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Abstract

Single image super resolution aims to enhance image quality with respect to spatial content, which is a fundamental task in
computer vision. In this work, we address the task of single frame super resolution with the presence of image degradation, e.g.,
blur, haze, or rain streaks. Due to the limitations of frame capturing and formation processes, image degradation is inevitable,
and the artifacts would be exacerbated by super resolution methods. To address this problem, we propose a dual-branch
convolutional neural network to extract base features and recovered features separately. The base features contain local and
global information of the input image. On the other hand, the recovered features focus on the degraded regions and are used
to remove the degradation. Those features are then fused through a recursive gate module to obtain sharp features for super
resolution. By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate
the training process by avoiding learning the mixed degradation all-in-one and thus enhance the final high-resolution prediction
results. We evaluate the proposed method in three degradation scenarios. Experiments on these scenarios demonstrate that
the proposed method performs more efficiently and favorably against the state-of-the-art approaches on benchmark datasets.

Keywords Super resolution - Image restoration - Deep learning

1 Introduction

Single image super resolution (SISR) aims to restore a high-
resolution (HR) image from a low-resolution (LR) one, such
as those captured from surveillance and mobile cameras.
The generated HR image can improve the performance of
the numerous high-level vision tasks, e.g., object detection
(Zhang et al. 2011), face recognition (Bai et al. 2018), and
surveillance applications (Zhang et al. 2010; Zou and Yuen
2012). However, image degradation is often inevitable due to

Communicated by Yasuyuki Matsushita.

Xinyi Zhang and Hang Dong have equally contributed to this work.

D<I Fei Wang
wfx @mail.xjtu.edu.cn

Xinyi Zhang
jacqueline @stu.xjtu.edu.cn

Hang Dong C . .

dhunter@stu.xjtu.edu.cn the. limitations of the imaging p.rocessors and complex cap-

Jhe H turing scenes. For example, motion blur, as well as hazy and
€ nou

rainy weather would introduce undesired artifacts in the cap-
tured LR images. Those artifacts cannot be fully removed by
the imaging formation pipeline and would adversely affect
the super resolution algorithms and the following high-level
tasks. The problems of super resolution and image restora-
tion from degradation are often dealt with separately, as each

zhe.hu@hikvision.com

Wei-Sheng Lai
wlai24 @ucmerced.edu

Ming-Hsuan Yang
mhyang @ucmerced.edu

School of Software Engineering, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

College of Artificial Intelligence, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

Hikvision Research America, Santa Clara, CA, USA

Electrical Engineering and Computer Science, University of
California, Merced, CA, USA

Published online: 13 January 2020

one is known to be ill-posed. However, such a strategy is
neither optimal nor efficient due to error accumulation.

In this work, we address the joint problem of single image
super resolution and restoration. We evaluate the proposed
super resolution architecture on images with three represen-
tative image degradations: motion blur, rain streaks, and haze.
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(a) Blurry low-resolution input

Fig.1 Joint image deblurring and super resolution. While the state-of-
the-art super resolution algorithm by Lim et al. (2017) does not reduce
the non-uniform blur in the input image due to the assumption of bicubic
downsampling, the top-performing non-uniform deblurring algorithm

Here, we use super resolution of a blurred image as the exam-
ple to illustrate this joint task. Motion blur is often caused
by camera shake, object motion, and scene depth variation.
Figure 1 shows one blurry LR image, which contains non-
uniform blur. As the existing super resolution algorithms
(Lim et al. 2017; Ledig et al. 2017; Lai et al. 2019; Kim
et al. 2016a) are not designed to handle motion blur explic-
itly, the resulting HR image is still blurry (see Fig. 1b, c).
On the other hand, the state-of-the-art non-uniform deblur-
ring methods (Noroozi et al. 2017; Gong et al. 2017; Nah
et al. 2017; Kupyn et al. 2018) generate sharp image but can-
not restore fine details or enlarge the spatial resolution (see
Fig. le, f).

With the advances of deep Convolutional Neural Net-
works (CNNs), the state-of-the-art image super resolution
(Lim et al. 2017; Ledig et al. 2017; Lai et al. 2019) and
image restoration (Nah et al. 2017; Kupyn et al. 2018; Mei
et al. 2018; Zhang et al. 2017; Zhang and Patel 2018b; Li
et al. 2018d) methods are developed based on end-to-end
networks and achieve promising performance. To jointly han-
dle the image super resolution and degradation restoration,
a straightforward approach is to solve the two sub-problems
sequentially, i.e., performing image restoration followed by
super resolution, or vice versa. However, there are numerous
issues within such an approach. First, a simple concatena-
tion of two models is prone to error accumulation. That is,
the estimation error of the first model will be propagated
and exacerbated in the second model. Second, the two-step
network does not fully exploit the dependence between the
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(e) Input patch  (f) Nah et al. (2017) (g) Ours

by Nah et al. (2017) generates sharp results but with few details. In
contrast, the proposed model generates a sharp HR image with more
details

two tasks. For example, the feature extraction and image
reconstruction steps are performed twice and result in com-
putational redundancy. As both the training and inference
processes are memory and time consuming, these approaches
cannot be applied to resource-constrained real-time applica-
tions, e.g., autonomous driving and video surveillance.

Several recent methods (Xu et al. 2017; Yu et al. 2018;
Zhang et al. 2018a; Bao et al. 2017) jointly solve the degraded
image super resolution problem using end-to-end networks.
However, these methods focus on either domain-specific
inputs, e.g., face and text (Xu et al. 2017; Yu et al. 2018)
images, or extending the existing architecture to a particular
degradation (Bao et al. 2017).

Zhang et al. (2018a) propose a network with two output
branches to solve the joint deblurring and super resolution
task on natural images. Although this method can be extended
to super resolve other degraded images by changing the loss
functions and training data, it does not perform well when
severe degradation exists, e.g., non-uniform blur, heavy rain,
or uneven haze. In this work, we aim to handle these severe
degradations for natural images, which is more challenging.

We use a common image in a dynamic scene to illus-
trate the motivation of the proposed method. The blurry LR
input is mixed with degraded (motion blur in this example)
regions and relatively sharper regions. If we extract features
from these two regions in one single branch, the training data
contains noisy samples and thus makes it difficult to learn
an effective model for deblurring. To address this problem,
we propose a Gated Fusion Network (GFN) which consists
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of two branches: a restoration branch to extract features for
recovering the sharp LR image, and a base branch to extract
features for fusing. We adopt a recursive gate module to
adaptively fuse the features from two branches for super
resolution. The fused features are then fed into an image
reconstruction module to generate the sharp HR image.
Extensive evaluations demonstrate that the proposed model
performs favorably against the combination of the state-of-
the-art super resolution and image restoration methods as
well as the existing joint models in different applications.

The contributions of this work are threefold:

e To the best of our knowledge, the proposed method is the
first generic deep learning architecture for image super
resolution under different degradations.

e We decouple the joint problem into two sub-tasks for
better network regularization. We propose a dual-branch
network to extract the base features and recovered fea-
tures separately and learn a recursive gate module for
adaptive feature fusion.

e The proposed model entails low computational cost as
most operations are performed in the LR space. Our
model performs more efficiently than the combinations
of the state-of-the-art super resolution and image restora-
tion methods while achieving significant performance
improvement.

2 Related Work

Both image super resolution and image restoration are fun-
damental problems in computer vision. In this section, we
discuss image super resolution and restoration methods
closely related to this work.

2.1 Image Super Resolution

Single image super resolution is an ill-posed problem as
there are multiple HR images corresponding to the same
LR input image. Conventional approaches learn the LR-
to-HR mappings using sparse dictionaries (Timofte et al.
2014), random forest (Schulter et al. 2015), or self-similarity
(Huang et al. 2015). In recent years, the CNN-based methods
(Dong et al. 2016; Kim et al. 2016a) have demonstrated sig-
nificant improvement against conventional super resolution
approaches. Several techniques have been developed based
on recursive learning (Tai et al. 2017; Kim et al. 2016b), pixel
shuffling (Shi et al. 2016; Lim et al. 2017), Laplacian pyra-
mid (Lai et al. 2019), back-projection (Haris et al. 2018), and
channel attention (Zhang et al. 2018b). In addition, several
approaches use the adversarial loss (Ledig et al. 2017), per-
ceptual loss (Johnson et al. 2016), and texture loss (Sajjadi

et al. 2017) to generate super resolution images. As most
super resolution algorithms assume that the LR images are
generated by a simple downsampling kernel, e.g., bicubic
kernel, they do not perform well when the input images suffer
from other unexpected degradation. In contrast, the proposed
model is able to super resolve LR images with severe degra-
dation.

2.2 Motion Deblurring

Most existing image deblurring approaches (Cho and Lee
2009; Xu et al. 2013; Pan et al. 2016; Shan et al. 2008;
Schmidt et al. 2011, 2013) assume that the blur is uniform
and spatially invariant across the entire image. However, due
to depth variation and object motion, real-world images typ-
ically contain non-uniform blur. Several approaches address
the non-uniform deblurring problem by jointly estimating
blur kernels with scene depth (Paramanand and Rajagopalan
b; Hu et al. 2014) or segmentation (Kim et al. 2013). As
the kernel estimation step is computationally expensive,
recent methods (Hradi$ et al. 2015; Noroozi et al. 2017,
Nah et al. 2017; Nimisha et al. 2017) learn deep CNNs
to bypass the kernel estimation and efficiently solve the
non-uniform deblurring problem. Kupyn et al. (2018) adopt
the Wasserstein generative adversarial network (GAN) to
generate realistic deblurred images and facilitate the object
detection task.

2.3 Image Dehazing

Existing single image dehazing methods often rely on strong
image priors or statistical assumptions (Fattal 2008; Tan
2008; He et al. 2011). Tan (2008) assumes that haze-free
images should have higher contrast compared with corre-
sponding hazy images. He et al. (2011) propose the dark
channel prior for haze-free outdoor images and achieve
impressive results. Recent algorithms (Ren et al. 2016; Zhang
and Patel 2018a; Zhang et al. 2017) adopt deep CNNs to
estimate the transmission map, a major component in the
haze model, for reconstructing the haze-free outputs. How-
ever, inaccurate transmission maps often adversely affect the
dehazing results (Zhang and Patel 2018a). Therefore, end-to-
end architectures have been proposed (e.g., (Ren et al. 2018;
Mei et al. 2018) to directly recover the haze-free image with-
out estimating the transmission map.

2.4 Image Deraining

It is challenging to develop restoration algorithms to deal
with images captured from outdoor scenes as the contents are
complex, dynamic, and with large lighting variations. Exist-
ing deraining methods can be categorized as video-based (Li
etal. 2018c; Liuetal. 2018; Jiang et al. 2017) or image-based
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Fig.2 Architecture of the proposed GFN model. Our model consists of
four major modules: restoration module G, base feature extraction
module G, gate module Ggqye, and reconstruction module Gecon-

(Mairal et al. 2009; Liu et al. 2013; Reynolds et al. 2000;
Zhang and Patel 2018b; Zhang et al. 2019; Li et al. 2018b, d;
Yang et al. 2017; Fan et al. 2017). Although video-based
algorithms perform better by exploiting the temporal infor-
mation, the single image deraining problem receives much
research attention because of its flexibility and generality.
Early methods rely on handcrafted low-level features and
prior information, e.g., sparse coding and dictionary learn-
ing (Mairal et al. 2009), low-rank representation (Liu et al.
2013), and Gaussian mixture models (Reynolds et al. 2000).
However, these schemes are prone to failures of recover-
ing high-frequency details and removing the rain streaks
completely. Recent approaches show promising improve-
ment based on deep CNNs (Zhang and Patel 2018b; Zhang
et al. 2019; Li et al. 2018b; Fan et al. 2017), recurrent
neural network (RNNs) (Li et al. 2018d), and iterative net-
works (Yang et al. 2017). Zhang and Patel (2018b) propose
a multi-streaming network for joint rain event detection and
deraining. Recently, Zhang et al. (2019) introduce the condi-
tional adversarial loss to recover high-frequency details and
arefined loss to suppress the artifacts. Li et al. (2018d) utilize
adeep convolutional RNN to remove the overlap rain streaks
with multiple stages.

2.5 Degraded Image Super Resolution

Most super resolution methods in the literature operate on
images without significant degradation caused by noise or
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The features extracted by G¢; and Gpqse are fused by Ggq/e and then
fed into G ¢con to reconstruct the HR output image

blur. Some approaches (Yamaguchi et al. 2010; Park and
Lee 2017; Bascle et al. 1996) aim to solve the joint task
of super resolution and deblurring by exploiting temporal
information from the videos. As these methods depend on
the optical flow estimation, such schemes cannot be applied
to the case of single input images. Xu et al. (2017) train a
generative adversarial network to super resolve blurry face
and text images. As face and text images have distinct struc-
tured properties that can be exploited, compact models can
be developed to address the joint task of super resolution and
deblurring for specific object categories. Zhang et al. (2018a)
propose a deep encoder-decoder network (ED-DSRN) for
joint image deblurring and super resolution. However, the
HR images are directly reconstructed from the inputs, which
tend to generate unexpected structures in severely degraded
regions. In this work, we design the network architecture to
better extract features in the presence of complex degrada-
tions. The proposed model has fewer parameters than those
of (Zhang et al. 2018a) and can generate sharp HR images
under different degradations.

3 Gated Fusion Network

In this section, we describe the architecture design, training
loss functions, and implementation details of the proposed
GFN for super resolution on degraded images.
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Fig. 3 Feature responses of the base features ¢pr, recovered (deblur-
ring) features ¢rr, and fused features from different gate blocks
d);usion, q)?cmgn, and ¢3cu“.on, The base features contain unclear
contours around the degraded (blurry) regions, while the recovered
(deblurring) features have strong responses on those regions. The fused
features restore sharp structure and contours information progressively
by selectively merging ¢ g into ¢pF in a recursive way. We normalize
the feature maps for better visualization

3.1 Network Architecture

Given a degraded LR image L., as the input, our goal is to
recover a sharp HR image H. In this work, we consider the
case of 4 times super resolution, i.e., the width and height
of H are 4 times larger than those of Lg.,. The proposed
model has a dual-branch architecture and consists of four
major modules: (i) a restoration module G,.s for recover-

ing a sharp LR image L, (ii) a base feature extraction module
G pase to extract visual information from the blurry LR input,
(iii) a gate module G4 for merging the features from the
restoration and base feature extraction modules, and (iv) a
reconstruction module G, toreconstruct the final HR out-
put image. An overview of the proposed model is illustrated
in Fig. 2.

3.1.1 Restoration Module

The goal of this restoration module is to extract features for
recovering a sharp LR image L from the degraded LR input
Lgeg. We use an asymmetric residual encoder-decoder archi-
tecture to enlarge the receptive field. The encoder consists
of three scales, where each scale has a residual group (six
residual blocks as proposed by Lim et al. (2017)) and the
first two residual groups are followed by a strided convolu-
tional layer to downsample the feature maps by 1/2 times.
The decoder has two deconvolutional layers to enlarge the
spatial resolution of feature maps. Finally, we use two addi-
tional convolutional layers to reconstruct a sharp LR image
L. We denote the output features of the decoder by ¢rF,
which are fed into the gate module for feature fusion.

3.1.2 Base Feature Extraction Module

We use eight residual blocks (Lim et al. 2017) to extract
base features from the degraded input Lge,. To retain the
spatial information, we do not use any pooling or strided
convolutional layers. We denote the base features by ¢pF.

7Bl e 3, 7Bl e 3 I’__\I
Degraded Input : /4 : : I : : I
|
L + 1 L, —+ 1 L 2
L; 15 deg_l.> k=1 +— deg_l-p —:—> XX
1, I 1, I Lo
I‘ I |‘ I | I
S e e e —- - -~ / S e e e e - - - - / 2 I\ _3_ J
Recursive Gate Block G}]a te Recursive Gate Block Ggqze | Gyate
v Y
R ™
‘ L1 2
¢BF ¢fusion ¢fusion

Fig. 4 Structure of the recursive gate module. We use recursive gate
blocks to fully exploit the correlation between the features from two
independent branches and fuse them progressively. Since each block

| Convolutional layer (strided=1) | Concatenate layer

| LeakyReLU (slope=0.2)

serves as the same purpose of adaptively merging the recovered fea-
tures ¢ g into the main stream q)’}u sion (@B F for the first block), the
parameters are shared among blocks
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3.1.3 Gate Module

In Fig. 3, we show the responses of ¢rr, ¢pr and fused
features ¢, . . from a blurry LR input. While the base fea-
tures ¢p r contain both sharp and unclear contours (as shown
on the wall of Fig. 3b), the recovered (deblurring) features
¢rF have high response on the regions with large motion
(as shown by the pixels of the moving person in Fig. 3c).
Thus, the responses of ¢ g r and ¢ p r complement each other,
especially on the degraded (blurry) regions. To better extract
features for super resolution, we adaptively merge the recov-
ered features and base features by learning a gate module,
which has been shown effective to discover feature impor-
tance for multi-modal fusion (Hochreiter and Schmidhuber
1997; Ren et al. 2018). We apply a basic gate block and
adopt a recursive merging strategy to progressively fuse the
features.

As shown in Fig. 4, each gate block consists of a concate-
nation layer, two convolutional layers with the filter size of
3 x 3and 1 x 1, and a leaky rectified linear unit (LReLU)
between the two convolutional layers. The first recursive gate
block, Gi,me, takes ¢rr, ¢pr, and the degraded LR input
Lgeg as input, and generates a pixel-wise weight map. The
fused features can be formulated as,

¢1fm-,'0n = Géﬁ;e((ﬁRF, Lyeg, BF) ® GrF + OBF, (1
where ® denotes the element-wise multiplication.

We propose a recursive strategy to exploit the dependence
of two independent branches for feature fusion. We stack N
gate blocks, where each block serves as the same purpose of
adaptively merging the recovered features ¢ g r into the main
stream ¢>.’}us ion (@B F for the first block). The parameters are
shared among the recursive gate blocks, and the output of
the previous block d)l}; Slion, k=2,..., Nisused as the base
features in the next block. Figure 3 shows the proposed recur-
sive fusion process. Compared to the base features ¢p r, the
features after the first fusion q)lfu sion CONtain sharp contours
of the moving person. The fused features after the second
and third fusion steps contain clearer and finer information
of the person, especially on the chest region, which is useful
for HR image reconstruction.

The DGFN (Ren et al. 2018) method trains a network
to predict confidence maps for three hand-crafted enhanced
images derived from the input hazy image and then uses a
gate module to combine them for generating the sharp image
without haze. This method is specifically developed for the
single-image dehazing task, which cannot be straightfor-
wardly extended to other restoration tasks due to the usage of
the hand-crafted enhanced images. In contrast, the proposed
method is a generic framework for the joint image restora-
tion and super-resolution problem and does not involve any

@ Springer

heuristic process. Our gate module is designed to predict
the confidence maps to adaptively fuse the features from two
sub-networks, where one extracts features for restoration and
another one extracts features from the input image. The fused
features are then fed into an image reconstruction module to
generate the sharp HR output.

To retrieve more contextual information from hand-
crafted enhanced images, their gate module is constructed
with 3 dilated convolutional blocks and 3 deconvolutional
blocks. Since our gate module only aims to fuse two extracted
features, our gate module only consists of two convolutional
layers and a leaky rectified linear unit (LReLLU) to maintain
simplicity.

3.1.4 Reconstruction Module

In the final stage, the fused features qb}vu sion are fed into eight
residual blocks (Lim et al. 2017) and two pixel-shuffling lay-
ers (Shi et al. 2016) to enlarge the spatial resolution by 4
times. We then use two final convolutional layers to recon-
struct an HR output image H. We note that most of the
network operations are performed in the LR feature space.
Thus, the proposed model entails low computational cost in
both training and inference phases.

3.2 Loss Functions

The proposed network generates two output images: a recov-
ered LR image Landa sharp HR image H.In our training
data, each degraded LR image Lg., has a corresponding
ground truth HR image H and a ground truth LR image L,
which is bicubic-downsampled from H. Thus, we train our
network by jointly optimizing a super resolution loss and a
recovering loss:

min Lgg (i:ia H) + aLrecover (Zs L), (2)

where « is a weight to balance the two loss terms.

Without the recovering loss, both the base feature extrac-
tion module and restoration module are solely guided by the
super resolution loss. In this case, there is no guarantee that
the dual-branch architecture can learn to extract recovered
features. We have trained GFN without recovering loss and
found that its result in PSNR is worse than the proposed GFN
(27.69 vs. 27.91) on the joint deblurring and super resolution
problem. Therefore, we impose a guidance on the restoration
branch using the recovering loss to encourage the branch to
extract recovered features for the restoration task. We use the
pixel-wise L2 loss function for both Lsz and L, ¢coper, and
empirically set « to 0.5.
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Table 1 Quantitative comparisons with the state-of-the-art methods on super resolving the blurry images

Method #Params LR-GOPRO 4 x LR-Kohler 4 x
PSNR/SSIM/time (s) PSNR/SSIM/time (s)
SCGAN 1.1IM 22.74/0.783/0.66 23.19/0.763/0.45
SRResNet 1.5M 24.40/0.827/0.07 24.81/0.781/0.05
EDSR 43M 24.52/0.836/2.10 24.86/0.782/1.43
RCAN 16M 24.54/0.836/1.76 24.87/0.782/1.17
SCGAN* 1.1IM 24.88/0.836/0.66 24.82/0.795/0.45
SRResNet* 1.5M 26.20/0.818/0.07 25.36/0.803/0.05
ED-DSRN* 25M 26.44/0.873/0.10 25.17/0.799/0.08
DeepDeblur + SRResNet 13M 24.99/0.827/0.66 25.12/0.800/0.55
SRResNet + DeepDeblur 13M 25.93/0.850/6.06 25.15/0.792/4.18
DeblurGAN + SRResNet 13M 21.71/0.686/0.14 21.10/0.628/0.12
SRResNet + DeblurGAN 13M 24.44/0.807/0.91 24.92/0.778/0.54
DeblurGAN + EDSR 54M 21.53/0.682/2.18 20.74/0.625/1.57
EDSR + DeblurGAN 54M 24.66/0.827/2.95 25.00/0.784/1.92
DeepDeblur + EDSR 54M 25.09/0.834/2.770 25.16/0.801/2.04
EDSR + DeepDeblur 54M 26.35/0.869/8.10 25.24/0.795/5.81
DeepDeblur + RCAN 37 25.10/0.833/3.91 25.16/0.801/3.52
RCAN + DeepDeblur 3™ 26.34/0.870/5.39 25.24/0.794/4.67
SRN + RCAN 17 25.62/0.867/3.10 25.18/0.798/1.66
RCAN + SRN 17 26.00/0.874/5.76 25.20/0.799/4.49
GEN* (ours) 12M 27.91/0.902/0.07 25.79/ 0.818/0.05

The evaluated methods include super resolution methods, SRResNet (Ledig et al. 2017), EDSR (Lim et al. 2017), RCAN (Zhang et al. 2018b),
image deblurring methods, DeepDeblur (Nah et al. 2017), DeblurGAN (Kupyn et al. 2018), SRN (Tao et al. 2018), and joint approaches, SCGAN
(Xu et al. 2017), ED-DSRN (Zhang et al. 2018a). The methods with a % sign are trained on our LR-GOPRO training set. Bold values indicate the
best performance. The proposed GFN model performs favorably against existing methods while maintaining a small model size and fast inference

speed
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Fig.5 Performance versus inference time and model parameters. The results are evaluated on the LR-GOPRO dataset

3.3 Implementation Details

In the proposed network, the filter size is set as 7 x 7 in the
first and the last convolutional layers, 4 x 4 in the deconvo-
lutional layers, 1 x 1 in the last convolutional layers of the

gate blocks, and 3 x 3 in all the other convolutional layers.
We randomly initialize all the trainable parameters by using
the method of (He et al. 2015). We use the leaky rectified
linear unit (LReLU) with a negative slope of 0.2 as the acti-
vation function. As suggested in (Lim et al. 2017), we do

@ Springer
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not use any batch normalization layers in order to retain the
range flexibility of features. To facilitate the training pro-
cess, we use skip connections in the restoration module and
base feature extraction module (refer to the dashed lines in
Fig. 2). From quantitative evaluations (see Table 4), we find
that the gate module with 3 recursive gate blocks, i.e., N = 3,
achieves the best performance on all three applications. Thus
we set N to 3 as the default parameter of the proposed GFN
model. We use the ADAM solver (Kingma and Ba 2015)
with 81 = 0.9 and B> = 0.999 to optimize the network.
All the training and evaluation processes are conducted on
an NVIDIA 1080Ti GPU. The source code can be found at
https://github.com/BookerDeWitt/GFN-1JCV.

4 Experimental Results

In this section, we evaluate the proposed GFN model on
super resolving blurry, hazy, and rainy images. We present
quantitative and qualitative comparisons with state-of-the-
art approaches. In addition, we carry out ablation studies to
analyze several design choices of the proposed model.

4.1 Super Resolving Blurry Image
4.1.1 Training Dataset and Details

We use the GOPRO (Nah et al. 2017) dataset to generate
the training data for the joint super resolution and deblurring
problem. The GOPRO dataset contains 2103 blurry and sharp
HR image pairs for training. To augment the training data, we
resize each HR image pair with three random scales within
the scales of 0.5 and 1.0. We then crop the HR images into
several patches with a size of 256 x256 and a stride of 128. We
downsample the blurry HR patch Hp;,,- and sharp HR patch
H by 4 times using bicubic downsampling to generate the
blurry LR patches Ly, and sharp LR patches L. We obtain
107,584 triplets of {Lpy,,, L, H} for training (the blurry HR
patches Hp;y, are discarded during training). The generated
dataset is referred to as LR-GOPRO in the following.

To facilitate the training process, we use a three-stage
training strategy. First, we pre-train the network without the
gate module by simply fusing ¢grr and ¢pr via addition.
Therefore, only the restoration module, base feature extrac-
tion module, and reconstruction modules are updated in this
stage. We use an initial learning rate of 10~* with a decay rate
of 0.5 every 6 epochs. The network is trained from scratch
for 25 epochs. We note that the rapidly decaying pre-training
without the gate module is important in the early stage as it
helps avoid the exploding gradient issues. In the second stage,
we continue training the models without the gate module for
60 epoch. The learning rate is reset to 10~* and multiplied by
0.1 for every 30 epochs. Finally, we include the gate module
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and train the entire network for 60 epochs. The learning rate
is set to 5 x 10~ and multiplied by 0.1 for every 25 epochs.
We use a batch size of 16.

4.1.2 Performance Evaluation

We evaluate the proposed GFN model with the state-of-the-
art super resolution methods (Ledig et al. 2017; Lim et al.
2017; Zhang et al. 2018b), joint image deblurring and super
resolution approaches (Xu et al. 2017; Zhang et al. 2018a),
and straightforward combinations of super resolution and
non-uniform deblurring schemes (Nah et al. 2017; Kupyn
et al. 2018; Tao et al. 2018). For fair comparisons, we re-
train the SCGAN (Xu et al. 2017), SRResNet (Ledig et al.
2017), and ED-DSRN (Zhang et al. 2018a) models on the
same training dataset discussed above. Other super resolu-
tion methods are trained on the DIV2K dataset (Agustsson
and Timofte 2017) and deblurring methods are trained on the
GOPRO dataset (Nah et al. 2017).

We use bicubic downsampling to generate blurry LR
images from the test set of the GOPRO (Nah et al. 2017) and
Kohler (Kohler et al. 2012) datasets for evaluation. Table 1
shows the quantitative evaluation in terms of PSNR, SSIM,
and average inference time. The tradeoff between image
quality and efficiency is better visualized in Fig. 5. The pro-
posed GFN model performs favorably against the existing
methods on both datasets and maintains a low computa-
tional cost and execution time. While the re-trained SCGAN
and SRResNet perform better than their pre-trained models,
both methods do not handle the complex non-uniform blur
well due to their small model capacity. It is noted that the
SCGAN takes bicubic upsampled images as the inputs, and
most operations are performed in the HR feature space. In
contrast, the ED-DSRN and our GFN take LR images as the
inputs, and most operations are performed in the LR feature
space. Therefore, the SCGAN runs slower than others even
with fewer parameters. The ED-DSRN method performs well
using a large model with more parameters. However, the
single-branch architecture of ED-DSRN is less effective than
the proposed dual-branch network.

The straightforward approaches by combining super res-
olution and deblurring methods are generally less effective
due to the error accumulation. We note that the approaches
first using super resolution (i.e., performing super reso-
lution followed by image deblurring) typically perform
better than the alternatives (i.e., performing image deblur-
ring followed by super resolution). However, the strat-
egy by first performing super resolution entails heavy
computational cost as the time-consuming image deblur-
ring step is performed in the HR image space. Com-
pared with the best-performing combination of EDSR and
DeepDeblur methods, the proposed GFN model executes
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( Ground-truth HR
PSNR / SSIM

(b) Blurry LR input
21.04 / 0.787
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(e) SCGAN*
23.00 / 0.835

(f) ED-DSRN*
26.07 / 0.896

Fig. 6 Visual comparisons on the LR-GOPRO dataset. The evaluated
methods include SRResNet (Ledig et al. 2017), EDSR (Lim et al. 2017),
SCGAN (Xu et al. 2017), ED-DSRN (Zhang et al. 2018a), and Deep-

(a) Blurry LR input ~ (b) ED-DSRN*

Fig. 7 Visual comparisons on the real blurry image dataset (Su et al.
2017). The methods with a * sign are trained on our LR-GOPRO train-
ing set. The proposed GFN model is more robust to outliers in real

116 times faster and uses 78% fewer model parame-
ters.

We present the qualitative results of the LR-GOPRO
dataset in Fig. 6 and a real blurry image in Fig. 7. The meth-
ods using the combination scheme, e.g., DeepDeblur + EDSR
and EDSR + DeepDeblur, often introduce undesired artifacts
due to the error accumulation problem. Existing joint super
resolution and deblurring methods (ED-DSRN and SCGAN)
do no handle non-uniform blur well. In contrast, the proposed
algorithm generates sharp HR images with more details.

(d) EDSR + DeepDeblur
25.04 / 0.876

(¢) DeepDeblur + EDSR
24.58 / 0.846

(g) SRResNet*
25.63 / 0.881

(h) GFN* (ours)
29.02 / 0.929

Deblur (Nah et al. 2017). The methods with a * sign are trained on our
LR-GOPRO training set. The proposed method generates sharper HR
images with more details

(c)SRReSNet* ‘ (d) GFN* (ours)

images and generates sharper results than the re-trained state-of-the-art
methods ED-DSRN (Zhang et al. 2018a) and SRResNet (Ledig et al.
2017)

4.2 Super Resolving Hazy Image
4.2.1 Training Dataset and Details

We use the RESIDE (Li et al. 2018a) dataset to generate
the training data for the joint super resolution and dehazing
problem. For training, we randomly select 5005 outdoor hazy
and sharp HR image pairs in 35 different haze concentrations
and 5000 indoor HR pairs in 10 different haze concentrations
from RESIDE training sets. We apply the same procedure
as the LR-GOPRO dataset to generate the training triplets
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Table 2 Quantitative comparisons with the state-of-the-art methods on super resolving the hazy images

Method #Params LR-RESIDE 4 x
PSNR/SSIM/time (s)

SRResNet 1.5M 13.29/0.566/0.02
EDSR 43M 13.71/0.650/0.12
RCAN 16M 13.72/0.652/0.30
SRResNet* 1.6M 23.58/0.791/0.02
ED-DSRN* 25M 24.89/0.813/0.04
DGFN + SRResNet 2.2M 19.62/0.618/0.03
SRResNet + DGFN 2.2M 19.34/0.607/0.08
AODN + SRResNet 1.5M 16.49/0.597/0.02
SRResNet + AODN 1.5M 17.07/0.563/0.05
EDSR + DCP 16M 17.46/0.572/24.0
EDSR + NLD 16M 17.70/0.576/10.6
AODN + EDSR 43M 17.05/0.702/0.12
EDSR + AODN 43M 18.30/0.713/0.13
DGEFN + EDSR 44M 21.03/0.740/0.13
EDSR + DGFN 44M 21.89/0.775/0.18
DGEN + RCAN 16M 21.04/0.740/0.30
RCAN + DGEN 16M 21.92/0.777/0.36
PFFNet + RCAN 38M 20.55/0.678/0.31
RCAN + PFFNet 38M 23.76/0.795/0.31
RCAN + GCANet 17 22.93/0.786/1.2

GFN* (ours) 12M 25.77/0.830/0.02

The evaluated methods include super resolution methods, SRResNet (Ledig et al. 2017), EDSR (Lim et al. 2017), RCAN (Zhang et al. 2018b),
image dehazing methods, DCP (He et al. 2011), NLD (Berman et al. 2016), DGFN (Ren et al. 2018), GCANet (Chen et al. 2019), PFFNet (Mei
etal. 2018), AODN (Li et al. 2017), and joint approaches, SCGAN (Xu et al. 2017), ED-DSRN (Zhang et al. 2018a). The methods with a » sign
are trained on our LR-RESIDE training set. Bold values indicate the best performance. The proposed GFN performs favorably against existing
methods while maintaining a small model size and fast inference speed

of {Lpgze, L, H}. We refer to the generated dataset as LR-
RESIDE in the following.

Since the training process of joint dehazing and super res-
olution is more stable compared with that of joint deblurring
and super resolution, we simplify the training process into
two stages. First, we train the network without the gate mod-
ule from scratch for 25 epochs. The learning rate is set to
10~* and multiplied by 0.5 for every 7 epochs. Second, we
enable the gate module and train the complete model for 60
epochs where the learning rate is set to 10~* and multiplied
by 0.1 for every 25 epochs. The other settings are the same
as those for blurry image super resolution.

4.2.2 Performance Evaluation

We choose 500 indoor image pairs and 500 outdoor image
pairs from the test set of the RESIDE dataset for evaluation.
We compare the proposed GFN model with the state-of-the-
art super resolution methods (Ledig et al. 2017; Lim et al.
2017; Zhang et al. 2018b), joint image deblurring and super
resolution approaches (Zhang et al. 2018a; Xu et al. 2017),
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and combinations of super resolution algorithms and dehaz-
ing schemes (He et al. 2011; Berman et al. 2016; Ren et al.
2018; Mei et al. 2018; Li et al. 2017; Chen et al. 2019). For
fair comparisons, we re-train the models of SRResNet (Ledig
et al. 2017), ED-DSRN (Zhang et al. 2018a), and PFFNet
(Mei et al. 2018) on our training set.! Other super resolution
methods are trained on the DIV2K dataset (Agustsson and
Timofte 2017) and deep learning-based dehazing methods
are trained on the RESIDE dataset (Li et al. 2018a).

The quantitative evaluations in Table 2 show that the pro-
posed GFN model performs well in terms of PSNR and SSIM
with shorter inference time. We present qualitative results on
the LR-RESIDE dataset in Fig. 8. The state-of-the-art super
resolution method (RCAN) does not remove the haze from
the hazy input, and the straightforward combination schemes,
e.g., PFFNet + RCAN and RCAN + PFFNet, generate unde-
sired artifacts and distorted colors on the flat regions due to

I Since the pre-trained model of the PFFNet is not available, we train
the network directly on the RESIDE dataset and achieve quantitative
results on the RESIDE dataset better than the reported results. We use
this model in the following experiments.
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(a) Ground-truth HR
PSNR / SSIM

(b) Hazy LR input
7.28 / 0.401

(a) RCAN 4+ PFFNet
24.03 / 0.920

(b) ED-DSRN*
27.23 / 0.952

Fig.8 Visual comparisons on the LR-RESIDE dataset. The evaluated
methods include SRResNet (Ledig et al. 2017), RCAN (Zhang et al.
2018b), ED-DSRN (Zhang et al. 2018a), and PFFNet (Mei et al. 2018).

the error accumulation problem. The re-trained SRResNet
and ED-DSRN methods do not recover the details well. In
contrast, the proposed model generates better results with
more details.

4.3 Super Resolving Rainy Image
4.3.1 Training Dataset and Details

Since there is no off-the-shelf dataset for rainy image super
resolution, we use the Rain1200 (Zhang and Patel 2018b)
dataset to generate rainy LR images. We note that directly
applying bicubic downsampling on the rainy HR images
tends to remove rain streaks as this operator, similar to low-
pass filtering, reduces high-frequency details such as thin
structures. As shown in Fig. 9, the LR image directly down-
sampled from rainy HR image does not contain many rain
streaks and is similar to the LR image downsampled from
the clean HR image (see Fig. 9b, c). In order to obtain more
realistic LR inputs, we generate rainy LR images by synthe-
sizing rainy streaks on downsampled sharp images. We first

(¢c) RCAN
7.30 / 0.419

(d) PFFNet + RCAN
17.08 / 0.800

(¢) SRResNet*
24.84 / 0.917

(d) GFN* (ours)
28.85 / 0.961

The methods with a * sign are trained on our LR-RESIDE training set.
The proposed model generates sharper HR images with more details

apply bicubic downsampling on the sharp HR image H to
generate the sharp LR image L. Similar to (Zhang and Patel
2018b), we use Photoshop to synthesize rain streaks on L to
generate the rainy LR image L,,;,. After data augmentation,
we obtain 24,000 triplets of {L,4in, L, H} for training and
1200 triplets for testing. We refer to the generated dataset as
LR-Rain1200 in the following.

To remove long streaks in the rainy images, we modify
the network structure of the restoration module to enlarge the
receptive field. Specifically, we use the structure in (Mei et al.
2018) as the encoder-decoder architecture of the restoration
module. Since the resolution of arainy LR input in this dataset
is relatively low (128 x 128), we remove the last strided con-
volutional layer and set the output channels of the rest three
scales to 64, 128, and 256 respectively. Moreover, we apply
the residual learning scheme in the reconstruction module
Grecon to accelerate the training process. We use a decon-
volutional layer with the filter size of 4 x 4 to upsample the
rainy LR input before merging with the output of the recon-
struction module G o, The training processes are mostly
the same as the one for the blurry image super resolution

@ Springer



International Journal of Computer Vision

Fig. 9 Examples of the generated low-resolution image for super
resolving rainy images. To generate training and testing dataset for super
resolving rainy images, we use rainy/sharp image pairs from Rain1200
dataset (Zhang and Patel 2018b) as the HR images. Simply applying
bicubic downsampling on the rainy HR image (a) results in the LR
image (c), where many rain streaks are removed. Thus, we first obtain
a sharp LR image (b) by applying bicubic downsampling on the sharp
HR image and generate the rainy LR image (d) by synthesizing rain
streaks using the approach in (Zhang and Patel 2018b)

task except that we use a batch size of 6 due to limited GPU
memory.

4.3.2 Performance Evaluation

Table 3 shows the quantitative results in terms of PSNR,
SSIM, and average inference time. Since there exists no
approach for joint image deraining and super resolution,
we evaluate our method against the state-of-the-art super
resolution algorithms (Ledig et al. 2017; Lim et al. 2017;
Zhang et al. 2018b), joint image deblurring and super reso-
lution approaches (Zhang et al. 2018a; Xu et al. 2017), and
straightforward combinations of super resolution and derain-
ing schemes (Zhang and Patel 2018b; Zhang et al. 2019; Li
etal. 2018d). For fair comparisons, we re-train the SRResNet
(Ledig et al. 2017) and ED-DSRN (Zhang et al. 2018a) mod-
els on our training set. The other super resolution methods are
trained on the DIV2K dataset (Agustsson and Timofte 2017)
and deep learning-based deraining methods are trained on the
Rain800 dataset (Zhang et al. 2019) (RESN and IDGAN) and
Rain1200 dataset (Zhang and Patel 2018b) (DID-MDN). As
shown in Table 3, the proposed model with a large receptive
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field, denoted by GFN-Large, achieves better performance
with shorter inference time and fewer model parameters than
the evaluated methods. Some deblurred results are shown in
Fig. 10. Although the RCAN method recovers some high-
frequency details, it does not remove the rain streaks on the
image. The re-trained SRResNet model and straightforward
combination approaches, DID-MDN + RCAN and RCAN
+ DID-MDN, do not remove long rain streaks and often
introduce unexpected artifacts on the rich texture regions
due to the error accumulation problem. The re-trained ED-
DSRN model removes most rain streaks but does not restore
clear contours and high-frequency details. The proposed
GFN-Large model accurately removes the rain streaks while
preserving the structural information and recovering more
details.

4.4 Ablation Study and Analysis

The proposed GFN consists of four modules: a restoration
module to extract recovered features; a dual-branch archi-
tecture instead of a concatenation of base and restoration
modules; a fusion approach on the feature level; and a gate
module to adaptively fuse base and recovered features. To
further analyze the components, we train the combination of
the base feature extraction module and reconstruction mod-
ule (Gpase + Grecon) as the baseline and introduce other
modules progressively to evaluate them. All the models in
this section are trained from scratch using the same settings
for fair comparisons. Without loss of generality, we conduct
these experiments on two applications, blurry image super
resolution and hazy image super resolution. The evaluated
network architectures are illustrated in Figure 11, and the
results are shown in Table 4.

4.4.1 Effect of Restoration Module

We use the restoration module and baseline model in two
ways: restoration first (Model-1) and SR first (Model-2). The
restoration module shows significant performance improve-
ment over the baseline on both applications (0.62 dB and
1.24 dB for blurry and hazy images, respectively). The SR-
first combination scheme achieves better performance but
has slower execution speed.

4.4.2 Effect of Dual-Branch Architecture

We use a dual-branch structure to extract the base and recov-
ered features separately (Model-3 listed in Table 4). The
outputs of the two modules are fused by direct addition,
and the recovering loss is used to guide this process. Com-
pared with the sequential restoration and super resolution
method (Model-1), it achieves 0.19 dB and 0.28 dB improve-
ment on blurry and hazy images, respectively. Furthermore,
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Table 3 Quantitative comparisons with the state-of-the-art methods on super resolving the rainy images.

Method #Params LR-Rain1200 4 x
PSNR/SSIM/time (s)
SRResNet 1.5M 16.27/0.341/0.02
EDSR 43M 19.88/0.548/0.12
RCAN 16M 19.94/0.548/0.30
SRResNet* 1.6M 23.29/0.624/0.02
ED-DSRN* 25M 23.86/0.694/0.04
RESN + SRResNet 1.7M 19.01/0.497/0.05
SRResNet + RESN 1.7M 17.75/0.386/0.72
IDGAN + SRResNet 1.8M 18.28/0.451/0.30
SRResNet + IDGAN 1.8M 17.25/0.407/0.37
RESN + EDSR 43M 20.71/0.617/0.15
EDSR + RESN 43M 22.37/0.644/0.82
IDGAN + EDSR 43M 19.57/0.581/0.40
EDSR + IDGAN 43M 19.96/0.606/0.47
RESN + RCAN 16M 20.74/0.618/0.33
RCAN + RESN 16M 22.53/0.650/1.00
DID-MDN + RCAN 82M 22.31/0.610/0.31
RCAN + DID-MDN 82M 23.50/0.685/0.35
GEN* (ours) 12M 24.64/0.705/0.02
GFN-large* (ours) 24M 25.24/0.709/0.02

The evaluated methods include super resolution methods, SRResNet (Ledig et al. 2017), EDSR (Lim et al. 2017), RCAN (Zhang et al. 2018b),
image deraining methods, RESN (Li et al. 2018d), IDGAN (Zhang et al. 2019), DID-MDN (Zhang and Patel 2018b), and joint approaches,
SCGAN (Xu et al. 2017), ED-DSRN (Zhang et al. 2018a). The methods with a % sign are trained on our LR-Rain1200 training set. Bold values
indicate the best performance. The GFN-Large scheme performs favorably against existing methods while maintaining a small model size and fast

inference speed

the Model-3 performs comparably with the SR-first method
(Model-2) but more efficiently. This is due to the heavy com-
putation load of the restoration process carried out in the HR
feature space for Model-2.

4.4.3 Effect of Feature Level Fusion

Since the recovering loss in the Model-3 is computed after
fusion, it does not provide explicit guidance on each branch.
In the Model-4, we impose the recovering loss on the restora-
tion branch as explicit regularization. Furthermore, to reduce
the computational redundancy and avoid error accumula-
tion, we fuse the branches on the feature level, instead of
fusing them on the pixel level. Compared with the Model-
3, the Model-4 achieves 0.52 dB and 0.11 dB performance
improvement and lower computational cost on two tasks.

4.4.4 Effect of Gate Module

We introduce the gate module to enable local and channel-
wise feature fusion from two branches. The gate module also
helps exploit the dependence between the features. Here, we
evaluate the gate module in terms of the number of recur-

sive blocks N. As shown in Table 4, the gate module with 3
recursive blocks performs best, with improvements of 0.38
dB and 0.58 dB over the Model-4 on two tasks. We note that
the gate module with more than 3 recursive blocks does not
perform well.

4.4.5 Generalizability of GFN

To show that the proposed architecture is a generic frame-
work, we replace the original restoration and reconstruction
modules with more advanced network architectures and show
that it can obtain further performance gains. We use the
Residual Dense Block (RDB) in the RDN (Zhang et al.
2018c) to replace the ResBlock in the reconstruction module
and use the dilation architecture in the GCANet (Chen et al.
2019) to replace the classical encoder-decoder architecture
in the restoration module. As shown in Table 5, using the
more advanced structure improves the performance under
the same training settings. More ablation study are included
in the appendix.
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(a) Ground-truth HR
PSNR / SSIM

(b) Rainy LR input

18.80 / 0.761

(c) RCAN
18.58 / 0.726

(d) DID- MDN + RCAN

22.28 / 0.806

(a) RCAN + DID-MDN
24.90 / 0.872

(b) ED-DSRN*
24.62 / 0.828

Fig. 10 Visual comparisons on the LR-Rain1200 dataset. The evalu-
ated methods include SRResNet (Ledigetal. 2017), RCAN (Zhang et al.
2018b), ED-DSRN (Zhang et al. 2018a), and DID-MDN (Zhang and

Table 4 Analysis of key components in the proposed GFN

(c) SRResNet*
24.10 / 0.826

(d) GFN-Large* (ours)

25.50 / 0.869

Patel 2018b). The methods with a » sign are trained on our LR-Rain1200
training set. The proposed model is able to remove rain streaks and gen-
erates sharper HR images with more details

Modifications Baseline Model-1 Model-2 Model-3 Model-4 GFNy=1 GFNy=— GFNy=3 GFNy—4
Restoration module v v v v v v v v
Dual-branch v v v v v v
Feature level v v v v v

Gate module v v v v
SR-first v

DB + SR PSNR(dB) 26.20 26.82 27.00 27.01 27.53 27.74 27.87 27.91 27.86
Time (s) 0.07 0.09 0.57 0.10 0.07 0.07 0.07 0.07 0.07

DH + SR PSNR(dB) 23.58 24.82 25.12 25.10 25.21 25.44 25.69 25.77 25.72
Time (s) 0.02 0.03 0.16 0.03 0.02 0.02 0.02 0.02 0.02

All models are trained on the LR-GOPRO dataset or the LR-RESIDE dataset with the same hyper-parameters. The baseline method is the network
with the base feature extraction module and the reconstruction module. DB is the abbreviation for “deblurring”, and DH is the abbreviation for

“dehazing”
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Fig. 11 Network structure of the models in the ablation study. G s, Gpase, Grecon T€present the restoration module, base feature extraction module,
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Table 5 Qualitative results

. . . GEN
using different restoration and

GFN_RDN GFN_GCANet GFN_RDN_GCANet

reconstruction modules on the
LR-RESIDE dataset

PSNR/SSIM

25.77/0.830

25.88/0.833 25.83/0.831 25.90/0.833

We evaluate the following methods: replacing the ResBlock in the proposed GFN with the Residual Dense
Block (RDB) in the RDN (Zhang et al. 2018c) (GFN_RDN)), replacing the restoration module in the proposed
GFN with the dilation architecture in the GCANet (Chen et al. 2019) (GFN_GCANet), and replacing both of
them (GFN_RDN_GCANet). All the models are trained using the same setting

4.5 Limitations

To remove non-local degradation, such as haze or long rain
streaks, we use an encoder-decoder architecture to extract
global and contextual information. However, this approach
does not effectively extract local features commonly used for
super resolution (Lim et al. 2017; Ledig et al. 2017). As a
result, the proposed method tends to generate over-smoothed
results compared to the other schemes, as shown in some
regions of Figs. 8 and 10. For future work, we will explore
more effective architectures to better exploit both global and
local visual information for super resolution on degraded
images.

5 Conclusions
In this paper, we propose an end-to-end architecture to

recover a sharp HR image from a degraded LR input. The
proposed network consists of two branches to extract recov-

ered and base features separately. The extracted features are
fused through a recursive gate module and used to reconstruct
the final results. The network design decouples the joint prob-
lem into two restoration tasks and enables efficient training
and inference. Extensive evaluations of different restoration
tasks demonstrate that the proposed model is effective for
super resolving degraded images.
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Appendix

Network Configuration

We present the detailed configuration of the proposed net-

module, recursive gate module, and reconstruction mod-

ule.

work in Table 6, with respect to the four modules in the

network: the deblurring module, SR feature extraction

Table 6 Configuration of the
proposed network. The values in
the skip row are layer names,
indicating whose outputs are
added to the outputs of the
corresponding layers
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List of the Evaluated Methods

All the the evaluated methods in Sect. 4 are listed in Table 7.

Layer Output size Kernel LReLU Skip
Restoration module

Input_1 3xhxw

convl 64 x h x w 7

Resblock 1-6 64 x h x w 3 convl

conv2 128 x & x ¥ 3

Resblock 7-12 128 x % x5 3 conv2

conv3 256 x % x g 3

Resblock 13-18 256 x % x 7 3 conv3

deconv1 128 x & x 2 4 v

deconv2 64 x h x w 4 v

conv4 64 x h x w 7 convl

conv5 64 x h x w 3 v

convo 3xhxw 3
Base feature extraction module

Input_1 3xhxw

conv7 64 x h xw 7

Resblock 19-26 64 x h xw 3

conv8 64 x h xw 3 conv7
Gate module

Input_2.0 131 x h xw

conv9 64 x h xw 3 v

convl10 64 x h xw 1

Elementwise mul 64 x h x w conv8

Input_2.1 131 x h xw

conv9 64 x h xw 3 v

conv10 64 x h x w 1

Elementwise mul 64 x h x w input_2.1

Input_2.2 131 x h x w

conv9 64 x h x w 3 v

conv10 64 X h x w 1

Elementwise mul 64 x h xw input_2.2
Reconstruction module

Input_3 64 x h xw

Resblock 27-34 64 x h xw 3

convll 256 x h x w 3

pixel shuffle 64 x 2h x 2w v

convl2 256 x 2h x 2w 3

pixel shuffle 64 x 4h x 4w v

convl3 64 x 4h x 4w 3 v

convl4 3 x4h x 4w 3
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Additional Visual Results

In this section, we present more qualitative comparisons on
the LR-RESIDE in Fig. 12, which includes the combinations
of the SR algorithm (Lim et al. 2017) and dehazing algo-
rithms (He et al. 2011; Berman et al. 2016; Ren et al. 2018).

Additional Ablation Study and Analysis

To further demonstrate the importance of the dual-branch
architecture and gate module, more ablation study and visual
results are presented in this section. We first compare the
restoration module with the state-of-the-art restoration meth-
ods to evaluate the performance contribution brought by the
image restoration module. Then, the qualitative results of the
ablation study are presented to demonstrate how other mod-
ules help to improve the performance.

Performance of Restoration Module

We provide the quantitative results from the state-of-the-art
restoration methods and the proposed restoration module
in Table 8. The restoration methods include deblurring
algorithms [DeepDeblur Nah et al. (2017), DeblurGAN
Kupyn et al. (2018), and SRN Tao et al. (2018)], dehaz-
ing algorithms [DGFN Ren et al. (2018), GCANet Chen
et al. (2019), and PFFNet Mei et al. (2018)), and derain-
ing algorithms (IDGAN Zhang et al. (2019), RESN Li et al.
(2018d), and DID-MDN Zhang and Patel (2018b)]. Since
these restoration methods are trained on the high-resolution
images (GOPRO, RESIDE, Rain1200 datasets), we re-train
the restoration module on the same high-resolution datasets
for fair comparisons. As shown in Table 8, in none of
these three datasets does our restoration module acquire the
best results, while the proposed GFN still performs favor-
ably on all the three datasets as shown in Tables 1, 2, 3
of the manuscript. Therefore, the favorable performance of
the proposed method comes from the architecture designs,
such as the dual-branch architecture and the gate mod-
ule.

Effect of Dual-Branch Architecture and Gate Module

To further demonstrate the benefits of the dual-branch archi-
tecture and gate module, we present an example in Fig. 13.
Figure 13b, ¢ show the outputs of the restoration module
Gres and Model-1 (Gres + Gpase + Grecon) in Fig. 1la.
Since the artifacts in the G,.; are propagated to the Gpgse
and Gecon, the Model-1 generates less satisfactory results
as shown in Fig. 13c. Figure 13d shows the output of the
Model-4 in Fig. 11d, which adopts the dual-branch archi-
tecture without the gate module G44/.. Figure 13d contains
fewer artifacts than Fig. 13c, especially on the regions that
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are relatively sharper in the input image. This is because
the dual-branch architecture combines features from both
input images and recovered images and, therefore, avoids
error propagation from only the recovered images. Fig. 13e
shows the output of the proposed GFN introducing the
gate module to adaptively fuse the features. By exploit-
ing the confidence of the features from two branches (¢rF
into ¢pr), the gate module manages to suppress the arti-
facts and blurry features via local and channel-wise feature
fusion. Figure 13f—j shows that our model progressively
fuses features and suppresses artifacts through the gate mod-
ule.

Applications on Detection Task

To demonstrate that the proposed method can help the fol-
lowing high-level tasks, we compare the proposed GFN with
state-of-the-art methods on the object detection task. We
first generate two datasets from the KITTI dataset (Geiger
et al. 2012), one blurry low-resolution dataset and a hazy
low-resolution dataset. For the blurry dataset, we apply the
single image non-uniform blurry synthesis method in Lai
et al. (2016) to generate the blurry HR images and use the
bicubic downsampling to generate the blurry LR images
as the inputs. We then generate recovered HR images with
the following methods: the bicubic upsampling, deblurring
method SRN (Tao et al. 2018 with super resolution method
RCAN (Zhang et al. 2018b), joint restoration and super-
resolution method ED-DSRN (Zhang et al. 2018a), and
the proposed GFN. For the hazy dataset, we first apply
the single image depth estimation method, the Monodepth2
(Godard et al. 2019), to predict a depth map for each
image and then synthesize the hazy image following the
instruction of the RESIDE dataset (Li et al. 2018a). We
compare the proposed GFN with the following approaches:
the bicubic upsampling, dehazing method PFFNet (Mei
et al. 2018) with super resolution method RCAN (Zhang
et al. 2018b), and joint restoration and super-resolution
method ED-DSRN (Zhang et al. 2018a). We use the above
methods to recover HR images and then use the YOLOv3
(Redmon and Farhadi 2018) to evaluate the detection accu-
racy.

We show the detection accuracy in Tables 9 and 10.
The HR images restored from the proposed GFN obtain the
best detection accuracy in both applications. The qualitative
results in Figs. 14 and 15 demonstrate that our GFN not only
generates clean HR outputs but also improves the detection
algorithm to recognize the cars and pedestrians.
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(a) EDSR + DCP (b) EDSR + NLD (¢) EDSR + DGFN (d) GFN (ours)
18.68 / 0.823 16.04 / 0.761 17.54 / 0.875 28.85 / 0.961

Fig.12 More visual comparisons on the LR-RESIDE dataset. The evaluated methods include EDSR (Lim et al. 2017), DCP (He et al. 2011), NLD
(Berman et al. 2016), and DGFN (Ren et al. 2018). The proposed model generates sharper HR images with more details

Table 8. Quan.tltatlve Restoration module DeepDeblur DeblurGAN SRN
comparison with the
state-of-the-art restora.tlon. GOPRO dataset
methods on three applications .
Deblurring PSNR 29.16 27.48 27.02 30.26
Restoration module DGFN GCANet PFFNet
RESIDE dataset
Dehazing PSNR 24.46 23.47 26.32 28.20
Restoration module IDGAN RESN DID-MDN
Rain1200 dataset
Deraining PSNR 29.36 27.50 29.12 30.10

All the comparison methods for each application are trained using the same setting
Bold values and italic values indicate the best and the second-best performance respectively

(f) ¢BF (g) ORF A (h) ¢}usion V (i) ¢2usion (j) ¢3usion

Fig. 13 Qualitative results of the ablation study. ¢ denotes the base features from the base module G5, and ¢ g denotes the features from the
restoration module G,.s. All the models are trained on the LR-GOPRO dataset with the same training settings as the proposed GFN
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Table 9 Objects detection results on the KITTI detection dataset (Geiger et al. 2012) with non-uniform motion blur

YOLOV3 Bicubic SRN + RCAN RCAN + SRN ED — DSRN GFN Ground-truth HR
Car 0.258 0.481 0.481 0.416 0.499 0.812
Van 0.149 0.358 0.392 0.298 0.406 0.724
Truck 0.208 0.558 0.578 0.499 0.584 0.842
Pedestrian 0.164 0.327 0.329 0.305 0.370 0.604
Person Sitting 0.028 0.187 0.105 0.122 0.163 0.436
Cyclist 0.026 0.203 0.171 0.158 0.283 0.592
Tram 0.108 0.331 0.314 0.272 0.383 0.796
mAP 0.120 0.316 0.308 0.267 0.352 0.646

We test different joint deblurring and super-resolution methods, and use YOLOv3 (Redmon and Farhadi 2018) as the detection algorithm. The
comparison methods include bicubic upsampling, deblurring method SRN (Tao et al. 2018) + super resolution method RCAN (Zhang et al. 2018b),
joint restoration and super-resolution method ED-DSRN (Zhang et al. 2018a), and the proposed GFN. We also show the detection result using the
ground-truth sharp HR image. The mAP is the abbreviation of mean average precision. Bold values indicate the best detection precision except for
the Ground-truth HR

Table 10 Objects detection results on the KITTI detection dataset (Geiger et al. 2012) with haze degradation

YOLOvV3 Bicubic PFFNet + RCAN RCAN + PFFNet ED — DSRN GEN Ground-truth HR
Car 0.146 0.073 0.254 0.431 0.505 0.812
Van 0.053 0.033 0.113 0.228 0.301 0.724
Truck 0.033 0.008 0.047 0.119 0.197 0.842
Pedestrian 0.178 0.067 0.297 0.406 0.461 0.604
Person Sitting 0.000 0.000 0.021 0.204 0.327 0.436
Cyclist 0.055 0.027 0.179 0.196 0.279 0.592
Tram 0.000 0.000 0.007 0.097 0.239 0.796
mAP 0.058 0.026 0.117 0.219 0.303 0.646

We test different joint dehazing and super-resolution methods, and use YOLOv3 (Redmon and Farhadi 2018) as the detection algorithm. The
comparison methods include bicubic upsampling, dehazing method PFFNet (Mei et al. 2018) + super resolution method RCAN (Zhang et al.
2018b), joint restoration and super-resolution method ED-DSRN (Zhang et al. 2018a), and the proposed GFN. We also show the detection result
using the ground-truth sharp HR image. The mAP is the abbreviation of mean average precision. Bold values indicate the best detection precision
except for the Ground-truth HR

. Car 1.0000
Car 1.0000 ~ oo

TS——

= £ ’ Bt =
Car 1.0000 - - ) Cyclis Car 1.0000 Pe(&tnan Car 1.0000 .0000} Sl Car 1.0000
: 4 4 P 4 o
- 4 - | - e i

e

T —
(d) ED-DSRN (e) GFN (ours) (f) Ground-truth HR
Fig. 14 Detection results using the recovered images from different RCAN (Zhang et al. 2018b), joint restoration and super-resolution

methods. We compare the following methods: bicubic upsampling, method ED-DSRN (Zhang et al. 2018a), and the proposed GFN
deblurring method SRN (Tao et al. 2018) + super resolution method
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(d) ED-DSRN

Fig. 15 Detection results using the recovered images from different
methods. We compare the following methods: bicubic upsampling,
dehazing method PFFNet (Mei et al. 2018) + super resolution method
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