image translation. We apply a content
discriminator to facilitate the factorization of domain-
invariant content space and domain-specific attribute
space, and a cross-cycle consistency loss that allows us
to train the model with unpaired data.

(2) Extensive qualitative and quantitative experiments show
that our model performs favorably against existing I2I
models. Images generated by our model are both diverse
and realistic.

(3) The proposed disentangled representation and cross-
cycle consistency can be applied tomulti-domain image-
to-image translation for generating diverse images.

2 RelatedWork

Generative adversarial networks. The recent years have
witnessed rapid advances of generative adversarial networks
(GANs) (Arjovsky et al. 2017; Goodfellow et al. 2014; Rad-
ford et al. 2016) for image generation. The core idea ofGANs
lies in the adversarial loss that enforces the distribution of
generated images to match that of the target domain. The
generators in GANs can map from noise vectors to realistic
images. Several recent efforts exploit conditional GAN in
various contexts including conditioned on text (Reed et al.
2016), audio (Lee et al. 2019), low-resolution images (Ledig
et al. 2017), human pose (Ma et al. 2017; AlBahar andHuang
2019), video frames (Vondrick et al. 2016), and image (Isola
et al. 2017). Our work focuses on using GAN conditioned
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Fig. 1 Unpaired diverse image-to-image translation. (Top) Our model learns to perform diverse translation between two collections of images
without aligned training pairs. (Bottom) Multi-domain image-to-image translation

(a) (b) (c)

Fig. 2 Comparisons of unsupervised I2I translation methods. Denote
x and y as images in domain X and Y: a CycleGAN (Zhu et al. 2017a)
maps x and y onto separated latent spaces. b UNIT (Liu et al. 2017)

assumes x and y can be mapped onto a shared latent space. c Our
approach disentangles the latent spaces of x and y into a shared content
space C and an attribute space A of each domain

on an input image. In contrast to several existing conditional
GAN frameworks that require paired training data, ourmodel
generates diverse outputs without paired data. As such, our
method has wider applicability to problems where paired
training datasets are scarce or not available.

Image-to-image translation. I2I translation aims to learn
the mapping from a source image domain to a target image
domain. The Pix2pix (Isola et al. 2017) method applies a
conditional GAN to model the mapping function. Although
high-quality results have been shown, the model training
requires paired training data. To train with unpaired data,

the CycleGAN (Zhu et al. 2017a), DiscoGAN (Kim et al.
2017), and UNIT (Liu et al. 2017) schemes leverage cycle
consistency to regularize the training. However, these meth-
ods perform generation conditioned solely on an input image
and thus produce one single output. Simply injecting a noise
vector to a generator is usually not an effective solution to
achieve multimodal generation due to the lack of regulariza-
tion between the noise vectors and the target domain. On the
other hand, the BicycleGAN (Zhu et al. 2017b) algorithm
enforces the bijection mapping between the latent and target
space to tackle the mode collapse problem. Nevertheless, the
method is only applicable to problems with paired training
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(a)

(b) (c)

Fig. 3 Method overview. a With the proposed content adversarial loss
Lcontent
adv (Sect. 3.1) and the cross-cycle consistency loss Lcc

1 (Sect. 3.2),
we are able to learn themultimodal mapping between the domainX and

Y with unpaired data. Thanks to the proposed disentangled represen-
tation, we can generate output images conditioned on either b random
attributes or c a given attribute at test time

data. Unlike existing work, our method enables I2I transla-
tion with diverse outputs in the absence of paired training
data.

We note several concurrent methods (Almahairi et al.
2018; Cao et al. 2018; Huang et al. 2018; Lin et al. 2018a, b;
Ma et al. 2018) (all independently developed) also adopt dis-
entangled representations similar to our work for learning
diverse I2I translation from unpaired training data. Further-
more, several approaches (Choi et al. 2018; Liu et al. 2018)
extend the conventional dual-domain I2I to general multi-
domain settings. However, these methods can only achieve
one-to-one mapping among domains.

Disentangled representations. The task of learning dis-
entangled representation aims at modeling the factors of
data variations. Previous work makes use of labeled data
to factorize representations into class-related and class-
independent components (Cheung et al. 2015; Kingma et al.
2014; Makhzani et al. 2016; Mathieu et al. 2016). Recently,
numerous unsupervisedmethods have been developed (Chen

et al. 2016; Denton and Birodkar 2017) to learn disentangled
representations. The InfoGAN (Chen et al. 2016) algo-
rithm achieves disentanglement by maximizing the mutual
information between latent variables and data variation.
Similar to DrNet (Denton and Birodkar 2017) that sepa-
rates time-independent and time-varying components with
an adversarial loss, we apply a content adversarial loss to dis-
entangle an image into domain-invariant and domain-specific
representations to facilitate learning diverse cross-domain
mappings.

3 Disentangled Representation for I2I
Translation

Ourgoal is to learn amultimodalmappingbetween twovisual
domains X ⊂ R

H×W×3 and Y ⊂ R
H×W×3 without paired

training data. As illustrated in Fig. 3, our framework consists
of content encoders {Ec

X , Ec
Y }, attribute encoders {Ea

X , Ea
Y },

generators {GX ,GY }, and domain discriminators {DX , DY }
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for both domains, and a content discriminators Dc
adv. Tak-

ing domain X as an example, the content encoder Ec
X

maps images onto a shared, domain-invariant content space
(Ec

X : X → C) and the attribute encoder Ea
X maps images

onto a domain-specific attribute space (Ea
X : X → AX ).

The generator GX synthesizes images conditioned on both
content and attribute vectors (GX : {C,AX } → X ). The
discriminator DX aims to discriminate between real images
and translated images in the domain X . In addition, the con-
tent discriminator Dc is trained to distinguish the extracted
content representations between two domains. To synthesize
multimodal outputs at test time, we regularize the attribute
vectors so that they can be drawn from a prior Gaussian dis-
tribution N (0, 1).

3.1 Disentangle Content and Attribute
Representations

Our approach embeds input images onto a shared content
space C, and domain-specific attribute spaces, AX and AY .
Intuitively, the content encoders should encode the common
information that is shared between domains onto C, while the
attribute encoders shouldmap the remaining domain-specific
information onto AX and AY .

{zcx , zax } = {Ec
X (x), Ea

X (x)} zcx ∈ C, zax ∈ AX ,

{zcy, zay} = {Ec
Y (y), Ea

Y (y)} zcy ∈ C, zay ∈ AY .
(1)

To achieve representation disentanglement, we apply two
strategies: weight-sharing and a content discriminator. First,
similar to Liu et al. (2017), based on the assumption that two
domains share a common latent space, we share the weight
between the last layer of Ec

X and Ec
Y and the first layer of

GX andGY . Throughweight sharing,we enforce the content
representation to be mapped onto the same space. How-
ever, sharing the same high-level mapping functions does
not guarantee the same content representations encode the
same information for both domains. Thus, we propose a con-
tent discriminator Dc which aims to distinguish the domain
membership of the encoded content features zcx and z

c
y . On the

other hand, content encoders learn to produce encoded con-
tent representations whose domain membership cannot be
distinguished by the content discriminator Dc. We express
this content adversarial loss as:

Lcontent
adv (Ec

X , Ec
Y , Dc)

= Ex

[
1

2
log Dc(Ec

X (x)) + 1

2
log (1 − Dc(Ec

X (x)))

]

+ Ey

[
1

2
log Dc(Ec

Y (y)) + 1

2
log (1 − Dc(Ec

Y (y)))

]
.

(2)

3.2 Cross-Cycle Consistency Loss

With the disentangled representationwhere the content space
is shared among domains and the attribute space encodes
intra-domain variations, we can perform I2I translation by
combining a content representation from an arbitrary image
and an attribute representation from an image of the target
domain. We leverage this property and propose a cross-cycle
consistency. In contrast to cycle consistency constraint inZhu
et al. (2017a) (i.e., X → Y → X ) which assumes one-to-
one mapping between the two domains, the proposed cross-
cycle constraint exploit the disentangled content and attribute
representations for cyclic reconstruction.

Our cross-cycle constraint consists of two stages of I2I
translation.

Forward translation. Given a non-corresponding pair of
images x and y, we encode them into {zcx , zax } and {zcy, zay}.
We thenperform thefirst translation by swapping the attribute
representation (i.e., zax and zay) to generate {u, v}, where
u ∈ X , v ∈ Y .

u = GX (zcy, z
a
x ) v = GY (zcx , z

a
y). (3)

Backward translation. After encoding u and v into {zcu, zau}
and {zcv, zav}, we perform the second translation by once again
swapping the attribute representation (i.e., zau and zav ).

x̂ = GX (zcv, z
a
u) ŷ = GY (zcu, z

a
v). (4)

Here, after two I2I translation stages, the translation
should reconstruct the original images x and y (as illustrated
in Fig. 3). To enforce this constraint, we formulate the cross-
cycle consistency loss as:

Lcc
1 (GX ,GY , Ec

X , Ec
Y , Ea

X , Ea
Y )

= Ex,y[‖GX (Ec
Y (v), Ea

X (u)) − x‖1
+ ‖GY (Ec

X (u), Ea
Y (v)) − y‖1],

(5)

where u = GX (Ec
Y (y), Ea

X (x)) and v = GY (Ec
X (x), Ea

Y
(y)), respectively.

3.3 Other Loss Functions

In addition to the proposed content adversarial loss and
cross-cycle consistency loss, we also use several other loss
functions to facilitate network training. We illustrate these
additional losses in Fig. 4. Starting from the top-right, in the
counter-clockwise order:

Domain adversarial loss. We impose an adversarial loss
Ldomain
adv where DX and DY attempt to discriminate between
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Fig. 4 Additional loss functions. In addition to the cross-cycle recon-
struction loss Lcc

1 and the content adversarial loss Lcontent
adv described

in Fig. 3, we apply several additional loss functions in our training
process. The self-reconstruction loss L recon

1 facilitates training with
self-reconstruction; the KL loss LKL aims to align the attribute repre-

sentation with a prior Gaussian distribution; the adversarial loss Ldomain
adv

encouragesG to generate realistic images in each domain; and the latent
regression loss L latent

1 enforces the reconstruction on the latent attribute
vector. Finally, the mode seeking regularization Lms further improves
the diversity. More details can be found in Sects. 3.3 and 3.4

real images and generated images in each domain, whileGX
and GY attempt to generate realistic images.

Self-reconstruction loss. In addition to the cross-cycle
reconstruction, we apply a self-reconstruction loss L rec

1 to
facilitate the training process. With encoded content and
attribute features {zcx , zax } and {zcy, zay}, the decoders GX and
GY should decode them back to original input x and y. That
is, x̂ = GX (Ec

X (x), Ea
X (x)) and ŷ = GY (Ec

Y (y), Ea
Y (y)).

Latent regression loss. To encourage invertible mapping
between the image and the latent space, we apply a latent
regression loss L latent

1 similar to Zhu et al. (2017b). We draw
a latent vector z from the prior Gaussian distribution as the
attribute representation and attempt to reconstruct it with ẑ =
Ea
X (GX (Ec

X (x), z)) and ẑ = Ea
Y (GY (Ec

Y (y), z)).
The full objective function of our network is:

LD,Dc =λcontentadv Lc
adv + λdomain

adv Ldomain
adv , (6)

LG,Ec,Ea = − LD,Dc + λcc1 Lcc
1 + λrecon1 L recon

1

+ λlatent1 L latent
1 , (7)

where the hyper-parameters λs control the importance of
each term.

3.4 Mode Seeking Regularization

We incorporate the mode seeking regularization (Mao et al.
2019) method to alleviate the mode-collapse problem in con-
ditional generation tasks. Given a conditional image I, latent
vectors z1 and z2, and a conditional generator G, we use the
mode seeking regularization term to maximize the ratio of
the distance between G(I, z1) and G(I, z2) with respect to
the distance between z1 and z2,

Lms = max
G

(
dI(G(I, z1),G(I, z2))

dz(z1, z2)

)
, (8)

where d∗(·) denotes the distance metric.
The regularization term can be easily incorporated into

the proposed framework:

Lnew = Lori + λmsLms, (9)

where Lori denote the full objective.

3.5 Multi-Domain Image-to-Image Translation

In addition to the translation between two domains, we apply
the proposed disentangle representation to the multi-domain
setting. Different from typical I2I designed for two domains,
multi-domain I2I aims to perform translation amongmultiple
domains with a single generator G.

We illustrate the framework formulti-domain I2I in Fig. 5.
Given k domains {Ni }i=1∼k , two images (x, y) and their
one-hot domain codes (zdx , z

d
y ) are randomly sampled (x ∈

Nn, y ∈ Nm, Zd ⊂ R
k). We encode the images onto a

shared content space C, and domain-specific attribute spaces
{Ai }i=1∼k :

{zcx , zax } = {Ec(x), Ea(x, zdx )} zcx ∈ C, zax ∈ An,

{zcy, zay} = {Ec(y), Ea(y, zdy)} zcy ∈ C, zay ∈ Am .

(10)

We then perform the forward and backward translation
similar to the dual-domain translation.

u = G(zcy, z
a
x , z

d
x ) v = G(zcx , z

a
y, z

d
y),

x̂ = G(zcv, z
a
u, z

d
u ) ŷ = G(zcu, z

a
v, z

d
v ).

(11)

In addition to the loss functions used in the dual-domain
translation, we leverage the discriminator D as an auxiliary
domain classifier. That is, the discriminator D not only aims
to discriminate between real images and translated images
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Fig. 5 Multi-domains I2I framework. We further extend the proposed
disentangle representation framework to a more general multi-domain
setting. Different from the class-specific encoders, generators, and dis-
criminators used in dual-domain I2I, all networks in multi-domain are

shared among all domains. Furthermore, one-hot domain codes are used
as inputs and the discriminator will perform domain classification in
addition to discrimination

(Ddis), but also performs domain classification (Dcls : Ni →
Zd ).

Ldomain
cls = Ex,zdx

[− log Dcls(z
d
x |x)]

+ Ex,y,zdy
[− log Dcls(z

d
y |G(zcx , z

a
y, z

d
y)].

(12)

Thus, our new objective function is:

LD,Dc = λcontentadv Lc
adv + λdomain

adv Ldomain
adv

+ λdomain
cls Ldomain

cls , (13)

LG,Ec,Ea = −LD,Dc + λcc1 Lcc
1 + λrecon1 L recon

1

+ λlatent1 L latent
1 + λKLLKL + λdomain

cls Ldomain
cls .

(14)

4 Experimental Results

Implementation details. We implement the proposedmodel
with PyTorch (Paszke et al. 2017). We use the input image
size of 216 × 216 for all of our experiments. For the con-
tent encoder Ec, we use an architecture consisting of three
convolution layers followed by four residual blocks. For the
attribute encoder Ea , we use a CNN architecture with four
convolution layers followed by fully-connected layers. We

set the size of the attribute vector to za ∈ R8 for all experi-
ments. For the generatorG, we use an architecture consisting
of four residual blocks followed by three fractionally strided
convolution layers.

For training,we use theAdamoptimizer (Kinga andAdam
2015) with a batch size of 1, a learning rate of 0.0001, and
exponential decay rates (β1, β2) = (0.5, 0.999). In all exper-
iments, we set the hyper-parameters as follows: λcontentadv = 1,

λcc = 10, λdomain
adv = 1, λrec1 = 10, λms = 1, λlatent1 = 10,

and λKL = 0.01. We also apply an L1 weight regulariza-
tion on the content representation with a weight of 0.01. We
follow the procedure in DCGAN (Radford et al. 2016) for
training the model with adversarial loss. More results can
be found at http://vllab.ucmerced.edu/hylee/DRIT_pp/. The
source code and trained models will be made available to the
public (Table 1).

Datasets. We evaluate the proposed model on several
datasets include Yosemite (Zhu et al. 2017a) (summer and
winter scenes), pets (cat and dog) cropped from Google
images, artworks (Zhu et al. 2017a) (Monet), and photo-to-
portrait cropped from subsets of theWikiArt dataset1 and the
CelebA dataset (Liu et al. 2015).

1 https://www.wikiart.org/
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Table 1 Summary of the
components used in each
method

Method Mode-seeking Multi-domain High-resolution

DRIT – – –

DRIT++ (two-domain) ✓ – –

DRIT++ (multi-domain) ✓ ✓ –

DRIT++ (high-resolution) ✓ – ✓

We desciribe the differences among DRIT, DRIT++, and variants

Fig. 6 Sample results. We show example results produced by our
model. The left column shows the input images in the source domain.
The other five columns show the output images generated by sampling

random vectors in the attribute space. The mappings from top to bottom
are: Photo → Monet, winter → summer, photograph → portrait, and
cat → dog

Evaluated methods. We perform the evaluation on the fol-
lowing algorithms:

– DRIT++: The proposed model.
– DRIT (Lee et al. 2018), and MUNIT (Huang et al.

2018): Multimodal generation frameworks trained with
unpaired data.

– DRIT w/o Dc: DRIT model without the content dis-
criminator.

– Cycle/Bicycle: Weconstruct a baseline using a combina-
tion of CylceGAN and BicycleGAN. Here, we first train
CycleGAN on unpaired data to generate corresponding
images as pseudo image pairs. We then use this pseudo
paired data to train BicycleGAN.

– CycleGAN (Zhu et al. 2017a), and BicycleGAN (Zhu
et al. 2017b)

The proposed DRIT++method extends the original DRIT
method by (1) incorporatingmode-seeking regularization for
improving sample diversity and (2) generalizing the two-
domainmodel to handlemulti-domain image-to-image trans-
lation problems. The DRIT++ (multi-domain) algorithm is
backward compatible with the DRIT++ (two-domain) and
DRIT methodss with comparable performance (as shown in
Sect. 4.2). Thus, the DRIT++ (two-domain) method can be
viewed as a special case of the DRIT++ (multi-domain) algo-
rithm. The DRIT++ (two-domain) algorithm can improve
the visual quality slightly over the DRIT++ (multi-domain)
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Fig. 7 Baseline artifacts. On the winter → summer translation task, our model produces more diverse and realistic samples over baselines

Fig. 8 Effectiveness ofmode seeking regularization.Mode seeking regularization helps improve the diversity of translated imageswhilemaintaining
the visual quality

scheme with a category-specific generator and discriminator
under the two-domain setting.

4.1 Qualitative Evaluation

Diversity. We first compare the proposed model with other
methods in Fig. 6. In Fig. 7, demonstrate the visual arti-
facts of images generated by baseline methods. Both our
model without Dc and Cycle/Bicycle can generate diverse
results. However, the results contain clearly visible artifacts.
Without the content discriminator, our model fails to cap-
ture domain-specific details (e.g., the color of tree and sky).
Therefore, the variations of synthesized images lie in global
color differences. As the Cycle/Bicycle methods are trained
on pseudo paired data generated byCycleGAN, the quality of

the pseudo paired data is not high. As a result, the generated
images contain limited diversity.

To better analyze the learned domain-specific attribute
space, we perform linear interpolation between two given
attributes and generate the corresponding images as shown
in Fig. 9. The interpolation results validate the continuity in
the attribute space and show that our model can generalize in
the distribution, rather than simply retain visual information.

Mode seeking regularization. Wedemonstrate the effective-
ness of the mode seeking regularization term in Fig. 8. The
mode seeking regularization term substantially alleviates the
mode collapse issue in DRIT (Lee et al. 2018), particularly
in the challenging shape-variation translation (i.e., dog-to-cat
translation) (Fig. 9).
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Fig. 9 Linear interpolation between two attribute vectors. Translation results with linear-interpolated attribute vectors between two attributes
(highlighted in red) (Color figure online)

Fig. 10 Attribute transfer. At test time, in addition to random sampling
from the attribute space, we can also perform translation with the query
images with the desired attributes. Since the content space is shared

across the two domains, we not only can achieve a inter-domain, but
also b intra-domain attribute transfer. Note that we do not explicitly
involve intra-domain attribute transfer during training

Attribute transfer. We demonstrate the results of the
attribute transfer in Fig. 10. By disentangling content and
attribute representations, we are able to perform attribute
transfer from images of desired attributes, as illustrated
in Fig. 3c. Furthermore, since the content space is shared
between two domains, we can generate images conditioned
on content features encoded from either domain. Thus our
model can achieve not only inter-domain but also intra-
domain attribute transfer. Note that intra-domain attribute
transfer is not explicitly involved in the training process.

Multi-domain I2I. Figure 11 shows the results of applying
the proposed method on the multi-domain I2I. We perform
translation among three domains (real images and two artis-
tic styles) and four domains (different weather conditions).

Using one single generator, the proposed model is able to
perform diverse translation among multiple domains.

4.2 Quantitative Evaluation

Metrics We conduct quantitative evaluations using the fol-
lowing metrics:

– FID. To evaluate the quality of the generated images,
we use the FID (Heusel et al. 2017) metric to measure
the distance between the generated distribution and the
real one through features extracted by Inception Net-
work (Szegedy et al. 2015). Lower FID values indicate
better quality of the generated images.

123



International Journal of Computer Vision

Fig. 11 Multi-domain I2I. We show example results of our model on the multi-domain I2I task. We demonstrate the translation among real images
and two artistic styles (Monet and Ukiyoe), and the translation among different weather conditions (sunny, cloudy, snowy, and foggy)

Table 2 Quantitative results of
the Yosemite
(Summer � Winter) and the
Cat � Dog dataset

Cycle/bicycle DRIT MUNIT DRIT++

Datasets Winter → Summer

FID ↓ 67.04 ± 0.60 41.34 ± 0.20 57.09 ± 0.37 41.02 ± 0.24

NDB↓ 9.36 ± 0.69 9.38 ± 0.74 9.53 ± 0.64 9.22 ± 0.97

JSD↓ 0.290 ± 0.086 0.304 ± 0.075 0.293 ± 0.062 0.222 ± 0.070

LPIPS↑ 0.0974 ± 0.0003 0.0965 ± 0.0004 0.1136 ± 0.0008 0.1183 ± 0.0007

Datasets Cat → Dog

FID↓ 54.008 ± 1.590 24.306 ± 0.329 22.127 ± 0.712 17.253 ± 0.648

NDB↓ 9.23 ± 0.84 8.16 ± 1.60 8.21 ± 1.17 7.57 ± 1.25

JSD↓ 0.262 ± 0.072 0.075 ± 0.046 0.132 ± 0.066 0.041 ± 0.014

LPIPS↑ 0.147 ± 0.001 0.245 ± 0.002 0.244 ± 0.002 0.280 ± 0.002

Bold values indicate the best performance in the comparisons

– LPIPS. To evaluate diversity, we employ LPIPS (Zhang
et al. 2018b) metric to measure the average feature dis-
tances between generated samples. Higher LPIPS scores
indicate better diversity among the generated images.

– JSD and NDB. To measure the similarity between the
distribution between real images and generated one, we
adopt two bin-based metrics, JSD and NDB (Richardson
and Weiss 2018). These metrics evaluate the extent of
mode missing of generative models. Similar to Richard-
son andWeiss (2018),wefirst cluster the training samples

using K-means into different bins. These bins can be
viewed as modes of the real data distribution. We then
assign each generated sample to the bin of its nearest
neighbor. We compute the bin-proportions of the train-
ing samples and the synthesized samples to evaluate the
difference between the generated distribution and the real
data distribution. The NDB and JSD metrics of the bin-
proportion are then computed to measure the level of
mode collapse. Lower NDB and JSD scores mean the
generated data distribution approaches the real data dis-
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Fig. 12 Realism of synthesized images.We conduct a user study to ask subjects to select results that aremore realistic through pairwise comparisons.
The number indicates the percentage of preference for that comparison pair. We use the winter → summer and the cat → dog translation for this
experiment

Table 3 Quantitative results of DRIT++ (multi-domain) on the
Yosemite (Summer � Winter) dataset

DRIT++ (two-domain) DRIT++ (multi-domain)

FID ↓ 41.02 ± 0.24 44.86 ± 0.33

NDB ↓ 9.22 ± 0.97 9.20 ± 0.88

JSD ↓ 0.222 ± 0.070 0.254 ± 0.051

LPIPS↑ 0.1183 ± 0.0007 0.1204 ± 0.0004

Bold values indicate the best performance in the comparisons

Table 4 Average distance between latent content representations of two
domains

Dataset DRIT++ DRIT++ w/o content discriminator Dc

cat2dog 10.45 55.45

Yosemite 31.56 58.69

Bold values indicate the best performance in the comparisons

tribution better by fitting more modes. More discussions
on these metrics can be found in Richardson and Weiss
(2018).

– User preference. For evaluating realism of synthesized
images, we conduct a user study using pairwise compar-
ison. Given a pair of images sampled from real images
and translated images generated from various methods,
each subject needs to answer the question “Which image
is more realistic?”

Realismvs. diversity. Weconduct the experiment usingwin-
ter → summer and cat → dog translation with the Yosemite
andpets datasets, respectively. Tables 2, 5, andFig. 12 present
the quantitative comparisons with other methods as well as
baseline methods. In Table 2, the DRIT++ method performs
well on all metrics. The DRIT++ method generates images
that are not only realistic, but also diverse and close to the
original data distribution. Table 5 validates the effectiveness
of the content discriminator, latent regression loss, andmode-

Fig. 13 Visualization of the latent content representations of two
domains using t-SNE. Each data point is a content representation
encoded from an image of that domain

Fig. 14 Comparisons of different multi-domain translation model on
the weather dataset

seeking regularization in the proposed algorithm. Figure 12
shows the results of user study. The DRIT++ algorithm per-
forms favorably against the state-of-the-art approaches as
well as baseline methods.

Multi-domain translation We compare the performance of
DRIT++, StarGAN (Choi et al. 2018), and DosGAN (Lin
et al. 2018a) in terms of realism on the weather dataset. For
each trial, We translate 1000 testing images to one of four
domains andmeasure the visual quality (in terms of FID) and

123



International Journal of Computer Vision

Table 5 Ablation study

DRIT w/o Dc DRIT w/o KL DRIT w/o L latent
1 DRIT DRIT++

FID ↓ 46.92 ± 0.35 40.08 ± 0.33 53.12 ± 0.16 41.34 ± 0.20 41.02 ± 0.24

NDB↓ 9.36 ± 0.72 9.47 ± 0.70 9.97 ± 0.17 9.38 ± 0.74 9.22 ± 0.97

JSD↓ 0.277 ± 0.077 0.289 ± 0.066 0.494 ± 0.045 0.304 ± 0.075 0.222 ± 0.070

LPIPS↑ 0.0954 ± 0.0006 0.0957 ± 0.0007 0.0158 ± 0.0003 0.0965 ± 0.0004 0.1183 ± 0.0007

Bold values indicate the best performance in the comparisons
We demonstrate the effect of content discriminator, latent regression loss, and mode-seeking regularization in the proposed algorithm

Table 6 Multi-domain translation comparison

DRIT++ StarGAN DosGAN

FID↓ 61.51 ± 3.11 82.38 ± 3.91 67.98 ± 2.38

LPIPS↑ 0.676 ± 0.008 0.692 ± 0.010 0.650 ± 0.005

Bold values indicate the best performance in the comparisons
We compare the visual quality and diversity of DRIT++ (multi-domian)
with two multi-domain translation model on the weather dataset. The
results are averaged after 5 trials. StarGAN gets highest score on LPIPS
due to its lower visual quality

diversity (using the LPIPS metric). We report the averaged
results of 5 trials. Table 6 shows that the disentangled repre-
sentations by our method not only enable diverse translation,
but also improve the quality of generated images. Figure 14
presents qualitative results by the evaluated methods.

Multi-domain model on two-domain translation Two-
domain translation is a special case of multi-domain trans-
lation problems. We conduct an experiment under the same
settings described in Table 2 and 3. As shown in Table 3, our
multi-domain model performs well in all metrics against the
two-domain translation model that consists of the domain-
specific generator and discriminator.

Ablation study on the content discriminator In practice, the
content discriminator helps align distributions of the latent
content representations of two domains. We conduct experi-
ments on both cat2dog and the Yosemite datasets to illustrate
this. The distance between the means of the content repre-
sentations from two domains is measured by:

D =
∥∥∥∥∥∥

1

N test
A

N test
A∑

i=1

f contentA − 1

N test
B

N test
B∑

i=1

f contentB

∥∥∥∥∥∥
1

1

. (15)

Table 4 shows the quantitative results. Furthermore, Fig. 13
visualizes the distributions of the latent content represen-
tations from two domains using t-SNE. The distance (15)
between the content representations of the two domains is
much smaller with the help of the content discriminator
(Fig. 13, Table 4).

Fig. 15 Multi-scale generator-discriminator. To enhance the quality
of generated high-resolution images, we adopt a multi-scale generator-
discriminator architecture.We generate low-resolution images from the
intermediate features of the generator. An additional adversarial domain
loss is applied on the low-resolution images

Table 7 Ablation study on multi-scale generator-discriminator archi-
tecture

DRIT++ w/ 2 more layers DRIT++ (high-resolution)

FID ↓ 37.19 ± 0.21 28.62 ± 0.38

LPIPS ↑ 0.616 ± 0.038 0.621 ± 0.004

Bold values indicate the best performance in the comparisons
We improvement using two more layers in the multi-scale architecture

4.3 High Resolution I2I

We demonstrate that the proposed scheme can be applied to
the translation tasks with high-resolution images. We per-
form image translation on the street scene [GTA (Richter
et al. 2016) ↔ Cityscape (Cordts et al. 2016)] dataset. The
size of the input image is 720× 360 pixels. During the train-
ing, we randomly crop the image to the size of 340 × 340
for memory efficiency consideration. To enhance the qual-
ity of the generated high-resolution images, we adopt a
multi-scale generator-discriminator structure similar to the
StackGAN (Zhang et al. 2018a) scheme.As shown in Fig. 15,
we extract the intermediate feature of the generator and
pass through a convolutional layer to generate low-resolution
images. We utilize an additional discriminator which takes
low-resolution images as input. This discriminator enforces
the first few layers of the generator to capture the distri-
bution of low-level variations such as colors and image
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Fig. 16 High-resolution translations. We show sample results produced by our model with multi-scale generator-discriminator architecture. The
mappings from top to bottom are: GTA → Cityscape, Cityscape → GTA

Fig. 17 Failure examples. Typical cases: a attribute space not fully exploited. b Distribution characteristic difference

structures. We find such multi-scale generator-discriminator
structure facilitate the training and yields more realistic
images on high-resolution translation task. To validate the
effectiveness of the multi-scale architecture, we show the
comparison between (1) adding two more layers to gener-
ators and (2) using the multi-scale generator-discriminator
architecture in Table 7 and Fig. 16. We report the FID and
LPIPS scores of the generated images by the two methods
on the GTA5 → Cityscape translation task. As shown in
Table 7, using the multi-scale architecture we can generate
more photo-realistic images on the translation taskwith high-
resolution images.

4.4 Limitations

The performance of the proposed algorithm is limited in
several aspects. First, due to the limited amount of train-
ing data, the attribute space is not fully exploited. Our I2I
translation fails when the sampled attribute vectors locate in

under-sampled space, see Fig. 17a. Second, it remains diffi-
cult when the domain characteristics differ significantly. For
example, Fig. 17b shows a failure case on the human figure
due to the lack of human-related portraits in Monet collec-
tions. Third, we use multiple encoders and decoders for the
cross-cycle consistency during training, which requires large
memory usage. The memory usage limits the application on
high-resolution image-to-image translation.

5 Conclusions

In this paper, we present a novel disentangled representa-
tion framework for diverse image-to-image translation with
unpaired data. we propose to disentangle the latent space to
a content space that encodes common information between
domains, and a domain-specific attribute space that can
model the diverse variations given the same content. We
apply a content discriminator to facilitate the representation
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disentanglement. We propose a cross-cycle consistency loss
for cyclic reconstruction to train in the absence of paired data.
Qualitative and quantitative results show that the proposed
model produces realistic and diverse images.
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