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Abstract
We address the problem of restoring a high-resolution face image from a blurry low-resolution input. This problem is difficult
as super-resolution and deblurring need to be tackled simultaneously.Moreover, existing algorithms cannot handle face images
well as low-resolution face images do not have much texture which is especially critical for deblurring. In this paper, we
propose an effective algorithm by utilizing the domain-specific knowledge of human faces to recover high-quality faces. We
first propose a facial component guided deep Convolutional Neural Network (CNN) to restore a coarse face image, which is
denoted as the base imagewhere the facial component is automatically generated from the input face image.However, theCNN
based method cannot handle image details well. We further develop a novel exemplar-based detail enhancement algorithm via
facial component matching. Extensive experiments show that the proposedmethod outperforms the state-of-the-art algorithms
both quantitatively and qualitatively.
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1 Introduction

Human faces captured in the real world usually suffer from
the imaging process. The large distance between human faces
and camera leads to limited pixel sampling on the cam-
era sensor. Meanwhile, relative movement during exposure
brings blur to the digital images. As a result, the captured
faces are usually in small resolution and contain moderate
blur. As camera viewpoints cannot be changed frequently
in some cases (e.g., video surveillance scenario), there is
a need to restore the face images for further analysis. How-
ever, existing algorithms designed for image super-resolution
or image deblurring cannot handle this problem well due to
the influence of both resolution and blur (Fig. 1). As human
faces contain rich details around facial components, i.e., eyes,
mouth, etc., it is of great interest to develop an effective algo-
rithm to estimate clear high-resolution (HR) face images by
the domain-specific knowledge of faces.
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Fig. 1 Joint face hallucination and deblurring. The input blurry LR
image (with bicubic upsampling) is shown in (a). The results generated
by existing face hallucination and deblurring methods are shown from
(b) to (d). Different from existing methods which treat face halluci-

nation and deblurring separately, we formulate these two tasks into a
single framework for joint prediction. Our method effectively recovers
the facial components as shown in (e) and performs favorably against
the state-of-the-art methods

When handling the restoration problem of face images,
the state-of-the-art face hallucination (FH) methods usu-
ally learn the mapping function from low-resolution (LR)
images to high-resolution HR images either in a regression
(Liu et al. 2007; Jia and Gong 2008; Tappen and Liu 2012)
or an exemplar-based (Ma et al. 2010; Jia and Gong 2006,
2005) way. Although existing FH algorithms achieve great
progress, these algorithms usually assume the blur is intrinsic
(e.g., bicubic blur, Gaussian blur). Meanwhile, they are less
effective when the inputs contain heavy motion blur. Sev-
eral algorithms (Pan et al. 2014) have been proposed to deal
with blurry face images. However, these algorithms usually
assume the high resolution of the blurry input. If the resolu-
tion of the blurry input faces is low, these algorithms are not
able to generate reliable data for blur kernel estimation (Pan
et al. 2014). To solve LR blurry images, recentmethods (Park
and Mu Lee 2017) jointly estimate image super-resolution
and image deblurring. Xu et al. (2017) useGenerative Adver-
sarial Nets (GANs) to super-resolve face images. However,
without exploiting the unique structures of human faces,
these methods are not able to handle face image restoration
problem well, especially around facial components. Figure 1
shows an example where the input is a low-resolution face
image. Both the state-of-the-art FH algorithm (Yang et al.
2013) and face deblurring (FD) algorithm (Pan et al. 2014)
cannot effectively recover clear HR images. Meanwhile, the
deep learning based method (Xu et al. 2017) does not effec-
tively recover the detailed structure and reduce blur.

In this paper, we propose a unified framework to super-
resolve face images. As this is an ill-posed problem andmost
information is missing, recovering a face image with both
general facial structure and local details using one CNN
framework without any domain knowledge is challenging.
We formulate the restored image using as a base layer and a
detail layer. The base layer is learned by using a CNN guided
by facial components. The detail layer is generated by an

exemplar-based texture synthesis module. First, our facial
structure generation network (FSGN) takes the up-sampled
face image and its facial components as the inputs and gen-
erates base images. Then we use a patch-wise K-Nearest
Neighbor (K-NN) to search between the intermediate face
image and exemplar images. In this way, we can accurately
establish the correspondences on the HR training images and
overcome the limitations of existing feature matching-based
methods. The accurate correspondence ensures that the fine-
grained facial structures from the HR exemplar images are
effectively extracted. Finally, the details from these struc-
tures are transferred into the base image through edge-aware
image filtering. Figure 1e shows that our algorithm is able
to super-resolve blurry face images and generates the face
image with much more clear textures. The contributions of
this work are summarized as follows:

– We propose a unified framework for joint face halluci-
nation and deblurring by using the special properties of
face images. To generate high-quality faces, we develop
a face component guided CNN.

– We develop a novel exemplar-based detail transfer algo-
rithm to improve the details and texture estimations of
face images.

– We analyze the properties of the proposed algorithm and
show that it performs favorably against state-of-the-art
face hallucination and deblurring methods on the public
benchmarks.

2 RelatedWork

Face hallucination and deblurring relate closely to generic
image super-resolution and deblurring. In this section, we
perform a literature review on the most related work of face

123



International Journal of Computer Vision (2019) 127:785–800 787

hallucination, image super-resolution, and face deblurring
and put this work in proper context.

2.1 Face Hallucination

Learning based methods are widely adopted in face anal-
ysis approaches including face hallucination (Wang et al.
2014; Song et al. 2014, 2017b) and style transfer (Song et al.
2017a). Face hallucination methods can be categorized as
the data-driven framework and the CNN generative frame-
work. In the data-driven framework, various approaches are
proposed to learn the transformation between LR and HR to
recover the missing details from the input. In Gunturk et al.
(2003) and Wang and Tang (2005), generalized approaches
on the eigen domain are proposed to map both LR and HR
image spaces. The tensor-based methods are proposed by
Liu et al. (2015) and Jia and Gong (2008) to well halluci-
nate multiple model face images across different poses and
expressions. In Liu et al. (2007), Principle Component Anal-
ysis (PCA) based linear constraints are learned from the
training images and a patch-based Markov Random Field
(MRF) is used to reconstruct the residues. It can only work
on fixed poses and expressions. In Jin and Bouganis (2015),
the blurring kernel and transformation of LR faces are jointly
estimated by deblurring and registration in PCA subspace.
It only works for face region instead of the whole face
image. Face hallucination in the compressed domain is pro-
posed in Liu and Yang (2014) and Yang et al. (2018). Image
alignment-based methods are adopted for face hallucination
where HR face images are matched to LR face images by
dense SIFT flow (Tappen and Liu 2012) or feature matching
(Yang et al. 2013; Song et al. 2017c). The quality of out-
put HR results depends on image alignment which is less
effective when poses and expressions are different between
training and input images.

On the other hand, the CNN generative framework pre-
dicts HR face images in an end-to-end manner. In Zhou
et al. (2015), a Bi-channel CNN is proposed to integrate the
input image and face representation for prediction. In Yu and
Porikli (2016) and Karras et al. (2018), the GAN framework
is applied to hallucinate LR face images. However, the net-
work generates high-resolution images from random noise
in Karras et al. (2018) while the face hallucination task is to
tackle a specific input image. The transformative discrimina-
tive auto-encoders are proposed in Yu and Porikli (2017b),
Chen et al. (2017) and Jourabloo et al. (2017) to upsample
images and denoise simultaneously during the hallucination.
In Yu and Porikli (2017a), a spatial alignment network is pro-
posed for LR and HR matching. A cascaded bi-network is
proposed in Zhu et al. (2016) for FH and deep reinforcement
learning is applied in Cao et al. (2017) to achieve attention
awareness. The CNN generative framework usually handles
input face images in an extremely low resolution where the

facial components are not able to be distinguished. Even
though thesemethods generate facial structures on the output
HR result, these structures are not accurate and lead to incor-
rect identity. In contrast, our method combines the advantage
of both CNN generative and data-driven framework for iden-
tity preservations.

2.2 Image Super Resolution

The advancement of CNN has activated a series of investiga-
tions on image SR. Starting from SRCNN (Dong et al. 2014,
2016a)whereHR images are predicted in an end-to-endman-
ner via several convolutional layers andnonlinear activations,
following works are proposed to combine existing models
with CNN (Yang et al. 2018b) or improve network capac-
ity. In Wang et al. (2015), a sparse coding model is designed
for SR and incarnated as a neural network, which is trained
end-to-end in a cascade structure. A convolutional sparse
coding method is proposed in Gu et al. (2015) to enforce the
pixel consistency during image reconstruction. It exploits the
imageglobal correlation to produce amore robust reconstruc-
tion of image local structures. In Shi et al. (2016), an efficient
sub-pixel convolutional layer is proposed to learn an array
of upscaling filters for SR. It will replace the handcrafted
upscaling filters for each CNN feature map specifically. A
deeply-recursive convolutional network is proposed in Kim
et al. (2016b) to involve recursion, whose depth can improve
performance without introducing new parameters for addi-
tional convolutions. In Kim et al. (2016a), a very deep
convolutional network is designed to increase network depth
and residual learning is involved to facilitate the training pro-
cess. An accelerated version of SRCNN is proposed in Dong
et al. (2016b) to achieve real-time performance for practical
usage. In Johnson et al. (2016), a perceptual loss is intro-
duced for training feed-forward networks in image SR. The
generative adversarial network (GAN) is applied to image SR
in Ledig et al. (2017) to achieve perceptually satisfaction. In
Lai et al. (2017), a deep Laplacian pyramid network is pro-
posed to upsample LR images gradually via deconvolution.
Meanwhile, residual learning (Tai et al. 2017) is involved to
facilitate the training process. Anchored regression network
is proposed in Agustsson et al. (2017) to design a smoothed
relaxation of a piecewise linear regressor through the com-
bination of multiple linear regressors over soft assignments
to anchor points. In Sajjadi et al. (2017), texture synthesis
is proposed in combination with perceptual loss focusing on
creating realistic textures rather than optimizing pixel-wise
loss function. In Timofte et al. (2017), it has been shown that
the method by Lim et al. (2017) performs well against the
sate-of-the-art SR algorithms. Different from existing image
SR methods, our algorithm is specifically designed for FH
and focus on facial structure generation and enhancement.
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2.3 Face Deblurring

Most existing deblurring algorithms (Pan et al. 2017a, b;
Zhang et al. 2018) focus on the generic image deblurring.
As blurry face images contain fewer textures, the generic
deblurring algorithms cannot handle this problem well. In
Hacohen et al. (2013), a non-rigid dense correspondence is
established and blur kernel estimation is performed accord-
ingly. Facial structures are exploited in Pan et al. (2014) to
maximum a posteriori deblurring algorithm on an exemplar
dataset. These data-driven methods are able to handle blurry
images when sharp edges are extracted effectively while
requires querying time cost. The deep learning algorithm
has also been applied to face deblurring. Xu et al. (2017) use
GAN to super-resolve face images. It predicts face images
via extremely low-resolution inputs where the facial iden-
tity is hard to identify. However, as this method does not
consider the specialty of face images, it is less effective to
restore some key component of faces. Recently, Shen et al.
(2018) propose a face deblurring method which uses sev-
eral CNNs to generate semantic face labels for guiding the
face deblurring process. In this work, we solve the halluci-
nation and deblurring in a unified framework. We note that
Shen et al. (2018) use computationally expensive face pars-
ing CNNs to generate pixel-wise semantic face labels. In
addition, the prediction accuracy decreases when the input
resolution is low, and thus affects the following process. In
contrast, we use a computationally efficient facial landmark
detector to estimate the facial components to guide theFSGN.
Our experimental results show that the proposed facial land-
mark performs robustly against when the landmarks are not
precisely detected. Shen et al. (2018) use two cascadedCNNs

to reduce the blurry effect on the face imageswhilewe use the
FSGN to generate a base image containing the general facial
structure and an exemplar-based texture synthesis framework
to restore details.

3 ProposedMethod

Figure 2 shows the pipeline of our method. It mainly con-
sists of two modules. The first module is a very deep CNN,
namely Facial Structure Generation Network, which predicts
a base image given the LR input. The base image contains
the basic structure of the input face while the facial details
are not fully recovered. It is then fed into the second mod-
ule for detail enhancement. Note that the second module of
our method relies on establishing correspondences from the
base image to high-resolution exemplar images, which ben-
efits from the first module since major structures of the input
face are roughly recovered by the FSGN and thus the estab-
lishment of LR-HR correspondences are much easier. We
describe the details of the two modules in the following:

3.1 Facial Structure Generation Network

As the unique structure of human faces differs much from the
natural images (i.e., textures mostly reside around the facial
components), we expect our FSGN to focus on the facial
components rather than the remaining regionswhich are typi-
cally flat and less informative. Given an input LR blurry face
image, we first upsample it using bicubic interpolation to
the same resolution of the output. Then facial landmarks are
detected on the upsampled image using themethod fromZhu
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Fig. 2 Pipeline of the proposed method. Given a blurry LR input
image, we first upsample it via bicubic interpolation and obtain the
facial landmarks for generating facial components. Then we develop a

facial structure generation network to generate the base image. Finally,
we develop a details enhancement algorithm to estimate the missing
details in the base image by HR exemplar images
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Table 1 Network parameters of the proposed facial structure generation
network

Layer name FSGN

Conv 1 3 × 3, 64, pad 1

Conv 2x

[
3 × 3, 64, pad 5, dilation 5

3 × 3, 64, pad 5

]
× 5

Conv 3x

[
3 × 3, 64, pad 4, dilation 4

3 × 3, 64, pad 4

]
× 5

Conv 4x

[
3 × 3, 64, pad 3, dilation 3

3 × 3, 64, pad 3

]
× 5

Conv 5x

[
3 × 3, 64, pad 2, dilation 2

3 × 3, 64, pad 2

]
× 5

Conv 6x

[
3 × 3, 64, pad 1, dilation 1

3 × 3, 64, pad 1

]
× 5

Conv 7 3 × 3, 64, pad 1

Conv 8 3 × 3, 64, pad 1

and Ramanan (2012). Facial component masks are then gen-
erated using the landmarks. As the input LR images contain
blurry pixels, the facialmasksmay not accurately localize the
facial components. Nevertheless, our FSGN performs well
when the facial masks cannot be accurately extracted. Fol-
lowing (Yang et al. 2013), we categorize facial components
into four types, which are eyebrows, eyes, noses, andmouths,
respectively. For each type of facial component, we prepare
a mask where the pixels within the component region are
marked as 1 and the others as 0. In total, we generate four
masks covering all four types of facial components accord-
ingly. Figure 2 shows a direct view of these masks.

3.1.1 Network Architecture

TheFSGNconsists of 25 residual blocks (He et al. 2016)with
53 convolution layers in total. In addition to the local skip
connections in each residue block, we add an additional long-
range skip connection from the first convolution layer to the
last convolution layer. The network is fully convolutional and
we use a dilated 3× 3 convolution (Yu et al. 2017) in all the
layers. There is no pooling layer in our network and the size of
all intermediate feature maps is the same as the input image.
The detailed network architecture is shown in Table 1. Dur-
ing training, we create low-resolution blurry images from the
ground-truth high-resolution images for input. Meanwhile,
these corresponding ground-truth images are used for super-
vision with the Euclidean loss.

3.2 Detail Enhancement

Although the proposed FSGN is able to restore an image
in which major facial components can be effectively recov-
ered, it tends to over-smooth the details of recovered face

images (as shown in Fig. 3b). To solve this problem, we
propose a detail enhancement method to estimate the miss-
ing details by using high-resolution exemplar images. Our
detail enhancement method consists of two steps. In the first
step, we establish the patch correspondences between the
base image generated by FSGN and HR exemplar images,
then we use the patches from HR exemplar images to regress
the base image and get an intermediate result. In the second
step, the details from the intermediate result are transferred
to the base image via edge-preserving filtering to obtain the
final result. Figure 3 illustrates the effectiveness of our detail
enhancement method. The details are presented in the fol-
lowing sections.

3.2.1 Exemplar Regression

Given the base image produced by FSGN, we divide it into
local patches. For one patch centered on pixel p, we perform
a K nearest neighbor search (K -NN) in the HR exemplar
images to find the K most similar patches. Note that the
HR exemplar images are face images where the subjects are
different from that in the input image. In the K -NN patch
search step, we choose a search region in one HR exemplar
image for each input patch.The center of each search region is
the sameas that of the input patch. In the search region,weuse
a sliding window to select one patch, which is the same size
as the input patch. We obtain N patches from N training HR
images after patch search and further select K among them.

Dp = α · (1 − Dncc) + (1 − α) · Dabs, (1)

where α is the weight combining the two metrics. It is set as
0.5 in our implementation. We normalize image pixel value
to [0, 1] in order to set the two metrics into the same range.

After K -NN search we select K candidate patches from
HR exemplar images. Let Hi

p (i ∈ [1, . . . , K ]) denote a vec-
tor containing all the pixel values of the i th HR candidate
patch, and Ip denote a vector containing the pixel values of
the input patch.We also denote the linear regression function
as Fp = [F1

p , . . . , F K
p ]T where Fi

p (i ∈ [1, . . . , K ]) is each
coefficient of Fp. The energy function is defined as:

Edata
p = ||Hp · Fp − Ip||2, (2)

whereHp = [H1
p,H

2
p, . . . ,H

K
p ]. It is a linear regression form

and we can compute Fp as

Fp = (HT
p · Hp)

−1HT
p · Ip. (3)

We can efficiently compute Fp when the patches contain
texture (i.e., the pixel values in Hp should not be similar to
each other). However, in some cases when p is in the smooth
region (e.g., cheek)HT

p ·Hp maybecomea singularmatrix and
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(a) Input (b) Base image (c) Exemplar regression (d) GF on (b) guided by (c)

(e) GF on (c) guided by (c) (f) Detail: (c)-(e) (g) Output: (d)+(f) (h) Ground Truth

Fig. 3 The process of structure enhancement. The input LR blurry face
image is shown in (a). The base image generated by FSGN is shown in
(b). The exemplar regression result is shown in (c). We perform guided
filtering on (b) using (c) as guidance to get (d). We also filter (c) using

guided filtering in (e). The lost structure details after filtering are shown
in (f), which is the difference between (c) and (e). We add the details
back to (d) to generate the output as shown in (g). The ground truth
image is shown in (h)

thus Fp is not accurate. We resolve the problem by adding a
regularization term as:

E p = Edata
p + Ereg

p = ||Hp · Fp − Ip||2 + λ||Fp||2, (4)

where λ is the weight controlling the influence of regulariza-
tion term. It is set as the number of pixels in an input patch.
We can solve the above energy function as:

Fp = (HT
p · Hp + λ1)−1HT

p · Ip, (5)

where 1 is the identity matrix.
Once we calculate the regression function Fp, we map

the HR exemplar patches into the output patch. Let H̄
i
p (i ∈

[1, . . . , K ]) denote one vector containing the pixel values of
the corresponding HR exemplar patches. The output patch
Rp can be computed as:

Rp =
K∑

i=1

H̄
i
p · Fi

p. (6)

We compute the output patch for each pixel. For the overlap-
ping areas between different patches, we perform averaging
to generate the final regression result.

3.2.2 Detail Transfer

The regression result contains detailed structures transferred
from HR exemplar images. However, it cannot be directly

Algorithm 1 Overview of proposed algorithm
1: – Training –
2: Train FSGN using face images and masks;
3: – Testing (input LR blurry image I) –
4: Generate base image Ī using FSGN;
5: for each pixel p in Ī do
6: K -NN patch search using equation 1;
7: Calculate regression matrix using equation 5;
8: Perform regression Rp using equation 6;
9: end for
10: Guided filtering on Ī using regression image R to obtain ĪR;
11: Guided filtering on R using regression image R to obtain R

R;
12: Compute the output image by Ī

R + R − R
R.
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adopted as the output. This is because the detailed struc-
tures are transferred from exemplar patches which belong to
different subjects. The lighting condition of each subject is
different from each other, which results in different shading
appearances in facial regions between the regressed image
and the ground truth (e.g., Fig. 3c, h).Wehere present an algo-
rithm based on joint edge-preserving filtering (Petschnigg
et al. 2004; Eisemann and Durand 2004) to combine the
low-frequency appearances of the base image and the high-
frequency facial details of the regressed image to generate
the final output.

The main steps of our algorithm are shown in Fig. 3. We
have a base image shown in (b) and the regressed image
shown in (c). We use guided filter (He et al. 2010, 2013)
to smooth (b) using (c) as guidance. As such, the facial
details of (c) can be transferred into (b). However, the filtered
result is likely to be over-smoothed (as shown in Fig. 3d).
Nevertheless, we can further extract details from (c) and
add them to the filtered result. Specifically, we smooth (c)
using guided filtering with itself as guidance shown in (e).
Then the smoothed details can be captured by subtracting the
smoothed image (e) from (c), as shown in (f). Finally, we add
(f) to (d) to get the output image shown in (g). Note that both
global appearances and facial details of the output image are
similar to the ground truth shown in (h). The pseudo code of
our entire algorithm is shown in Algorithm 1.

Our detail enhancement method improves the base image
quality by adding identity-specific details. Figure 3 shows
that in (b) only the general facial structure is recovered in
the base image while the details are still missing. We use the
exemplar regression to synthesize the details specifically for
the input image. The details are then extracted and transferred
to the base image using the guided filter shown in (g). Com-
pared with the base image, our detail enhancement method
enriches the local details around facial components while the
artifacts are not involved.

4 Experimental Results

We conduct experiments on theMulti-PIE (Gross et al. 2010)
and PubFig (Kumar et al. 2009) datasets. The face images in
the Multi-PIE dataset are taken in the lab controlled environ-
ment while the face images in the PubFig dataset are taken
in the real world condition. The resolution of the ground
truth images in these two datasets is 320× 240. We evaluate
our method from two aspects. First, we conduct an ablation
study to illustrate the effectiveness of our modules. Second,
we compare ourmethodwith the state-of-the-art FHmethods
includingFHTP (Liu et al. 2007), SFH (Yang et al. 2013), five
image SR methods including bicubic interpolation, SRCSC
(Gu et al. 2015), SRCNN (Dong et al. 2016a), VDSR (Kim
et al. 2016a), SRResNet (Ledig et al. 2017), and two face

deblurring methods DFE (Pan et al. 2014), RBF (Xu et al.
2017). We use PSNR and SSIM (Wang et al. 2004) to quan-
titatively measure the image quality of the generated results.

Training data and configurationsWe follow the same set-
ting with that in SFH (Yang et al. 2013) and use 2184 images
from the Multi-PIE dataset as training data. To create the
input LR blurry images, we first convolve with the ground
truth images using random blur kernel and downsample the
convolved results. The blur kernel size ranges randomly from
11 to 31, and the Gaussian variance ranges randomly from
1.4 to 1.7. In total, we have generated 200 motion blur ker-
nels without noise and randomly select one to convolve with
the ground truth images. The scaling factor is set to 4. To cre-
ate the input LR images without blur, we convolve with the
ground truth images using Gaussian blur kernel and down-
sample to generate the training inputs. We train our network
from scratch using the ADAM solver (Kingma and Ba 2014)
with a learning rate of 1e−4. For performance evaluation
against the state-of-the-art methods, we follow the original
network architecture designs and train them from scratch.
The training data is the same as ours and we follow their
training configurations to reproduce the results for compari-
son.

Test data There are 342 test images from the Multi-PIE
dataset and 400 images from the PubFig dataset, respectively.
We create input images through convolving with test images
via random blur kernel and Gaussian kernel. The test images
are generated in the same way as training image inputs. Note
that there is no identity overlap between the training and test
images.

4.1 Ablation Studies

In our detail enhancement step, we use K -NN search on
the HR training images to establish the correspondence for
exemplar regression. As there exist several parameters, e.g.,
patch size and the number of candidate patches, in K -NN
search, we analyze the effect of these parameters and show
how they affect the proposed algorithm. Tables 2 and 3 show
the evaluation results. In the detail enhancement step, we
set different patch sizes ranging from 10 × 10 to 30 × 30
incremented by 5. Table 2 shows that the proposed method
performs well when the patch size is 20× 20. Table 3 shows
the effect of the proposed method with different candidate
patch numbers. The proposed method performs well when
the patch number is 5.

]
We note that the proposed algorithm still performs well

when the facial masks do not align the ground truths. In the
deblurring task, we note that the facial masks may deviate
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Table 2 Experimental results using different patch sizes during K -NN
search on the Multi-PIE dataset

Patch size PSNR SSIM
SR/Deblur SR/Deblur

10 × 10 34.14/24.62 0.91/0.83

15 × 15 34.52/24.87 0.91/0.84

20 × 20 34.93/25.75 0.92/0.86

25 × 25 34.65/25.43 0.92/0.85

30 × 30 34.42/25.21 0.91/0.85

Bold values indicate the best performance

Table 3 Experimental results using different patch numbers during K -
NN search on the Multi-PIE dataset

Patch number PSNR SSIM
SR/Deblur SR/Deblur

3 34.05/24.97 0.87/0.83

4 34.68/25.34 0.90/0.85

5 34.93/25.75 0.92/0.86

6 34.91/25.74 0.92/0.86

7 34.92/25.75 0.92/0.86

Bold values indicate the best performance

Table 4 Experimental results with average facial mask deviation on the
Multi-PIE dataset

Mask deviation 0 2 4 6 8 10

PSNR 25.54 25.52 25.33 25.10 24.53 24.12

SSIM 0.85 0.85 0.84 0.83 0.81 0.78

The deviation extent is measured with pixels

according to the LR blurry input images. The deviation of
the facial masks correlates with the blur kernel size. To ana-
lyze how the deviation of the facial masks affect the output
result, we use different blur kernels to generate different sets
of input images shown in Table 4. For each set , we gener-
ate the corresponding facialmasks and compute their average
deviationswith the ground truthmasks. The deviation ismea-
sured in pixels. Then we generate the output results for each

input image and quantitatively evaluate their performance in
Table 4. It shows that the performance gradually decreases
as there are more deviations of the facial masks. Meanwhile,
we observe that there is an obvious degradation of the output
quality when the deviation exceeds 6 pixels. Figure 4 shows
a visual example of the mask deviation.We use different blur
kernel size to produce several input images and generate our
results accordingly. The results indicate that when the blur
kernel exceeds 31 (i.e., the mask deviation is above 6 pixels)
the artifacts occur on the output images. To ensure the facial
masks effective for the input images, we set the blur kernel
size below 31 pixels to generate the output result.

Our method consists of several modules. Our input is the
LR blurry image with four facial masks. Our network struc-
ture is FSGN with dilation integration and the details are
enriched through detail enhancement step. In this section,
we conduct internal analysis to evaluate the performance
gain through integrating each module. Our evaluation is con-
ducted on the MultiPIE dataset where we follow the training
and evaluation strategies illustrated above. We start to train
from scratch using several convolutional layers without a
long-range skip connection and empirically find that it does
not converge in practice. Inspired by the VDSR (Kim et al.
2016a) method where the output is the combination of the
input image and the last layer output, we design a similar
structure which is the baseline (denoted as B) of our method.
It contains all the 53 convolutional layers and nonlinear acti-
vations with a long-range skip connection while the local
skip connections are removed. In addition to the baseline
configuration, we integrate local residual blocks (i.e., short-
range skip connections) to see the performance gain. It is
denoted as BL in this study. Note that in this two config-
urations, we only take the LR blurry face images as input
to train the network. In order to evaluate the effectiveness
of facial masks, we add them as the input together with the
input image. This configuration is denoted as BL+M. Then,
we follow the same configuration as BL+M and integrate
the dilation into the network, which is denoted as BLD+M.
Finally, we add our detail enhancement module and denote it

(a) Mask deviation 0 (b) Mask deviation 6 (c) Mask deviation 8 (d) Mask deviation 10 (e) Ground Truth

Fig. 4 Restoration results using different facial mask deviations. The restoration result generated using ground truth facial mask is shown in (a).
The restoration results generated by less accurate facial masks are shown from (b–d). The ground truth image is shown in (e)
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Table 5 Ablation studies on the Multi-PIE dataset with predefined five
configurations

PSNR SSIM
SR/Deblur SR/Deblur

B 33.90/23.97 0.87/0.81

BL 33.95/24.02 0.88/0.82

BL+M 34.22/24.83 0.89/0.84

BLD+M 34.63/25.31 0.91/0.85

BLD + M + DE 34.93/25.75 0.92/0.86

Bold values indicate the best performance
We denote baseline as B, baseline with local residual blocks as BL,
facial masks input as BL+M, dilation integration as BLD+M, and
detail enhancement integration as BLD+M+DE

(a) Input (Bic) (b) B (c) BL

(d) BL+M (e) BLD+M (f) BLD+M+DE

Fig. 5 Visualization of the ablation studies. a Bicubic upscaled input
LR blurry image. b Baseline network performance and c local residual
blocks integration on (b). In (d), we retrain (c) using facial masks and
generate the result. Meanwhile, we involve dilation in (d) and generate
the result shown in (e). The detail enhancement on (e) is shown in (f)

as BLD+M+DE. These configurations indicate how facial
masks, local residual blocks, dilation and detail enhancement
affect the image quality of the output results. Moreover, we
evaluate the effectiveness of each module when the input is
an LR image with and without random motion blur, inde-
pendently. It corresponds to how our method handles both
hallucination and deblurring tasks.

Table 5 shows the quantitative evaluation performance
of five configurations under PSNR and SSIM metrics. For
each configuration, the output images are generated based
on the LR input image with and without motion blur, respec-
tively. Then we compute the numerical results and average
them to obtain the listed numbers. The quantitative results

show that local residual blocks improve the baseline perfor-
mance and facial masks improve more when adopted as the
input for both SR and Deblur scenarios. Meanwhile, the dila-
tion on our FSGN module is effective to predict the output
and detail enhancement makes a further improvement. The
performance gain is consistent with both PSNR and SSIM
metrics. It indicates that facial masks, local residual blocks,
dilation and detail enhancement will contribute to the quality
of the face images for hallucination and deblurring. We note
that the facial masks further improve the performance on the
deblurring tasks compared with the hallucination task. It is
because the facial masks enable CNN to attend to facial com-
ponents containing unique structures,which usually diminish
on the blurry inputs.

Figure 5 shows a visual example of these configurations.
The input LR blurry face image is shown in (a) and the result
generated by the baseline is in (b). The blurry effect still
exists around the facial component and little improvement
is achieved through local residual blocks integration shown
in (c). However, when using facial masks, we notice that the
blur around facial component is effectively reduced shown
in (d). Furthermore, the dilation integration makes a further
improvement (i.e, the right eye region in the close-up) shown
in (e). The result generated by all the modules is shown in (f)
where local details are transferred fromHR exemplar images
to (e) in the detail enhancement step.

4.2 Comparisons with the State-of-the-art Methods

We compare our method with the state-of-the-art methods
both quantitatively and qualitatively. Table 6 reports the
quantitative performance on the Multi-PIE dataset. In addi-
tion to the PSNR and SSIM metrics, we also involve the
identity similarity (Delac et al. 2005) to measure how the
results generated by different methods resemble the ground
truth images.We use the ground truth training images to con-
struct a PCA projection matrix which projects the results and
corresponding HR images. After projection, we compute the
cosine distance between each result and the corresponding
ground truth image. This identity similarity is set to quanti-
tatively measure image quality from the perspective of face
recognition.

Table 6 shows that the bicubic interpolation achieves
higher PSNR values than existing FH methods (i.e., FHTP
and SFH) under both SR and deblur tasks. This is because FH
methods establish HR correspondences through image align-
ment which is based on empirical features such as SIFT (Liu
et al. 2011).As the resolution of the input image is low, empir-
ical features cannot accurately locate HR correspondences.
It leads to the mismatch and incorrect facial details will be
transferred. As a result, around facial component areas, we
will find the distortion of the shape, shifting of the location
or the change of the lightness, as shown in Figs. 6b, 7b and
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Table 6 The evaluation of the
Multi-PIE dataset with the
state-of-the-art methods

PSNR SSIM Similarity
SR/Deblur SR/Deblur SR/Deblur

Bicubic 32.43/23.58 0.89/0.81 0.92/0.87

FHTP (Liu et al. 2007) 30.13/23.13 0.82/0.77 0.90/0.86

SFH (Yang et al. 2013) 31.60/23.65 0.86/0.79 0.91/0.86

SRCNN (Dong et al. 2016a) 33.89/23.73 0.90/0.82 0.94/0.90

SRCSC (Gu et al. 2015) 33.95/23.82 0.90/0.82 0.95/0.91

SRResNet (Ledig et al. 2017) 34.10/23.95 0.90/0.81 0.96/0.92

VDSR (Kim et al. 2016a) 34.62/24.33 0.91/0.81 0.97/0.92

DFE (Pan et al. 2014) 31.53/25.26 0.87/0.85 0.94/0.94

RBF (Xu et al. 2017) 30.05/24.73 0.86/0.77 0.93/0.94

Ours 34.93/25.75 0.92/0.86 0.98/0.96

Bold values indicate the best performance

57 6 10]
32.78 / 0.88 32.81 / 0.86 34.65 / 0.90 35.59 / 0.91

38 56

(a) Input (Bic) (b) SFH [ ] (c) SRCNN [ ] (d) SRCSC [

(e) DFE [ ] (f) RBF [ ] (g) Ours (h) Ground Truth
30.12 / 0.85 29.84 / 0.82 36.77 / 0.93 PSNR / SSIM

Fig. 6 Qualitative evaluations on the Multiple Dataset. a Bicubic upsampled input LR image without motion blur. b–f Comparison of the results.
g Our result. h Ground truth image

9b. These artifacts deteriorate the image quality. In the FH
task, the SRCNN, SRCSC and SRResNet methods achieve
high PSNR values due to their global optimization scheme.
However, blur occurs around high-frequency facial structures
including eyes, noses, and mouth, which limits the image
quality as well. Meanwhile, their performance decreases on
the deblurring task. In comparison, the DFE and RBF meth-

ods are effective to handle motion blur while limiting their
performance in hallucination. Different from existing meth-
odswhich handle FH and FD independently, ourmethod con-
sists of a unified framework to jointly hallucinate and deblur
face images. It recovers the original image content in both low
and high frequencies, which enables the similarity of global
appearance and local details between the output image and
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57 23 29]
23.60 / 0.81 23.51 / 0.78 24.98 / 0.84 23.68 / 0.81

38 56

Input (Bic) SFH [ ] VDSR [ ] SRResNet [

DFE [ ] RBF [ ] Ours Ground Truth
25.52 / 0.84 24.33 / 0.75 25.81 / 0.86 PSNR / SSIM

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Qualitative evaluation on the Multiple Dataset. a LR input blurry image with bicubic upsampling

Table 7 The evaluation of the
PubFig dataset with the
state-of-the-art methods

PSNR SSIM Similarity
SR/Deblur SR/Deblur SR/Deblur

Bicubic 29.55/22.79 0.86/0.83 0.89/0.84

FHTP (Liu et al. 2007) 26.56/22.51 0.71/0.79 0.87/0.83

SFH (Yang et al. 2013) 28.51/22.70 0.82/0.81 0.88/0.84

SRCNN (Dong et al. 2016a) 31.03/22.85 0.88/0.84 0.91/0.86

SRCSC (Gu et al. 2015) 31.15/23.13 0.88/0.85 0.92/0.87

SRResNet (Ledig et al. 2017) 31.23/23.21 0.88/0.85 0.94/0.87

VDSR (Kim et al. 2016a) 31.67/23.46 0.89/0.86 0.94/0.86

DFE (Pan et al. 2014) 28.74/23.95 0.81/0.87 0.89/0.88

RBF (Xu et al. 2017) 28.43/23.31 0.80/0.86 0.88/0.87

Ours 31.86/24.12 0.90/0.89 0.96/0.90

Bold values indicate the best performance

the ground truth. The evaluation of the PubFig dataset shows
the similar performance in Table 7. It indicates our method
is effective to overcome real-world input variations. Tables 6
and 7 show that our method performs favorably against the
state-of-the-art FH, image SR and FD methods.

Besides quantitative evaluation, we also evaluate our
method visually on the benchmarks. We show the qualitative
comparison from Figs. 6, 7, 8 and 9. In Fig. 6, we evalu-

ate the proposed algorithm on the Multi-PIE dataset using
the input LR image without motion blur. The result gener-
ated by SFH is shown in (b) contains light dots on the right
eye, which is different from the ground truth. This is because
SFH selects the most similar component from the dataset
and transfer its gradient to recover high-frequency details.
However, the facial component correspondence cannot be
well established in LR. In this case, gradient transfer leads
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57 6 29]
31.20 / 0.84 30.39 / 0.81 33.37 / 0.88 32.99 / 0.88

38 56

Input (Bic) SFH [ ] SRCNN [ ] SRResNet [

DFE [ ] RBF [ ] Ours Ground Truth
28.85 / 0.81 29.05 / 0.78 34.06 / 0.90 PSNR / SSIM

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Qualitative evaluation on the PubFig Dataset. a LR input image without motion blur which is generated by bicubic upsampling

to the dissimilar generation of the facial structure. Another
visual result is shown in Fig. 8bwhere the lighting, shape and
position of the facial components are different from those
in Fig. 8h although they look similar. It also indicates that
erroneous gradient transfer brings artifacts due to inaccurate
correspondence establishment. In addition, noise is included
due to incorrect matching around the mouth region. As the
PubFig dataset is taken in the real world condition and the
training dataset is taken in the lab controlled environment.
The component matching is not as accurate as that in Multi-
PIE. It brings more artifacts on the generated results.

The results by the representative CNN-based methods are
shown in Fig. 6c, d. Although the recovered images have high
PSNR and SSIM values compared to that by SFT method,
these methods are not effective to capture high-frequency
facial details. The structures around facial components (i.e.,
eyes, nose and mouth) are blurry and details are missing.
In addition, the results generated by VDSR and SRRes-
Net shown in Fig. 7c, d show the similar performance. This
indicates that CNN methods for general image SR are less
effective to preserve details on face images. To solve this
problem, we generate the base image through CNN predic-
tion and enhance details via HR exemplar images. The base

image contains the low-frequency facial structures similar
to the existing CNN based methods. Meanwhile, we synthe-
size fine-grained structures from HR exemplar images and
transfer their high-frequency details back to the base image
for enhancement. Our two-stage scheme enables our results
are similar to the ground truth in both global appearance
and local details shown in Figs. 6g and 8g. The proposed
algorithm achieves favorable performance under numerical
evaluations as well as visual perception.

Figures 7 and 9 show the qualitative evaluation on the
blurryMulti-PIE andPubFig datasets, respectively. The input
is an LR face image with random motion blur. It limits the
performance of existing FH and image SR results shown in
Figs. 7b–d and 9b–d. The exemplar-based face deblurring
method DFE selects a suitable exemplar and transfers the
gradient into the blurry input image. It is effective to retain
the low-frequency structure while limits its performance to
restore the facial details. As shown in Figs. 7e and 9e, the
artifacts appear on the whole image. Meanwhile, the results
generated by the GAN network cannot reduce the artifacts
and deteriorates the facial structure as shown in Figs. 7f and
9f. They aim to solve extremely low-resolution face images
(e.g., 20 × 20) with ambiguous facial components, which
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32 57 6]
22.53 / 0.85 22.22 / 0.79 22.60 / 0.81 22.62 / 0.86

38 56

Input (Bic) FHTP [ ] SFH [ ] SRCNN [

DFE [ ] RBF [ ] Ours Ground Truth
23.04 / 0.88 21.89 / 0.76 23.32 / 0.89 PSNR / SSIM

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Qualitative evaluation on the PubFig Dataset. a LR input blurry image which is generated by bicubic upsampling

are similar to noise. The GAN loss function will introduce
fake details thus degrading the quality of the restored face
images. The identity of their output is usually not preserved
compared with the ground truth. In comparison, our method
first generates the base image to reduce the blurry effect and
further enhance the structure details. It can jointly handle the
hallucination and deblurring tasks where it performs favor-
ably against existing FH and FD methods quantitatively and
qualitatively.

Besides evaluation of the standard benchmarks using syn-
thetic motion blur kernels, we also evaluate on the blurry
face images in the real world condition. Figure 10a shows
an example where the input is a real blurry face image from
(Lai et al. 2016). It fails existing exemplar-based FH and FD
methods to establish an accurate correspondence between the
input and the exemplar, which brings artifacts shown in (b)
and (d).Meanwhile, theCNNbasedmethods are not effective
to reduce the blur shown in (c) and (e).Different fromexisting
methods, our method first generates a base image to facilitate
exemplar matching and then performs detail enhancement on
the base image. It accurately transfers details from the exem-
plar to the base image shown in (f), which indicates that our
method is effective to reduce real blurry face images.

4.3 Computational Cost

We evaluate the time cost of each method to generate an
output image. All the evaluations are conducted on a PC
with an i7 3.6GHz CPU and a Tesla K40c GPU. Table 8
shows the time cost of each method. We observe that the
exemplar-based methods (i.e., FHTP, SFH, DEF) consume
much time cost, which is mainly because of the querying on
the exemplar dataset. In comparison, theCNNbasedmethods
(i.e., SRCNN, SRResNet, VDSR, RBF) take less time for
an end-to-end prediction. Our method consists of the CNN
prediction and exemplar-based searching, which takes more
time than end-to-end CNN prediction while still performs
favorably against exemplar-based methods.

4.4 Limitation

The proposed algorithm is less effective when the structures
around the facial component are not available or significantly
different from the training images. In such cases, the pro-
posed algorithm would reduce to a conventional CNN-based
image restoration algorithm as the facial components do not
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32 6]

38] (e) RBF [56

(a) Input (b) FHTP [ ] (c) SRCNN [

(d) DFE [ ] (f) Ours

Fig. 10 Qualitative evaluation on a real blurry face image. a LR input
blurry image generated by bicubic upsampling

Table 8 The time cost of comparing methods to generate an output
320 × 240 image on the benchmarks

Methods Time (s) Methods Time (s)

FHTP 98.9 SFH 245.1

SRCNN 4.36 SRCSC 43.56

SRResNet 6.5 VDSR 5.7

DFE 162.4 RBF 4.2

Ours 95.3

(a) Input (b) Ours (c) Ground Truth

Fig. 11 Limitations of the proposed method. a LR input image which
is generated by bicubic upsampling

help the estimation. Figure 11 shows an example where our
method is not able to recover clear face images.

5 Concluding Remarks

We propose an effective algorithm to jointly hallucinate and
deblur face images. With the guidance of facial compo-
nents, we develop an FSGN to remove blur and restore the
major structures of face images. To recover realistic faces, we
develop a detail enhancement algorithm by high-resolution
exemplars. Our analysis shows that the proposed method
is able to generate high-resolution faces from blurry LR
face images. Extensive experimental results demonstrate that
our method performs favorably against the state-of-the-art
approaches.
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