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Abstract
Single image dehazing has been a challenging problem which aims to recover clear images from hazy ones. The performance
of existing image dehazing methods is limited by hand-designed features and priors. In this paper, we propose a multi-scale
deep neural network for single image dehazing by learning the mapping between hazy images and their transmission maps.
The proposed algorithm consists of a coarse-scale net which predicts a holistic transmission map based on the entire image,
and a fine-scale net which refines dehazed results locally. To train the multi-scale deep network, we synthesize a dataset
comprised of hazy images and corresponding transmission maps based on the NYU Depth dataset. In addition, we propose a
holistic edge guided network to refine edges of the estimated transmission map. Extensive experiments demonstrate that the
proposed algorithm performs favorably against the state-of-the-art methods on both synthetic and real-world images in terms
of quality and speed.
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1 Introduction

The recent years havewitnessed significant progress in image
dehazing (Liu et al. 2018; Narasimhan and Nayar 2000,
2003; Ren et al. 2018; Schechner et al. 2001; Shwartz et al.
2006; Treibitz and Schechner 2009; Zhang et al. 2015).
Images acquired in the hazy weather conditions usually con-
tain significant haze as shown in Fig. 1a. The hazy image
formation model proposed by Koschmieder (1924) has been
widely used (Berman et al. 2016; Fattal 2008; He et al. 2009;
Zhang et al. 2018):

I (x) = J (x)t(x) + A(1 − t(x)), (1)

where I (x) and J (x) are the observed hazy image and the
clear scene radiance, respectively; the atmospheric light A,
which usually satisfies the uniform assumption, describes the
intensity of the scattered light in the scene at each color chan-
nel of an image; and the scene transmission t(x) describes
the attenuation in intensity as a function of distance due to
scattering.

t(x) = e−βd(x), (2)

where β is the medium extinction coefficient caused by the
turbid medium such as particles and water droplets, and d(x)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01235-8&domain=pdf
http://orcid.org/0000-0003-4848-2304


International Journal of Computer Vision (2020) 128:240–259 241

is the scene depth. The goal of image dehazing is to recover
the clear scene radiance J (x) from I (x). If we know the
atmospheric light A and the transmission t(x), the clear scene
radiance J (x) can be recovered based on (1). Since only the
input image I (x) is known, single image dehazing is an ill-
posed problem.

Numerous haze removal methods have been proposed
(Ancuti et al. 2010; Cai et al. 2016; Caraffa and Tarel 2012,
2013; Gibson and Nguyen 2013; Li et al. 2015; Tan et al.
2007; Schaul et al. 2009;Wang and Fan 2014) in recent years
with significant advancements. Most dehazing methods use
a variety of visual cues to capture deterministic and statis-
tical properties of hazy images (Ancuti and Ancuti 2013;
He et al. 2009, 2011; Ren and Cao 2017; Tan 2008; Tang
et al. 2014; Zhu et al. 2015). The extracted features model
chromatic (He et al. 2011), textural and contrast (Tan 2008)
properties of hazy images to determine the transmission in
the scenes. Although these feature representations are use-
ful, the assumptions in these aforementioned methods do not
hold in all cases. For example, the prior in He et al. (2011)
is based on the assumption that the values of dark channel
in haze-free images are close to zero. However, this assump-
tion does not always hold when the haze-free images do not
contain zero-intensity pixels, especially when the object col-
ors in the hazy image are similar to the atmospheric light
(He et al. 2009). Furthermore, these methods involve a con-
siderable amount of effort to design hand-crafted features
for scene transmission estimation [e.g., the use of ensemble
features to learn a mapping between hazy images and trans-
missionmaps (Tang et al. 2014)].More importantly, methods
based on hand-crafted features are often sensitive to image
variations such as changes in illumination, viewpoints, and
scenes.

As the main goal of image dehazing is to estimate the
transmission map from an input image, we propose a multi-
scale convolutional neural network (CNN) to learn effective
feature representations for this task based on the depth esti-
mation network (Eigen et al. 2014). The features learned by
the proposed algorithm do not depend heavily on statistical
priors of the scene images or haze-relevant properties. Since
the learned features are based on a data-driven approach, they
are able to describe the intrinsic properties of hazy images
and help estimate transmissionmaps. To learn these features,
we directly regress on the transmission maps using a neural
network with three modules. The first module is the coarse-
scale network which estimates the holistic structure of the
scene transmission, and then a fine-scale network refines it
using local information and the output from the coarse-scale
module. Finally, we use a network based on holistic edges to
refine transmission maps.The holistic edge guided network
transfers the structure of the holistic edges to the filtering
output. This removes isolated and spurious pixel transmis-
sion estimates, meanwhile, it encourages neighboring pixels

to have the same labels. We evaluate the proposed algorithm
against the state-of-the-art methods on numerous datasets
comprised of synthetic and real-world hazy images.

The contributions of this work are summarized as follows:

– We propose a multi-scale CNN to learn effective features
from hazy images for the estimation of scene transmis-
sion map. The scene transmission map is first estimated
by a coarse-scale network and then refined by a fine-scale
network.

– We present a novel holistic edge guided network to refine
transmissionmaps based on the holistic edge information
of hazy images.

– We develop a benchmark dataset consisting of hazy
images and their transmissionmaps by synthesizing clean
images andground truth depthmaps from theNYUDepth
database (Silberman et al. 2012). Although trained with
the synthetic dataset, we show the learned multi-scale
CNN is able to dehaze real-world hazy images well.

– We analyze the differences between hand-crafted and
learned features for single image dehazing, and show that
the proposed algorithm performs favorably against the
state-of-the-art methods.

In this paper, we extend our preliminary work (Ren et al.
2016) in three aspects. First, we simplify the multi-scale net-
work by removing pooling and up-sampling layers (Sect. 3.1)
while the performance is still preserved. Second, we develop
a novel holistic edge guided network for edge refinement
(Sect. 3.3). Third, we present more technical details, perfor-
mance evaluation and quantitative analysis of the proposed
algorithm.

2 RelatedWork

As the image dehazing problem is ill-posed, early approaches
often require multiple frames to deal with this problem
(Treibitz and Schechner 2009; Narasimhan and Nayar 2003,
2000; Schechner et al. 2001; Shwartz et al. 2006). In
Narasimhan and Nayar (2003), a method is proposed to
solve the image dehazing problem by processing several
images, which are taken in different atmospheric conditions.
Narasimhan et al. (Nayar andNarasimhan 1999; Narasimhan
and Nayar 2000) propose haze removal approaches with
multiple images of the same scene under different weather
conditions. Treibitz and Schechner (2009) use different
angles of polarized filters to capture multiple images of the
same scene, and then analyze different degrees of polariza-
tion of images for haze removal. In Kopf et al. (2008) an
approximated 3D geometrical model of the scene is assumed
to be available, from which a data-driven dehazing method
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(a) Input image (b) He et al. [19] (c) Tang et al. [50]

(d) Cai et al. [6] (e) Li et al. [24] (f) Proposed algorithm

.

Fig. 1 Dehazed results of real images by the state-of-the-art methods and proposed algorithm. The recovered image in f contains rich details and
vivid color information (Color figure online)

is developed for image dehazing. These methods assume
that multiple images from the same scene can be obtained
under different conditions. However, there may exist only
one image for a scene at our disposal.

Different from the aforementioned methods, another line
of research work is based on physical properties of hazy
images. For example, Fattal (2008) proposes a refined image
formation model for surface shading and scene transmis-
sion. Based on this model, a hazy image can be separated
into regions of constant albedo, and then the scene trans-
mission can be inferred. However, this approach requires
time-consuming operations and focuses on images that con-
tain a slight amount of haze. Based on a similar model, Tan
(2008) proposes to enhance the visibility of hazy images by
maximizing their local contrast, but the restored images often
contain distorted colors and significant halos.

He et al. (2009) propose a dark channel prior (DCP) based
on the statistics of haze-free images. This method assumes
that at least one color channel has some pixels whose inten-
sities are close to zeros. The dark channel prior has been
shown to be effective for image dehazing when soft-matting
operations (He et al. 2011) are used. However, it is compu-
tationally expensive (Tarel and Hautiere 2009; Zhang et al.
2018; Gibson et al. 2012; He et al. 2013) and less effec-
tive for sky images and scenes where the color of objects
are inherently similar to the atmospheric light. Since the
dark channel prior (He et al. 2011) is introduced, numer-
ous DCP based dehazing methods (Kratz and Nishino 2009;

Tarel et al. 2012; Nishino et al. 2012; Meng et al. 2013)
have been developed for improvements. Gibson et al. (2012)
replace the time-consuming softmatting (He et al. 2011)with
standard median filtering to improve computing efficiency.
Kratz and Nishino (2009) model an image as a factorial
Markov Random Field and use a canonical expectation max-
imization algorithm to analyze images. A haze-free image
with fine edge details can be recovered, but the result often
tends to be over-enhanced. Meng et al. (2013) propose an
effective regularization dehazing method to restore the haze-
free image by exploring the inherent boundary constraint. A
variety of multi-scale haze-relevant features are analyzed by
Tang et al. (2014) in a regression framework based on ran-
dom forests (Breiman et al. 2001). Nevertheless, this feature
fusion approach relies largely on the dark channel features.
In Zhu et al. (2014, 2015) find that the difference between
brightness and saturation in a clear image patch should be
very small, and propose a color attenuation prior for haze
removal. Nevertheless, since this method is based on depth
estimation rather than transmission estimation, it needs to
tune the parameter for the scattering coefficient. Berman
et al. (2016) introduce a non-local method for single image
dehazing. based on the assumption that an image can be faith-
fully represented with just a few hundreds of distinct colors.
Despite significant advances in this field, the state-of-the-art
dehazing methods (Tang et al. 2014; Zhu et al. 2015) are
developed based on hand-crafted features.
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Fig. 2 a Main steps of the proposed single image dehazing algorithm.
For training the multi-scale network, we synthesize hazy images and
the corresponding transmission maps based on a depth image dataset.
In the test stage, we estimate the transmission map of the input hazy
image based on the trained model, and then generate the dehazed image
using the estimated atmospheric light and computed transmission map.
b Proposed multi-scale convolutional network. Given a hazy image, the

coarse-scale network (in the green dashed rectangle) predicts a holistic
transmission map and feeds it to the fine-scale network (in the orange
dashed rectangle) in order to generate a refined transmission map. We
then use holistic edges to refine transmission maps to be smooth inside
the same object. The blue dashed lines denote concatenate operation
(Color figure online)

Data-driven dehazing models recently become popular
due to the success of machine learning in various vision
applications (Ren et al. 2018; Li et al. 2019). To avoid
designing hand-crafted features, several algorithms use deep
CNN for image dehazing (Zhang et al. 2018). In Cai et al.
(2016), use a deep neural network for transmission estima-
tion (DehazeNet) and then follow the conventional method
to estimate atmospheric light. However, Cai et al. synthesize
hazy images based on the assumption that the context of an
image patch is independent of transmission map, which does
not hold in practice. In addition, this network is trained on the
patch-level and does fully utilize the high-level information
from a larger region. Instead of estimating the transmission
map and atmospheric light separately, Li et al. (2017) pro-
pose the atmosphere scattering model where the atmosphere
light and transmission map are formulated in a matrix form
and propose an AOD-Net to estimate clear images directly.
Although the AOD-Net algorithm does not explicitly require
estimations of the transmission map and atmosphere light, it
needs to estimate the parameters of the matrix. As the matrix
prediction does not use the information of transmissionmaps,
these final restored images still contain some haze residue.

Different from these learning-based methods, our algo-
rithmdirectly estimates transmissionmaps fromhaze images,
where the proposed network is constrained by the ground

truth transmission maps in the training processing. As such.
it is able to keep the correlation between hazy images and
transmission maps, which leads to more realistic images. In
addition, we propose a new multi-scale CNN with a holis-
tic edge guided network to automatically learn the mapping
between hazy images and transmission maps.

3 Multi-scale Network for Transmission
Estimation

Given a single hazy input, we aim to recover the latent clean
image by estimating the scene transmission map. The main
steps of the proposed algorithm are shown in Fig. 2a. We
first describe how to estimate the scene transmission map
t(x) and present the method to compute atmospheric light A
in Sect. 4.

For each scene, we estimate the scene transmission map
t(x) based on a multi-scale CNN with a holistic edge guided
network. The coarse structure of the scene transmission map
for each image is obtained from the coarse-scale convolu-
tional net, and then refined by the fine-scale network. Both
networks are applied to the original input hazy image, but
in addition, the output of the coarse network is passed to
the fine network as additional information. Thus, the fine-
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(a) haze-free (b) Thin hazy image (c) Medium hazy image (d) Thick hazy image

Fig. 3 Edges extracted by the holistic edge detector (Xie and Tu 2015).
Top: Clear image and synthetic hazy images with different medium
extinction coefficient β. Bottom: Holistic edges detected by the HED

(Xie and Tu 2015). All of these holistic edges detected by the HED (Xie
and Tu 2015) are similar for different haze concentrations

Canny: σ(a) = 2 (b)Canny: σ = 8 (c)HED [55]

Fig. 4 Effectiveness of the holistic edge detector. a, b Edge responses
from the Canny detector (Canny et al. 1986) at the scale σ = 2 and
σ = 8, for the image in Fig. 5a. c Holistic edges extracted by the HED
method (Xie and Tu 2015) which is able to capture the main boundaries
of the object

scale network can refine the coarse prediction with details.
Furthermore, we use the holistically-nested edge detection
(HED)method (Xie andTu 2015) to predict the holistic edges
of the input hazy image which are used to refine the trans-
mission map. The proposed multi-scale CNN for learning
haze-relevant features is shown in Fig. 2b.

3.1 Coarse-Scale Network

The task of the coarse-scale network is to predict a holistic
transmission map of the scene. As illustrated in the green
dashed rectangle in Fig. 2b, the coarse-scale network con-
tains four feature extraction layers. Each convolution layer is
followed by the rectified linear unit (ReLU) (Nair andHinton
2010) except the last layer. Rather than adding max-pooling
and up-sampling layers to limit the feature maps and the out-
put transmission map size to be the same as the input hazy
image in Ren et al. (2016), we remove these layers and only
use convolution layers with zero padding to maintain the size
of feature and output maps.

Convolution layers This network takes an RGB image as an
input. The convolution layers consist of filter banks which
are convolved with the input feature maps. The response of
each convolution layer is given by

f l+1
n = σ

(∑
m

( f lm ∗ kl+1
m,n) + bl+1

n

)
, (3)

where f lm and f l+1
n are the feature maps of the lth layer and

the next (l+1)th layer, respectively. The feature maps for the
first convolution layer (l = 1) are based on input hazy image.
In addition, k is the convolution kernel, indices (m, n) show
the mapping from the current layer mth feature map to the
next layer nth, and ∗ denotes the convolution operator. The
function σ(·) denotes the ReLU (Nair and Hinton 2010) on
the filter responses and bl+1

n is the bias.
Transmission reconstruction We produce the coarse trans-
mission map tc prediction by

tc =
∑
m

( f lm ∗ kl+1
m,n) + bl+1

n , (4)

where l = 4 and n = 1 denote the output from the fourth
convolution layer is a one-dimensional image.

3.2 Fine-Scale Network

After the coarse scene transmission map is estimated, this is
refined by the fine-scale network. The receptive field in this
network is smaller than the ones in the coarse-scale network.
The architecture of the fine-scale network stack is similar
to the coarse-scale network except for the first and second
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convolution layers. The structure of our fine-scale network
is shown in Fig. 2b (orange dashed rectangle) where the
coarse output transmission map is used as an additional low-
level feature map. We concatenate these two together in the
fine-scale network to refine the scene transmission map. In
addition, we maintain the size of the features maps in subse-
quent layers using zero-padded convolutions.

3.3 Holistic Edge Guided Network

The fine-scale network can estimate fine edges and remove
halo artifacts (see Sect. 6.3). However, if the image contains
strong textures as shown in Fig. 5a, the fine-scale net is
likely to transfer extraneous edges to the transmission map,
thereby including unnecessary details as shown in Fig. 5b.
In such cases, the assumption of the model (2) does not
hold since the amount of haze at each pixel does not depend
only on depth but also its texture or color. Ideally, the trans-
mission map should be smooth in the regions of the same
object and discontinuous across the boundaries of different
objects. Therefore, we expect the refined transmission map
to be smooth inside the same object, and discontinuous only
along depth edges. As such, we propose a new holistic edge
guided network by using the holistic edge detector (Xie and
Tu 2015). Since the holistic edge detector (Xie and Tu 2015)
learns rich hierarchical representations for an input image,
it is important to resolve the ambiguity in edge and object
boundary detection.

Given a haze-free image in Fig. 3a, we use different
medium extinction coefficient β to synthesize images with
different haze concentrations. As shown in the second row of
Fig. 3b–d, all edges detected by the HED (Xie and Tu 2015)
are similar for different haze concentration images. Thus, we
first use the HED (Xie and Tu 2015) to extract the holistic
edges, and then concatenate the extracted edges with the first
convolution layer in the holistic edge guided network which
can further refine edges in transmission maps. The architec-
ture of the holistic edge guided network is the same as the
fine-scale net. In addition, we also use the output from the
fine-scale network as the additional feature map in the holis-
tic edge guided network. The structure of the holistic edge
guided network is shown at the bottom of Fig. 2b.

Figure 4 shows the edges by the Canny et al. (1986) and
HED (Xie and Tu 2015) detectors for the image with rich
textures in Fig. 5a. The Canny detector (Canny et al. 1986)
extracts unnecessary fine edges. These complex structures
are likely to be transferred to the transmission map. In con-
trast, the edges extracted by the HED detector (Xie and Tu
2015) contain the main structures of the scene without extra-
neous details, which also demonstrates the effectiveness of
HED (Xie and Tu 2015) in image dehazing task.

(a) Input (b)W/O holistic edge (c)With holistic edge

Fig. 5 The network without holistic edge tends to transfer incorrect
textures to the transmission map

3.4 Training

Learning the mapping function between hazy images and
corresponding transmission maps is achieved by minimizing
the loss between the reconstructed transmission ti (x) and the
corresponding ground truth map t∗i (x) at every scale s:

L(θ) = 1

q

3∑
s=1

q∑
i=1

||ti (x) − t∗i (x)||2, (5)

where θ are the model parameters, q is the number of hazy
images in the training set and s denotes the scale index. Here,
we have three scales as we use coarse and fine-scale nets as
well as a holistic edge guided network. The training loss (5)
is used in all of these three scale networks.

We minimize the loss (5) using the stochastic gradient
descent method with the back propagation learning rule. The
implementation details are included in Sect. 5.

4 Dehazing with theMulti-scale Network

4.1 Atmospheric Light Estimation

After obtaining the scene transmission map t(x), we can
use existing algorithms, e.g., (Berman et al. 2017; Sulami
et al. 2014; He et al. 2009; Zhu et al. 2015) to estimate
the atmospheric light. According to Fattal (2008), a constant
atmospheric light is a proper approximationwhen the aerosol
reflectance properties and dominant scene illumination are
approximately uniform across the scene. Therefore, we treat
A as a constant across the image and use the method (He
et al. 2009; Zhu et al. 2015) for estimation. We compute A
from the estimated transmission map directly. From the hazy
image formation model (1), we derive A when t(x) = 0, i.e.,
I (x) = A when t(x) → 0. Thus we estimate the atmosphere
light A by giving a threshold th ,

I (x) = A, t(x) < th . (6)
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A=[0.9,0.9,0.9] A=[0.58,0.57,0.58] A=[0.92,0.89,0.84] A=[0.90,0.87,0.84]
PSNR/SSIM 18.69/0.71 15.75/0.83 17.61/0.86

A=[0.8,0.8,0.8] A=[0.58,0.57,0.58] A=[0.84,0.81,0.76] A=[0.82,0.79,0.75]
PSNR/SSIM 20.36/0.71 18.67/0.84 21.11/0.88

A=[0.7,0.7,0.7] A=[0.67,0.56,0.48] A=[0.80,0.77,0.70] A=[0.74,0.71,0.67]
PSNR/SSIM 21.48/0.71 21.31/0.85 23.81/0.87

A=[0.7,0.8,0.9] A=[0.62,0.57,0.54] A=[0.78,0.81,0.82] A=[0.76,0.78,0.82]
PSNR/SSIM 20.50/0.73 22.22/0.84 22.00/0.90

47(a) Hazy images (b) Sulami et al. [ ] (c) Berman et al. [3] (d) Ours

Fig. 6 Atmospheric light estimation on synthetic images. The method
(Sulami et al. 2014) tends to under-estimate atmospheric light and
results in darker dehazed results, while the approach by Berman et al.

(2017) over-enhances the dehazed results. In contrast, our estimated
atmospheric light is close to the ground truth in a. The haze-free image
is shown in the third row of Fig. 9g

According to (6), we select 0.1% darkest pixels in a trans-
mission map t(x) (He et al. 2009; Zhu et al. 2015). These
pixels have themost haze concentration. Among these pixels,

the one with the highest intensity value in the corresponding
hazy image I is selected as the atmospheric light. Figure 6
shows three examples of synthetic hazy images.We compare
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47 3

A=[0.53, 0.58, 0.62] A=[0.80, 0.83, 0.86] A=[0.82, 0.87, 0.93]

A=[0.63, 0.56, 0.52] A=[0.90, 0.81, 0.74] A=[0.96, 0.92, 0.85]
](a) Inputs (b) Sulami et al. [ ] (c) Berman et al. [ (d) Our results

Fig. 7 Atmospheric light estimation on real-world images in which the sky is not present in the inputs

the proposed atmospheric light estimation algorithm against
two state-of-the-art methods by Berman et al. (2017) and
Sulami et al. (2014). The method (Sulami et al. 2014) under-
estimates the atmospheric light which leads to the color
distortion in the dehazed images (Fig. 6b). The algorithm by
Berman et al. (2017) estimates better atmospheric light than
Sulami et al. (2014). However, this method over-enhances
the dehazed results due to less inaccurate atmospheric light
(Fig. 6c). In contrast, the atmospheric light by our algorithm
is close to the ground truth, which accordingly lead to visu-
ally better results. In addition to the achromatic atmospheric
light, we evaluate our method on the non-achromatic light
(i.e., A = [0.7, 0.8, 0.9]) as shown in the fourth row of
Fig. 6. In addition, the proposed algorithm performs favor-
ably against the state-of-the-art methods on non-achromatic
light estimation.

For the real-world examples in Fig. 7, the algorithms by
Sulami et al. (2014) and Berman et al. (2017) do not generate
clear images due to inaccurate atmospheric light estimation.
The dehazed images in Fig. 7d show that our method is able
to estimate atmospheric light for real-world image dehazing
even the scene does not contain sky regions.

4.2 Haze Removal

Once the atmospheric light A and the scene transmissionmap
t(x) are estimated, the haze-free image can be estimated by
J (x) = (I (x) − A)/t(x) + A. However, directly estimating
J (x) by this model is prone to noise when t(x) is close to 0.
Therefore, we estimate the scene radiance J (x) by

J (x) = I (x) − A

max{0.1, t(x)} + A. (7)

A = [0.9, 0.7, 0.7]

A = [0.7, 0.9, 0.7]
(a)Haze-free images (b)Synthetic hazy images

Fig. 8 Using the non-achromatic atmospheric light may generate some
unrealistic rufescent or green-bluish images (Color figure online)

5 Experimental Results

We quantitatively evaluate the proposed algorithm on two
synthetic datasets and real-world hazy images, with compar-
isons to the state-of-the-art methods in terms of accuracy and
run time. The implementation code will be made available
to the public. The Multi-Scale CNN in our previous work
(Ren et al. 2016) is referred to as MSCNN, and the pro-
posed Multi-Scale CNN with Holistic Edge guided network
as MSCNN-HE.
Experimental Settings The proposed network is trained using
the stochastic gradient descent method. The momentum
value, weight decay parameter, and batch size are set to be
0.9, 5 × 10−4, and 10, respectively. Each batch is a whole
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(a) Input (b)Meng et al. [30] (c) Berman et al. [4] (d) Tang et al. [50] (e)MSCNN [37] (f) MSCNN-HED (g) Ground Truth

Fig. 9 Dehazed results on synthetic hazy images using stereo images: Bowling, Aloe, Baby, Monopoly, and Books

Fig. 10 Quantitative comparisons of the dehazed images shown in Fig. 9

image,whose size is 320×240 pixels. The initial learning rate
is 0.001 and decreased by 0.1 after every 20 epochs and the
number of epoch is set to be 70. The training time is approxi-
mately ten hours on a desktop computer with a 2.8 GHz CPU
and an NVIDIA K40 GPU.
TrainingDataTo train themulti-scale network,we generate a
dataset with synthesized hazy images and their correspond-
ing transmission maps. Although there exist some outdoor
datasets such as the Make3D (Saxena et al. 2009) and KITTI
(Geiger et al. 2012), the depth maps are less precise and
incomplete compared to the existing indoor datasets (Sil-

berman et al. 2012). Therefore, we randomly sample 6000
clean images and the corresponding depth maps from the
NYU Depth dataset (Silberman et al. 2012) to construct the
training set. In addition, we generate a validation set of 50
synthesized hazy images using theMiddlebury stereo dataset
(Scharstein and Szeliski 2002, 2003).

Given a clear image J (x) and the ground truth depth
d(x), we synthesize a hazy image using the physical model
described by (1) and (2). We generate the random atmo-
spheric light A = [k, k, k], where k ∈ [0.7, 1.0], and
sample three random β ∈ [0.5, 1.5] for every image. We use
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achromatic atmospheric light since non-achromatic atmo-
spheric light tend to generate some unnatural rufescent or
green-bluish images as shown in Fig. 8b. For example, the
atmospheric light of A = [0.9, 0.7, 0.7] would result in a
rufescent output as shown in the first row of Fig. 8. In addi-
tion,we donot use smallβ ∈ (0, 0.5) because itwould lead to
thin haze and boost noise (He et al. 2011). On the other hand,
we do not use large β ∈ (1.5,∞) as the resulting transmis-
sion maps are close to zero. Therefore, we have 18, 000 hazy
images and transmission maps (6000 images × 3 medium
extinction coefficients β) in the training set.

5.1 Quantitative Evaluation on Benchmark Dataset

We compare the proposed algorithm with the state-of-the-
art dehazing methods (He et al. 2011; Meng et al. 2013;
Berman et al. 2016; Tang et al. 2014;Cai et al. 2016) using the
PeakSignal-to-NoiseRatio (PSNR) andStructural Similarity
(SSIM) metrics.

We use five examples: Bowling, Aloe, Baby, Monopoly,
and Books for illustration. Figure 9a shows the input hazy
imageswhich are synthesized from the haze-free imageswith
known depth maps (Scharstein and Szeliski 2002). As the
method by Meng et al. (He et al. 2011) is designed based
on the DCP which assumes that dark channel values of clear
images are zeros, it tends to overestimate the haze thickness
and results in darker results as shown in Fig. 9b. We note that
the dehazed images generated by Berman et al. (Meng et al.
2013) tends to have some color distortions. For example, the
colors of the Books dehazed image become darker as shown
in Fig. 9c, d. Although the dehazed results in Fig. 9d by Tang
et al. (2014) are better than those by Meng et al. (2013),
Berman et al. (2016) in the first three images, the colors
are still darker than the ground truth in the last two images
in Fig. 9d. In contrast, the dehazed results by the MSCNN
method (Ren et al. 2016) and the proposed MSCNN-HE are
close to the ground truth images, which indicates that better
transmission maps are estimated. Figure 10 shows that the
proposed algorithm performs well on each image in Fig. 9
against the state-of-the-art dehazingmethods (He et al. 2011;
Tarel and Hautiere 2009; Meng et al. 2013; Tang et al. 2014)
in terms of PSNR and SSIM. Although the visual effect in
Fig. 9f, g are similar, the average PSNR and SSIM values by
the proposed method are higher than the MSCNN method
(Ren et al. 2016).
New synthetic dataset For quantitative performance evalua-
tion, we construct a new dataset of synthesized hazy images
and compare the proposed algorithmwith the state-of-the-art
dehazing methods (He et al. 2011; Meng et al. 2013; Berman
et al. 2016; Cai et al. 2016). In addition,we also comparewith
the method without using holistic edge guided network (Ren
et al. 2016). We randomly select 40 images and their depth
maps from the NYU Depth dataset (Silberman et al. 2012)

(different from those used for training) to synthesize 40 trans-
mission maps and hazy images using (1). In (1), we assume
pure white atmospheric air light, i.e., A = [1, 1, 1], and then
use medium extinction coefficient of β = 1 in the experi-
ments.

Figure 11 shows some dehazed images by different meth-
ods. The methods of He et al. (2011) and Meng et al. (2013)
tend to overestimate the haze thickness as shown in the esti-
mated transmissionmaps inFig. 11c, d. This indicates that the
dehazed results tend to be darker than the ground truth images
in some regions. For example, the floor color is changed from
gray to blue in the first image and the door color is changed
from white to yellow in the third image. The regions that
contain color distortions in the dehazed images correspond
to the darker areas in the estimated transmission maps. The
estimated transmission maps and the final dehazed results
by Berman et al. (2016) are similar to the results by Meng
et al. (2013). As shown in Fig. 11e, the dehazed images still
contain some color distortions. Figure 11f, g show the esti-
mated transmission maps and the final recovered images by
the proposed algorithm without and with the holistic edge
guided network, respectively. The results in Fig. 11f, g are
very similar in most cases. However, the holistic edge guided
network still improves the estimated transmission map. For
example, the estimated transmissionmaps in (g) are smoother
and closer to the ground truth in (b) than the results in (f),
which demonstrates the effectiveness of the proposed holis-
tic edge guided network. Overall, the dehazed results by
the proposed algorithm have higher visual quality and fewer
color distortions. In addition, the qualitative results in Table 1
demonstrate that the proposed algorithm performs favorably
against state-of-the-art methods in terms of PSNR and SSIM
metrics.We also compare theMSEof the estimated transmis-
sion maps by He et al. (2011), Meng et al. (2013), Berman
et al. (2016), Cai et al. (2016) and our algorithm in Table 1.
RESIDE dataset We evaluate the proposed algorithm on the
SOTS data from the RESIDE dataset (Li et al. 2018) against
the state-of-the-artmethods (He et al. 2011;Meng et al. 2013;
Berman et al. 2016; Cai et al. 2016; Li et al. 2017; Ren et al.
2016). Table 3 shows that our method performs competi-
tively against state-of-the-art algorithms in terms of PSNR
and SSIM. In addition, compared to the MSCNN (Ren et al.
2016), the proposed algorithm achieves performance gain of
1.7 dB in terms of PSNR on the SOTS dataset, which demon-
strates the proposed holistic edge guided network is able to
better estimate transmission maps and restore clear images.

5.2 Real Images

Although our multi-scale network is trained on synthetic
indoor images, it can be applied to real-world outdoor images
aswell.We evaluate the proposed algorithm against the state-
of-the-art image dehazingmethods (He et al. 2009; Tang et al.
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Fig. 11 Dehazed results (odd rows) and estimated transmission maps
(even rows) on our synthetic images.aHaze-free images.bHazy images
and ground truth transmission maps. c He et al. (2011). d Meng et al.
(2013). eBerman et al. (2016). fMSCNN (Ren et al. 2016). gOurs with

the holistic edge guided network. The red rectangles are for comparison
of our methods with He et al. (2011), and the yellow rectangles are for
comparison of our methods with Meng et al. (2013) and Berman et al.
(2016) (Color figure online)

Table 1 Average PSNR and SSIM of dehazed results, and MSE of the estimated transmission maps, on the new synthetic dataset

He et al. (2011) Meng et al. (2013) Berman et al. (2016) Cai et al. (2016) MSCNN (Ren et al. 2016) MSCNN-HE

PSNR (I ) 20.28 16.79 19.26 21.29 21.27 21.32

SSIM (I ) 0.80 0.41 0.73 0.84 0.85 0.85

MSE (t) 0.0660 0.0675 0.0549 0.0357 0.0338 0.0332

The bold and underline values indicate the best and second best results

Table 2 Average run time (in seconds) on test images

Image size Fattal (2008) He et al. (2011) Tarel et al. (2012) Meng et al. (2013) Berman et al. (2016) Cai et al. (2016) Ours

427 × 370 25.68 13.15 2.02 2.29 4.17 0.63 0.83

640 × 480 63.09 26.90 7.02 3.23 6.23 1.34 1.25

The bold values indicate the best results
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(a) Inputs (b)He et al. [19] (c)Meng et al. [30] (d) Sulami et al. [47] (e) Li et al. [24] (f) MSCNN-HE

Fig. 12 Visual comparisons for real image dehazing

(a) Inputs (b) Meng et al. [30] (c) Tang et al. [50] (d) Cai et al. [6] (e) MSCNN [37] (f) MSCNN-HE

Fig. 13 Visual comparisons for real image dehazing

Table 3 Average PSNR/SSIM of dehazed results on the SOTS dataset (Li et al. 2018)

He et al. (2009) Meng et al. (2013) Berman et al. (2016) Cai et al. (2016) Li et al. (2017) MSCNN (Ren et al. 2016) MSCNN-HE

16.62/0.82 16.88/0.79 17.29/0.75 21.14/0.85 19.06/0.85 17.57/0.81 21.56/0.86

2014; Sulami et al. 2014; Meng et al. 2013; Cai et al. 2016;
Li et al. 2017) using seven challenging real-world images in
Figs. 12 and 13.

In Fig. 12, the dehazed City image by He et al. (2011)
and Sulami et al. (2014) tend to overestimate the thickness
of the haze and produces dark results as shown in Fig. 12b,
d. In addition, the results by Meng et al. (2013) and Sulami
et al. (2014) have some color distortions as shown in (c)
and (d), especially at the sky regions. The method by Meng

et al. (2013) can augment the image details and enhance the
image visibility. However, the recovered images still have
some color distortions. For example, the sky color is changed
from gray to black in the City image in (c). In Fig. 13, due
to the methods of Meng et al. (2013) and Tang et al. (2014)
still depend on DCP, these approaches also tend to overesti-
mate the thickness of the haze and generates darker images.
The results by Cai et al. (2016) have some remaining haze as
shown in the third row in Fig. 13d. In contrast, the dehazed
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6 24 56](a) Input (b) DehazeNet [ ] (c) AOD-Net [ ] (d) DCPDN [ (e) Ours

Fig. 14 Comparison on real-world thick hazy images with deep learning based methods. The methods of DehazeNet and AOD-Net tend to generate
dark results, while the dehazed results by DCPDN have some non-uniform dehazing artifacts. In contrast, our results are more pleasant and have
vivid scene details

(a) Input (b) DCP [18] (c) DehazeNet [6] (d) AOD-Net [24] (e) Ours

Fig. 15 Dehazed results on the hazy images where cars’ headlights are turned on. The results byDCP andDehazeNet suffer from over-enhancement.
Although the details of the scenes and objects are well restored by AOD-Net, the results still have some remaining haze
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Fig. 16 a A multi-scale network with three scales. The output of each
scale serves as an additional feature in next scale.bComparisons among
thefirst, second and third scale networkswith andwithout holistic edges.
As observed, the networkwith three scales does not lead to better results

than the one with two scales. But with the holistic edge guided infor-
mation, the network with three scales could improve the transmission
estimation performance. c Comparisons of one CNN with more layers
and the proposed multi-scale CNN (Color figure online)

results by the proposed algorithm with (MSCNN-HE) and
without (MSCNN) using the holistic edge guided network
are visually more pleasing in dense haze regions without
color distortions or artifacts. Since all the dehazing algo-
rithms are able to get good results by dehazing the general
outdoor image as shown in Figs. 12 and 13, we further con-
duct some experiments on thick hazy images as shown in
Fig. 14. In this section, we mainly compare our method
against the existing deep learning based approaches since
these are the most relevant algorithms to ours. Figure 14a
depicts the thick hazy images to be dehazed. Figure 14b–d
show the results of DehazeNet (Cai et al. 2016), AOD-Net
(Li et al. 2017), and DCPDN (Zhang and Patel 2018), respec-
tively. As shown, both DehazedNet and AOD-Net employ
single-scale network and fail to remove dense haze. DCPND
exploits the multi-scale strategy but the dehazed results sig-
nificantly suffer from non-uniform dehazing artifacts (e.g.,
the nearby region is well dehazed while the distant region
still has significant remaining haze for the second image). In
contrast, the dehazed results by our algorithm in Fig. 14e are
clear and the details are enhanced moderately.

In addition, we collect some hazy images where cars’
headlights are turned on from the internet since these scenes
are relatively common in hazy days, and compare the pro-
posed algorithm with some state-of-the-art single image
dehazing methods. As shown in Fig. 15, the results gener-
ated by DCP, DehazeNet, and AOD-Net tend to be dark. In
contrast, the dehazed results by the proposed algorithm are
visually more pleasing.

6 Analysis and Discussions

6.1 Generalization Capability

As shown in Sect. 5.2, the proposed multi-scale network per-
forms favorably against the state-of-the-art image dehazing

methods for outdoor scenes. In the following,we explainwhy
the proposed network, which is trained on indoor scenes, can
handle outdoor images.

The key observation is that image content is independent
of scene depth and medium transmission (Tang et al. 2014),
i.e., the same image (or patch) content can appear at dif-
ferent depths in different images. Therefore, although the
training images have relatively shallow depths, we could
increase the haze concentration by adjusting the value of
the medium extinction coefficient β. Based on this premise,
the synthetic transmission maps are independent of depth
d(x) and cover a broad range of values in real transmission
maps.

6.2 Run Time

The proposed algorithm is more efficient than the state-of-
the-art image dehazing methods (Fattal 2008; He et al. 2011;
Tarel et al. 2012; Meng et al. 2013; Zhu et al. 2015) in terms
of run time. We use the five images (427 × 370 pixels)
in Fig. 9 and the 40 images (640 × 480 pixels) in the new
synthetic dataset for evaluation. All the methods are imple-
mented in MATLAB, and we evaluate them on the same
machine without GPU acceleration (Intel CPU 3.40 GHz and
16 GB memory). The average run time using two image res-
olutions is shown in Table 2. Since we add an additional scale
in Ren et al. (2016), our algorithm is a little slower than Ren
et al. (2016). Nevertheless, the proposedmethod is still faster
than most other methods (Fattal 2008; He et al. 2011; Tarel
et al. 2012; Meng et al. 2013; Berman et al. 2016).

6.3 Effectiveness of Fine-Scale Network

In this section, we analyze how the fine-scale network helps
estimate scene transmission maps. The transmission map
from the coarse-scale network serves as additional features in
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Fig. 17 Effectiveness of the proposed fine-scale network. a Hazy image. b, d are the transmission map and dehazed result without the fine-scale
network. g, i denote transmission map and dehazed result with the fine-scale network. f, c, e, h, j are the zoom-in views in a, b, d, g, i, respectively

the fine-scale network, which can greatly improve the final
estimation of scene transmission map. The validation cost
convergence curves (the blue and red lines) in Fig. 16b show
that using a fine-scale network could significantly improve
the transmission estimation performance. Furthermore, we
also train a network with three scales without holistic edge
as in Fig. 16a. The output from the second scale also serves
as additional features in the third scale network. However,
we find that networks with three scales without holistic edge
do not help to generate better results as shown in Fig. 16b.
The results also show that the proposed network architecture
is compact and robust for image dehazing.

To better understand how the fine-scale network affects
ourmethod,we conduct a deeper architecture by addingmore
layers in the single scale network. Figure 16c shows that the
CNNwithmore layers does not performwell compared to the
proposed multi-scale CNN. This can be explained by that the
output from the coarse-scale network provides sufficiently
important features as the input for the fine-scale network.
Note that similar observations have been reported in SRCNN
(Dong et al. 2014), which indicates that the effectiveness of
deeper structures for low-level tasks is not as apparent as that
shown in high-level tasks (e.g., image classification).

We show an example of dehazed results with and without
the fine-scale network in Fig. 17. Without the fine-scale net-
work, the estimated transmission map in Fig. 17b lacks fine
details and the edges of rock do not match with the input
hazy image, which accordingly leads to the dehazed results

(a) Hazy image (b) Canny [8] (c) HED [55]

(d) w/o HED [55] (e) With HED [55] (f) MSCNN-HE

Fig. 18 Effectiveness of the proposed holistic edge guided network.
With the HED, our estimated transmission map has few trivial edge in
the same depth region (Color figure online)

containing halo artifacts around the rock edge as shown in
Fig. 17e. In contrast, the transmission map generated with
fine-scale network (Fig. 17g) is more informative and thus
results in a clearer image (Fig. 17j).

6.4 Effectiveness of Holistic Edge Guided Network

In Sect. 5.1 and Table 1, we have shown that the proposed
holistic edge guided network is able to improve the estimated
transmissionmaps and dehazed results. The green and orange
lines in Fig. 16b also demonstrate that using the holistic edge
information could improve the transmission estimation per-
formance.
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(a) Input (b) Eigen et al. [12] (c) Eigen et al. [12] (d) Our transmissions (e) Our dehazed results (f) Ground truths

Fig. 19 Dehazed results by the re-trained multi-scale network (Eigen et al. 2014) and our proposed network, respectively

Table 4 Average PSNR and
SSIM of dehazed results on the
RESIDE dataset (Li et al. 2018)
using different configurations

Depth network (Eigen et al. 2014) Coarse-scale Fine-scale MSCNN-HE

PSNR (I ) 13.17 16.38 17.56 21.56

SSIM (I ) 0.49 0.62 0.81 0.86

The bold and underline values indicate the best and second best results

(d)Designed  features in Tang et al.’s work

(f)Automatic learned features by our method

(a) Input

Dark channel Local max contrast Local max saturation Hue disparity 

(c) He et al.’s result

(e) Tang et al.’s result

(g) Our result

(b) Dark channel

Fig. 20 Effectiveness of learned features. With these diverse features f automatically learned from the proposed algorithm, our dehazed result is
sharper and visually more pleasing than others (Color figure online)

We further demonstrate the effect of the proposed holistic
edge guided network. Figure 18 shows the edge detection
results and transmission maps with and without the holis-
tic edge guided network. As shown in Fig. 18b, the result

by the Canny detector (Canny et al. 1986) has many triv-
ial edge details. Such details are likely to interfere the
transmission map (Fig. 18d). In contrast, the edge detec-
tion result in Fig. 18c only contains the main structures
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27

18

(a) Hazy image with non-uniform airlight (b) Nighttime dehazing [ ] (c) MSCNN-HE

(d) Heavy hazy image (e) He et al. [ ] (f) MSCNN-HE

Fig. 21 Failure cases. Our algorithm does not perform well when the input images contain non-uniform light or heavy haze since the hazy model
(1) does not hold for these images

of the hazy images, which are almost consistent with the
idea edge of transmission map. Therefore, the buildings
belong to same depth have the same transmission as shown
in Fig. 18e which results in the clear dehazed image in
Fig. 18f.

We note that the proposed method modulates intermedi-
ate features based on three-scale networks. We analyze the
relationship between transmission estimation accuracy and
network configurations in Table 4. The results show that
only using the coarse-scale network cannot recover clear
images but adding the fine-scale network could improve the
performance in terms of PSNR and SSIM. Using the inte-
grated network further helps generate clearer images than
those recovered by the state-of-the-art approaches as shown
in Table 3.

6.5 Connection with Depth Estimation

InEigen et al. (2014), propose amulti-scale network for depth
estimation. The proposed network is also based on the multi-
scale CNN (Eigen et al. 2014) but different in several aspects.
First, the proposed network does not use a fully-connected
layer while the model in Eigen et al. (2014) uses this layer
and fixes the output size as one quarter the resolution of
the input image. The depth estimation model (Eigen et al.
2014) leads to less accurate transmission maps (e.g., edges
in the transmission maps are blurry as shown in Fig. 19b).
Second, different from Eigen et al. (2014), we develop an
edge information guided approach to better estimate trans-
mission maps. Our analysis and experimental results show

that the proposed network generates clear images and per-
forms favorably against the state-of-the-art methods.

We re-train the network (Eigen et al. 2014) image dehaz-
ing and show two examples in Fig. 19b, c. The estimated
transmission maps by Eigen et al. (2014) contain blurry arti-
facts and result in undesired dehazed images. In contrast, the
transmission maps estimated by our method contain detailed
information and the dehazed images are sharper. Table 4
shows that the re-trained multi-scale network (Eigen et al.
2014) do not dehaze images well on the RESIDE dataset.

6.6 Effects of Different Features

In this section, we illustrate the differences between the tra-
ditional hand-crafted features and the features learned by the
proposed multi-scale CNN model. Traditional methods (He
et al. 2011; Tang et al. 2014; Tan 2008) focus on designing
hand-crafted features while our method learns the effective
haze-relevant features automatically.

Figure20a shows a hazy input. The dehazed result by
only using dark channel feature (b) is shown in (c). As
shown, the result has some dark regions when only using the
hand-crafted DCP feature. In Tang et al. (2014), propose a
learning-based dehazingmodel. However, this work involves
a considerable amount of effort in the design of hand-crafted
features including dark channel, local max contrast, local
max saturation and hue disparity as shown in (d). By fus-
ing all these features in a regression framework, the dehazed
result is shown in (e). In contrast, our network automati-
cally learns the effective features. Figure 20f shows some

123



International Journal of Computer Vision (2020) 128:240–259 257

features learned by the multi-scale network from the input
image. These features are randomly selected from the inter-
mediate layers of the multi-scale CNN model. As shown in
Fig. 20f, the learned features include various kinds of infor-
mation for the input hazy image, including luminance map,
intensity map, edge details and amount of haze, and so on.
More interestingly, some features learned by the proposed
algorithm are similar to the dark channel and local max con-
trast as shown in the two red rectangles in Fig. 20f, which
indicates that the dark channel and local max contrast priors
are useful for dehazing as demonstrated byprior studies.With
these diverse features learned from the proposed algorithm,
the dehazed image shown in Fig. 20g is visually sharper and
brighter.

6.7 Failure Cases

Our multi-scale CNN model is trained on the synthetic
dataset which is created based on the hazy model (1). As
the hazy model (1) usually does not hold for the nighttime
hazy images (Li et al. 2015; Zhang et al. 2014) or the images
with non-uniform atmospheric light since these images often
contain other light sources as shown in Fig. 21a, our method
is less effective for such images. One failure example is
shown in Fig. 21. Our result has some dark region since the
inaccuracy of the estimated atmospheric light. Although the
proposed algorithm is able to remove thick haze in Fig. 14,
ourmethod still cannot handle imageswith heavy hazewhere
most of the scene information is corrupted by the haze. For
example, all the background information is lost in the hazy
image in Fig. 21d, the adopted image formation model does
not hold for such examples. Figure 21f shows that the pro-
posed method fails to generate a clear image. We aim to
address these issues in the future work.

7 Conclusions

In this paper, we address the image dehazing problem via a
multi-scale deep network which learns effective features to
estimate the scene transmission map of a single hazy image.
Compared to previous methods which require carefully
designed features and combination strategies, the proposed
feature learning method is easy to implement and reproduce.
In the proposedmulti-scale model, we first use a coarse-scale
network to learn a holistic estimation of the scene transmis-
sion map, and then use a fine-scale network to refine it using
local information and the output from the coarse-scale net-
work. In addition, we propose a holistic edge guided network
to ensure that the objects with the same depth have the same
transmission values. Experimental results on synthetic and
real images demonstrate the effectiveness of the proposed
algorithm.
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