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Abstract Aface hallucination algorithm is proposed to gen-
erate high-resolution images from JPEG compressed low-
resolution inputs by decomposing a deblocked face image
into structural regions such as facial components and non-
structural regions like the background. For structural regions,
landmarks are used to retrieve adequate high-resolution com-
ponent exemplars in a large dataset based on the estimated
head pose and illumination condition. For non-structural
regions, an efficient generic super resolution algorithm is
applied to generate high-resolution counterparts. Two sets of
gradientmaps extracted from these two regions are combined
to guide an optimization process of generating the hallucina-
tion image. Numerous experimental results demonstrate that
the proposed algorithm performs favorably against the state-
of-the-art hallucination methods on JPEG compressed face
images with different poses, expressions, and illumination
conditions.
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1 Introduction

As a domain-specific single image super resolution problem,
face hallucination has beenwidely studied (Wang et al. 2014;
Baker and Kanade 2002;Wang and Tang 2005; Jia and Gong
2005; Liu et al. 2007; Park and Lee 2008; Yang et al. 2010;
Ma et al. 2010; Tappen and Liu 2012; Yang et al. 2013; Liang
et al. 2014; Jiang et al. 2014; Liu and Yang 2014) but exist-
ingmethods usually operate on the premise of uncompressed
input images without blocky artifacts or noise. However, in
real-world scenarios, large amounts of images are stored in
compressed formats as trade-offs between visual quality and
storage size. As such, existing face hallucination methods
are not expected to generate high-quality images from com-
pressed inputs.

Among numerous image compression methods, the wid-
ely used JPEG method reduces image data by quantizing
high-frequency signals based on human visual perception.
The JPEG compression method computes discrete cosine
transform (DCT) coefficients of each non-overlapping 8×8
block in an image, and quantizes the DCT coefficients
with emphasis on retaining the visual information of high-
frequency signals. When a standard quantization table is
used, a quality index Q between 1 and 100 indicates the
retained information after quantization. For color images,
the JPEG compression method operates in the YCbCr color
space and quantizes each channel independently.

To restore missing details in JPEG compressed images,
numerous schemes have been proposed in the literature (Liu
and Bovik 2002; Buades et al. 2005; Figueiredo et al. 2006;
Kim and Kwon 2008; Singh et al. 2007; Mairal et al. 2009;
Zhai et al. 2008; Choi et al. 2013; Li et al. 2014). Despite
being able to reduce JPEG compression noise, existing
methods inevitably remove high-frequency details which are
important for face hallucination. Thus, a two-step approach
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with deblocking and super resolution has to exploit examples
to reconstruct the details. Although a number of face hallu-
cination methods (Wang and Tang 2005; Liu et al. 2007;
Ma et al. 2010) are able to generate high-resolution (HR)
images by averaging HR exemplars globally or locally, the
main drawback of those approaches is the lack of flexibil-
ity. The test and exemplar images need to be of the same
pose, under the same illumination condition, and with simi-
lar facial expressions. Otherwise, the generated HR images
may contain apparent artifacts because exemplars cannot be
effectively matched.

Landmark-based face hallucination methods (Yang et al.
2013; Liu and Yang 2014) are developed to handle vari-
ous poses and expressions. Typically, landmark points in
both exemplar and test images are detected and matched
to determine similar low-resolution (LR) facial compo-
nents. As these methods align exemplar facial components
with test ones, the reconstructed HR image tends to be
semantically correct and visually appealing. However, most
landmark-based face hallucinationmethods do not take com-
pression noise into account. While a recent method (Liu
and Yang 2014) shows that LR compressed inputs can be
well reconstructed in controlled environments, it is com-
putationally expensive and limited to a few poses. Thus,
it is of great importance to develop efficient and effec-
tive hallucination algorithms to process compressed face
images with various poses, expressions, and lighting con-
ditions.

In this paper, we propose an effective and efficient hallu-
cination algorithm that deals with compressed face images
in various poses, expressions, and illumination conditions.
The proposed algorithm differs from the prior work (Liu
and Yang 2014) in several aspects. First, face landmarks
can be more accurately and robustly located in images. Sec-
ond, various head orientations and illumination conditions
are taken into consideration. Third, to align landmarks, a
more efficient approach is proposed in this paper through
a close form solution rather than solving an optimization
problem in the prior work. Fourth, the proposed method sig-
nificantly reduces computational load by sorting exemplar
images according to the similarity of landmark point coor-
dinates so that adequate exemplar images can be efficiently
determined at run-time. As such, the proposed method can
effectively reduce JPEG compression noise and efficiently
generate better enlarged face images.

While most hallucination methods operate on upright
frontal faces with neutral expressions in tightly cropped
images, the proposed algorithm is able to generate high-
quality results with various poses, illuminations, expressions
and background clutter.Numerous experimental results show
that the proposed algorithm generates favorable results
against the state-of-the-art methods both qualitatively and
quantitatively.

2 Related Work and Problem Context

2.1 Face Hallucination

As a domain-specific super resolution problem, numerous
face hallucination methods have been proposed based on
patch prediction (Baker and Kanade 2002; Ma et al. 2010),
constrained subspace reconstruction (Wang and Tang 2005;
Liu et al. 2007; Yang et al. 2010), and transfer of exemplars
(Tappen and Liu 2012; Yang et al. 2013). Existing methods
often assume the input face images are tightly cropped, free
of compression noise, and in a fixed pose under controlled
lighting conditions (Baker andKanade 2002;Wang and Tang
2005; Liu et al. 2007; Yang et al. 2010; Ma et al. 2010; Yang
et al. 2013).

2.2 Patch Prediction

Face hallucination methods typically extract features from
LR patches to predict the HR patch features based on a set
of exemplar images (Baker and Kanade 2002). The main
limitation of these methods is the ambiguity among similar
LR patches, i.e., two similar LR patches generated from two
significantly different HR patches. To alleviate the ambigu-
ity problem, location information is exploited as constraints
to select patches (Ma et al. 2010). However, the location
priors perform best for a homogeneous face dataset con-
taining subjects of the same race and similar ages without
significantly changing poses. Otherwise, the exemplar face
images are likely to be dissimilar and patches cannot be
well matched based on locations for generating HR out-
puts.

2.3 Constrained Subspace Reconstruction

Numerous methods have been developed to exploit global
constraints of face patches for matching LR and HR images
based on principle component analysis (Liu et al. 2007) or
non-negativematrix factorization (Yang et al. 2008) schemes.
These methods transfer high-frequency details contained in
HR exemplar patches via a Markov network (Liu et al. 2007)
or sparse dictionary (Yang et al. 2008). The global and local
constraints help reconstruct high-quality regions (e.g., eyes
and eyebrows) as the components can be aligned in the train-
ing images and effectively modeled by a linear subspace.
However, linear subspace representations are less effective
for modeling contours. As training face images are usually
aligned at eye locations, facial contours aremisaligned due to
shape changes caused by head pose variations. Consequently,
the contours reconstructed by these methods usually contain
significant artifacts.
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2.4 Transfer of Exemplars

HR face images can be generated by transferring high-
frequency details of HR exemplar images aligned by optical
flows (Tappen and Liu 2012) or facial landmarks (Yang et al.
2013). These methods are able to handle various poses and
expressions due to alignments, and the reconstructed facial
components are of high quality. In addition, because land-
mark points can be used to segment a face into regions of
various types for further processing, this approach exploits
statistical priors to predict HR patches for regions of certain
types. While facial components are reconstructed by exem-
plars, contours and textures are typically restored by generic
priors.

2.5 Upsampling Compressed Images

Toaddress compression artifacts in generic images, one super
resolution method has been proposed to regularize inputs
by partial differential equations for reconstructing contours
(Xiong et al. 2010). This method upsamples the regular-
ized images by bicubic interpolation, and then sharpens
upsampled edges by transferring high-frequency details from
exemplar patches. Although the edges on the generated HR
images appear sharp with few blocky effects, the textured
regions are over-smoothed. As such, this method performs
well for images full of sharp edges but without rich textures
such as cartoons or sketches.

2.6 Denoising JPEG Images

Numerous algorithms have been developed to remove blocky
and ringing artifacts of JPEG compressed images which are
caused by reduced high- frequency signals lost in the block-
based quantization. Since blocky artifacts occur at fixed
positions, an intuitive way to reduce artifacts is to detect
and smooth discontinuous intensities along block bound-
aries (Liu and Bovik 2002; Zhai et al. 2008). However, these
approaches may generate over-smoothed results when only
considering block boundaries rather than image structures.
A method to recover missing JPEG edges is developed by
applying learned regression functions on compressed images
and suppressing noise along contours (Kim andKwon 2008).
As this method does not separate edges and textures, it
tends to generate sharp edges but smooth textures. There-
fore, an effective way to reduce JPEG noise but reserve
high-frequency details is to adapt the denoising regions to
the image structures (Foi et al. 2007): for smooth regions,
averaging a group of similar neighboring pixels; for edges,
averaging a number of pixels along the contours; for textures,
keeping unchanged in order to avoid altering high-frequency
details.

3 Proposed Algorithm

We generate HR face images from LR JPEG compressed
inputs by exploiting facial structures identified by landmarks.
We convert a color image into the YCbCr space and apply
the proposed hallucination on the Y channel. The contents
in the other two channels are upsampled through bicubic
interpolation and merged with the HR results from the Y
channel to generate the output image.

In this work, we presuppose that a compressed grayscale
LR image L is generated from a HR image H by

L = J ((H ⊗ Gσ ) ↓s), (1)

where ⊗ denotes a convolution operator, Gσ is a Gaussian
kernel of width σ ,↓s is a downsampling operator of a scaling
factor s, and J is a JPEG compression function. To recon-
struct a HR image H from a LR input L , we generate a set
of gradient maps U to guide the output HR image H∗ by

H∗ = argmin
H

‖∇H −U‖2 s.t. (H ⊗ Gσ ) ↓s= D(L),

(2)

where ∇ is a gradient operator, and D is a JPEG deblocking
function. The operator ∇ generates a set of 8 gradient maps
from an input image by computing differences between a
central pixel and its 8 adjacent pixels. The guiding gradi-
ent map set U is generated by merging two sets Uc and Ug

(for structured facial components and non-structured generic
regions, respectively) by

Uk(i, j) = w(i, j)Uk
c (i, j) + (1 − w(i, j))Uk

g (i, j), (3)

where w is a weight map with values between 0 and 1, (i, j)
are the coordinate indexes of pixels, and k is the order index
of a gradient map in its belonging set. The main steps of the
proposed algorithm are shown in Fig. 1, and the methods
for generating these gradient maps are presented in the fol-
lowing sections. For ease of understanding, we present the
formulations first and leave technical details of how to relax
and solve (2) in the appendix.

4 Generating Gradient Maps

To generate the gradient map set Uc and the correspond-
ing weight map w, we exploit landmark points to align and
enclose facial components.Weuse a large set of grayscaleHR
exemplar face images S0 with labels for glasses and annotated
landmark point coordinates, head orientations, and illumina-
tion conditions. Those labels and annotated data are used to
select a small subset of S0 for fast and effective exemplar
search of facial components.
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Fig. 1 Flow chart. Given a JPEG low-resolution input, we gener-
ate a high-quality high-resolution image while removing artifacts. We
estimate the pose and illumination condition to determine the set of
exemplars best resembling the input and transfer gradients of the cor-
responding facial components to a set of high-resolution gradient maps
Uc. Non-structured regions—background, hair and skin areas—are

upsampled by a generic super resolution algorithm and generate a set of
gradient mapsUg . The gradient map setsUc andUg are integrated via a
weight mapw, to guide an optimization process to generate a grayscale
high-resolution image, which is then combined with upsampled chro-
matic channels to generate the output image

4.1 Determining Exemplar Sets via Landmarks

In the training phase, we divide the set of exemplars S0
into subsets based on the annotated head orientations and
illumination conditions. Using (1) without the compres-
sion function J , we generate the LR sets and compute
the mean of each set where images are aligned on sub-
jects’ eyes as shown in Fig. 2. For each head orientation,
we set a rectangular region covering eyes and upper lip
in which facial appearance is least altered by hair, facial
expressions, and glasses. We normalize the intensities in
the rectangles as features to describe illumination con-
ditions, denoted as v

p
i where p and i range from 1 to

the numbers of head orientations and illumination condi-
tions.

Given a LR image L in the test phase, we first reduce
its compression artifacts by applying a deblocking method
D (Foi et al. 2007). We detect a face in D(L), localize its
facial landmark points, and estimate the head orientation o
using the IntraFace algorithm (Xiong and la Torre 2013).
Among all head orientation {p} in S0, we pick up the head
orientation p̂ which is most similar to the test one o, and
disregard all other p. Next, we align D(L) as in the training
phase to extract features and determine the nearest neighbor

Fig. 2 Mean face images under different poses and illumination con-
ditions. a–d the pose of roll 0◦, yaw 15◦, pitch 0◦. e–f the pose of
roll 0◦, yaw −45◦, pitch 0◦. The number below each image indicates
the illumination condition. The red rectangles show the regions used to
compute features. a #2. b #5. c #10. d #16. e #2. f #5. g #10. h #16
(Color figure online)

î in the remaining choice {v p̂
i }. Let S1 denote the restricted

search space, i.e., all exemplar images contained in the subset

used to compute v
p̂

î
.

123



Int J Comput Vis

Fig. 3 An aligned and adjusted exemplar image. a A test image and
the landmark points to illustrate the anchors, which are marked in red
for the mouth component, and in blue for the other three. bAn exemplar
image shown in a different scale from (a)(c). c The result of (b) aligned
and adjusted based on the mouth component. Note the intensity values
of the aligned components are higher than those in (b) and similar to
the pixels in (a) (Color figure online)

To find effective exemplars efficiently, we propose an
align-and-adjust approach which operates on S1 for four
facial components: two eyes, two eyebrows, one nose, and
one mouth. The four components are treated independently
but in the same manner as described below. First, we define
anchors as the two farthest apart landmark points belonging
to a component, as shown in Fig. 3. Let (xti , y

t
i ) and (xei , y

e
i )

denote the coordinates of the anchors on the test and exem-
plar images, i ∈ [1, 2] because the number of anchor points
are two. We align a group of exemplar landmark points onto
the test one using the two anchors through a non-reflective
similarity transformation,

⎡
⎣
x ′
y′
1

⎤
⎦ =

⎡
⎣

λ cos θ λ sin θ xt1
−λ sin θ λ cos θ yt1

0 0 1

⎤
⎦

⎡
⎣
1 0 −xe1
0 1 −ye1
0 0 1

⎤
⎦

⎡
⎣
x
y
1

⎤
⎦ (4)

where θ and λ are the angle difference and distance ratio

θ = arctan(
yt2 − yt1
xt2 − xt1

) − arctan(
ye2 − ye1
xe2 − xe1

), (5)

λ =
√

(yt2 − yt1)
2 + (xt2 − xt1)

2

√
(ye2 − ye1)

2 + (xe2 − xe1)
2
. (6)

Let (x ′e
j , y′e

j ) denote the transformed exemplar landmark
points using (4), j from 1 to the number of landmark points
belonging to a facial component. We compute the sum of
squared distances for each exemplar image

s =
∑
j

(xtj − x ′e
j )2 + (ytj − y′e

j )2. (7)

We define S2 as the subset of S1 containing N exemplar
images with the N smallest s values. For the three compo-
nents influenced by glasses (i.e., eyes, eyebrows, and noses),

we use the labels for glasses to prevent images from being
included in the set S2 as the gradients of glasses may cause
artifacts in the reconstructed images.

4.2 Adjusting Illumination Variations via Masks

Toaccount for lighting variations between components of test
and exemplar images, we create a LR weight map covering
each facial component with a polygon. For the eyes which
are surrounded by their landmark points, we use 6 landmark
points for each eye to create two polygons covering the com-
ponents. For the mouth, we create the polygon based on 12
surrounding landmark points. For the nose, the polygon is
created based on 5 landmark points at the bottom and 1 at
the top. Since there are 10 landmark points localized at the
top of eyebrows, we connect them as the upper boundary of
the mask polygon of eyebrows; the bottom of the polygon is
determined based on a line between the rightmost and left-
most landmarks (see Fig. 1). For pixels covered by a polygon,
the initial weight values are set to 1, and the other ones are set
to 0. To create soft boundaries of the weight map, we apply a
low-pass filter on the initial map using a Gaussian filter with
a value of kernel width 0.4.

We treat the weight map as a mask in order to adjust
pixel intensities of exemplar components. For each individ-
ual component of a test image, we use the mask to compute
the mean and standard deviation of the covered pixels as μt

and σt . After resampling images of S2 using parameters com-
puted from (5) and (6), we downsample them into LR using
(1) without J . Using the samemask as forμt and σt , we com-
pute themean and standard deviation of an aligned LR exem-
plar image as μe and σe and adjust its pixel intensities i by

i ′ = (i − μe) · σt

σe
+ μt . (8)

Afterwards, we determine the best exemplar component
among the N candidates. We extract the gradient features
under the component mask from the test image and N
adjustedLRexemplar images, amongwhichwefind the near-
est neighbor under the l2-norm as the best exemplar. Next, we
generate the landmark points of the test image in HR bymul-
tiplying the LR coordinates with the scaling factor. The best
exemplar in HR is aligned and adjusted in the same manner
as for the LR one. Then, we create the HR component mask
similarly as the LR one with a large value of the Gaussian
kernel width, 1.6, for HR images.

We transfer the gradients of the aligned, adjusted HR
exemplar image to Uc under the HR mask. The values of
the four component masks are merged to generate the weight
map w used in (3). We arrange the priority of the four com-
ponents from high to low as the eyes, eyebrows, nose, and
mouth since the eyes are psychologically more important
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than other components. If some masks overlap, we replace
the gradients of a lower priority component with a higher one
(see Fig. 1).

Different from existing methods (Yang et al. 2013; Liu
and Yang 2014) which align all exemplar images, the pro-
posed algorithm requires a lighter computational load for
two reasons. First, the proposed method computes the trans-
formation matrix in a close form (4) rather than solving an
optimization problem (Yang et al. 2013; Liu and Yang 2014).
Second, the proposed method only re-samples N images,
which is a small subset of the entire exemplar image set (sim-
ilar to S1 in this work) used in prior work (Yang et al. 2013;
Liu andYang 2014). In addition, the proposedmethod adjusts
the brightness of exemplar facial components in order to get
better gradients, which is not exploited in prior work (Yang
et al. 2013; Liu and Yang 2014).

4.3 Merging Gradient Maps

We generate the weight map w by merging four masks of
facial components, the facial component gradients Uc from
four exemplar images, and the non-facial component gradi-
entsUg from an image enlarged by a generic super resolution
method (Timofte et al. 2014). Figure 1 shows an example of
the three types of data. Wemergew,Uc, andUg into the final
gradient map set U through (3).

5 Experimental Validation

5.1 Experimental Setups

5.1.1 Exemplar and Test Images

To demonstrate the proposed algorithm’s ability to handle
generalization, we use the images in the Multi-PIE (Gross
et al. 2008) and PubFig (Kumar et al. 2009) datasets as our
exemplar and test sets, respectively. The identities in these
two sets do not overlap and their appearances differ in numer-
ous aspects—poses, illuminations, expressions, hair styles,
and cosmetics. The Multi-PIE dataset contains 2514 image
sets in each contained 300 images taken by 15 cameras under
20 controlled lighting conditions. We select a subset as our
exemplar setwhich consists of images taken by 7 frontal cam-
eras (ID 19_0, 04_1, 05_0, 05_1, 14_0, 13_0, and 08_0) and
under 18 lighting conditions (01 to 18) to cover a wide range
of frontal views (−45 to +45 degrees of horizontal rotation)
and illumination conditions. We exclude the other 8 cameras
and 2 lighting conditions because their side view angles and
low illumination significantly differ from the test images.We
manually generate the labels for glasses and refine the land-
mark points generated by the IntraFace algorithm (Xiong and
la Torre 2013). Table 1 lists the IDs of the 7 cameras with the

Table 1 Numbers of exemplar images under 7 cameras and head poses
in yaw angles (with zero degree in pitch or roll)

ID 19_0 04_1 05_0 05_1 14_0 13_0 08_0

Angle -45◦ -30◦ -15◦ 0◦ +15◦ +30◦ +45◦

# 1954 2432 2511 2514 2480 2400 1978

corresponding head poses, and the numbers of images. The
total number of exemplar images used in the experiments is
292842, i.e., 16269 (sumof Table 1)multiplied by 18 lighting
conditions.

Significantly different from the Multi-PIE dataset created
in a controlled environment, the PubFig dataset contains
face images of celebrities in various sizes and quality.
From it, 835 images are detected using the Adaboost-based
detector (Viola and Jones 2004) without further manual
processing. We note existing methods typically operate on
tightly cropped face images (i.e., only the main facial parts
are present without hair or background pixels). In this work,
we evaluate the proposed algorithm on both images contain-
ing background pixels or not (i.e., images without or with
tight cropping). For the former type, each face image is
enclosed by a rectangle of 320 × 240 pixels covering the
whole head including hair and background regions. The cen-
ter of the rectangle is set to the middle of the two eyes. If the
detected face images do not fit the rectangles (i.e., too large
or too small), they are excluded from the test set because
two evaluated methods (LSF and MQZ) in the experiments
require test images in a fixed size as large as the exemplar
images. Although the proposed method is not restricted by
the size due to its flexibility to resize exemplar images using
facial landmarks, for fair comparison we use the same test
images for all evaluated methods. For the latter type in which
hair and background regions are excluded, each face image
is cropped by a rectangle which encloses only the landmark
points of four facial components for evaluation.

The test set contains 100 randomly selected face images
from the PubFig dataset. All test images are shown at http://
faculty.ucmerced.edu/mhyang/project/FHCI/.

5.1.2 Evaluated Algorithms

We evaluate the proposed algorithm against the state-of-
the-art face hallucination methods. The default parameters
of the SA-DCT deblocking (Foi et al. 2007) and A+ super
resolution (Timofte et al. 2014) methods are used for perfor-
mance evaluation. We implement the LSF (Liu et al. 2007)
and MZQ (Ma et al. 2010) methods since the source code is
unavailable. The source code of the YLY (Yang et al. 2013)
andLY(Liu andYang2014)methods aswell as theMATLAB
built-in bicubic interpolation function are used for experi-
ments.
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Input Bicubic LSF MZQ YLY LY Proposed Original
(Liu et al, 2007) (Ma et al, 2010) (Yang et al, 2013) (Liu and Yang, 2014)

Q
=
10
0

PSNR 26.517 25.162 23.556 26.527 26.544 27.639 Infinite
SSIM 0.770 0.668 0.669 0.757 0.762 0.796 1.000

Q
=
75

PSNR 25.825 24.909 23.417 25.551 25.412 26.541 Infinite
SSIM 0.730 0.656 0.659 0.689 0.700 0.744 1.000

Q
=
50

PSNR 25.238 24.592 23.262 24.958 24.914 25.692 Infinite
SSIM 0.701 0.643 0.648 0.658 0.684 0.715 1.000

Q
=
25

PSNR 24.449 24.067 22.949 24.022 24.126 24.898 Infinite
SSIM 0.672 0.623 0.633 0.625 0.658 0.693 1.000

Fig. 4 The test image (Barack_Obama_0086_face1) is detected from
a frame in the PubFig dataset (Kumar et al. 2009). The input images are
enlarged by nearest neighbor interpolation for ease of presentation. The
proposed method generates clearer facial details and less noise than

other methods. Results are best viewed on a high-resolution display
with an adequate zoom level to show each image with at least 320 ×
240 pixels for full resolution

The proposed algorithm is implemented inMATLABwith
a value of Gaussian kernel width σ of 1.6, a scaling factor s
of 4, and JPEG quality indices Q of 100, 75, 50, and 25 to
generate LR input images. Images compressed with higher
Q values indicate higher visual quality (i.e., lower compres-
sion). For each test image, a set of 100 exemplars (N = 100)
is used for face hallucination as a trade-off between execution
time and image quality. In addition, we show that the pro-
posed algorithm is not sensitive to the number of exemplar
images on the project web page.

To reconstruct theHR image H∗ using (2),we set the value
β of the relaxed problem (9) to 0.00625. This parameter plays
an important role as it determines the effect of the transferred
gradients of facial components from exemplars. A small β

means the appearances of generated facial components are
likely to be smooth and close to patch-based statistical aver-
ages (see also the discussion on the effects of gradients on
the A+ method for generic super resolution (Timofte et al.
2014)) with higher PSNR and SSIM values. In contrast, a
large β suppresses intensity constraints of test images and
forces generated components to be similar to the exemplars
although the PSNRand SSIMvaluesmay be lower. However,
a large β preserves gradients of exemplar components such
that the reconstructed facesmay be visually sharper andmore
pleasant. We empirically set β to 6.4 in the experiments of
Figs. 9, 10, and 11 to show the ability of the proposedmethod
to reconstruct sharp facial components. The sensitivity anal-
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Input Bicubic LSF MZQ YLY LY Proposed Original
(Liu et al, 2007) (Ma et al, 2010) (Yang et al, 2013) (Liu and Yang, 2014)

Q
=
10
0

PSNR 31.703 28.255 26.432 30.759 30.318 32.340 Infinite
SSIM 0.893 0.756 0.803 0.850 0.875 0.901 1.000

Q
=
75

PSNR 30.427 28.004 26.294 29.129 28.773 30.579 Infinite
SSIM 0.853 0.746 0.790 0.788 0.822 0.855 1.000

Q
=
50

PSNR 29.725 27.745 26.164 28.549 28.270 29.622 Infinite
SSIM 0.836 0.738 0.783 0.771 0.812 0.837 1.000

Q
=
25

PSNR 28.788 27.283 25.911 27.813 27.462 28.884 Infinite
SSIM 0.814 0.726 0.772 0.747 0.796 0.823 1.000

Fig. 5 The test face image (Julia_Roberts_0010_face5) is detected
from a frame in the PubFig dataset (Kumar et al. 2009). The input
images are enlarged by nearest neighbor interpolation for ease of pre-
sentation.The proposed method generates clearer facial details and less

noise than other methods. Results are best viewed on a high-resolution
display with an adequate zoom level to show each image with at least
320 × 240 pixels for full resolution

ysis on β and generated images are presented on the project
web page.

5.1.3 Evaluation Metrics

We evaluate the generated images using PSNR and SSIM
values (Wang et al. 2004) on grayscale channels only, as
the LSF and MZQ methods only process grayscale images.
Since the YLY, LY, and proposed methods all generate HR
chromatic channels using bicubic interpolation, we add them
to the grayscale images generated by the LSF and MZQ
methods for visual comparisons. In addition to evaluation
on synthesized LR images, we use real-world images from
the Internet for experiments. Since there is no ground truth,

images are compared in terms of visual quality. All the code
and datasets are available to the public and more results
are shown at http://faculty.ucmerced.edu/mhyang/project/
FHCI/.

5.2 Synthetic Face Images

Figures 4 to 8 show the results generated by the evalu-
ated methods using face images with different poses, facial
expressions, and illumination conditions from the PubFig
dataset. Table 2 shows the average results of the evaluated
methods using 100 randomly selected face images from the
PubFig dataset. Table 3 shows the average results of the cen-
tral face regions of the same 100 images evaluated in Table 2.
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Input Bicubic LSF MZQ YLY LY Proposed Original
(Liu et al, 2007) (Ma et al, 2010) (Yang et al, 2013) (Liu and Yang, 2014)

Q
=
10
0

PSNR 29.409 26.330 20.670 28.807 28.628 31.019 Infinite
SSIM 0.874 0.729 0.743 0.838 0.859 0.894 1.000

Q
=
75

PSNR 28.295 26.045 20.619 27.448 27.254 28.946 Infinite
SSIM 0.829 0.716 0.731 0.760 0.796 0.836 1.000

Q
=
50

PSNR 27.529 25.751 20.552 26.700 26.591 28.004 Infinite
SSIM 0.804 0.708 0.721 0.728 0.776 0.816 1.000

Q
=
25

PSNR 26.387 25.201 20.417 25.648 25.453 26.880 Infinite
SSIM 0.771 0.690 0.706 0.696 0.749 0.796 1.000

Fig. 6 The test image (Stephen_Colbert_0060_face1) is detected from
a frame in the PubFig dataset (Kumar et al. 2009). The input images are
enlarged by nearest neighbor interpolation for ease of presentation. The
proposed method generates clearer facial details and less noise than

other methods. Results are best viewed on a high-resolution display
with an adequate zoom level to show each image with at least 320 ×
240 pixels for full resolution

Wedefine the central region of a face as the compact rectangle
containing all landmark points of the four facial components.
The central regions consist mainly of skins and the four facial
components rather than upper foreheads, ears, chins, necks,
clothing, and background.

At four different compression levels, the LSFmethod (Liu
et al. 2007) generates a few blocky patterns because it mod-
els faces in a trained subspace which learns the structure of
face images and handles compression noise well. However,
this scheme generates noisy and ghost artifacts because the
adopted linear subspace is not effective for reconstructing
face images under various poses and illumination condi-
tions.

The MZQ scheme (Ma et al. 2010) generates smooth
images at four compression levels as the transferred source
patches do not contain noise. However, the generated images
contain ghost artifacts as shown in Figs. 4, 7, and 8 because
the assumption of transferring location-restricted LR patches
does not hold. Due to the white background in Figs. 6 and 8
where a test patch is brighter than any exemplar patch at
the same location in the Multi-PIE dataset, the reconstructed
brightness decreases to gray. Restricted to the fixed locations
of face components, the eyes in Fig. 8 are not constructed
well.

The YLY approach (Yang et al. 2013) generates appar-
ent blocky artifacts for Q values of 75, 50 and 25 because
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Input Bicubic LSF MZQ YLY LY Proposed Original
(Liu et al, 2007) (Ma et al, 2010) (Yang et al, 2013) (Liu and Yang, 2014)

Q
=
10
0

PSNR 26.027 24.397 23.292 25.828 25.814 26.561 Infinite
SSIM 0.769 0.655 0.653 0.752 0.760 0.791 1.000

Q
=
75

PSNR 25.396 24.231 23.180 24.927 24.891 25.556 Infinite
SSIM 0.726 0.646 0.642 0.683 0.700 0.730 1.000

Q
=
50

PSNR 24.864 23.995 23.008 24.412 24.303 24.927 Infinite
SSIM 0.699 0.634 0.633 0.654 0.675 0.705 1.000

Q
=
25

PSNR 24.205 23.645 22.767 23.752 23.652 24.326 Infinite
SSIM 0.671 0.622 0.622 0.622 0.649 0.683 1.000

Fig. 7 The test image (Miley_Cyrus_0561_face1) is detected from a
frame in the PubFig dataset (Kumar et al. 2009). The input images are
enlarged by nearest neighbor interpolation for ease of presentation. The
proposed method generates clearer facial details and less noise than

other methods. Results are best viewed on a high-resolution display
with an adequate zoom level to show each image with at least 320 ×
240 pixels for full resolution

the adopted back-projection process forces the generated HR
images to exactly match the input LR images which contain
compression noise. The LYmethod (Liu andYang 2014) out-
performs the LSF, MZQ, and YLY methods on compressed
images because it is developed to dealwith JPEGnoise.How-
ever, this method does not handle images with large changes
in poses and illumination conditions. As such, its generated
images are likely to contain artifacts because exemplar facial
components may not be properly selected and transferred.
For example, the nose tips of face images in Fig. 5 are not
generated well due to head pose variations.

The proposed algorithm requires less computational loads
and generates better images than the LY method for the fol-

lowing reasons. First, the proposed algorithm only compares
N aligned exemplar images, but the LY method searches
through the entire set. The ratio of N to the entire set, in our
experimental setups for the upright frontal pose, is 100:2514
(all the 2514 images reported in Table 1) such that the compu-
tational load is significantly reduced. Second, the proposed
algorithm uses two anchor points to align an exemplar image
rather than solving an optimization problem (as used in the
LY method) to compute a transformation matrix. Third, the
proposed method utilizes an efficient A+ algorithm (Tim-
ofte et al. 2014) to upsample pixels outside face regions,
but the LY method uses edge priors and the PatchMatch
scheme (Barnes et al. 2010) to upsample edges and textures
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Input Bicubic LSF MZQ YLY LY Proposed Original
(Liu et al, 2007) (Ma et al, 2010) (Yang et al, 2013) (Liu and Yang, 2014)

Q
=
10
0

PSNR 26.980 25.402 17.595 26.629 26.345 27.628 Infinite
SSIM 0.787 0.689 0.665 0.768 0.775 0.807 1.000

Q
=
75

PSNR 26.381 25.190 17.557 25.875 25.501 26.760 Infinite
SSIM 0.750 0.678 0.655 0.701 0.716 0.759 1.000

Q
=
50

PSNR 25.764 24.849 17.501 25.313 24.867 26.059 Infinite
SSIM 0.723 0.661 0.640 0.674 0.693 0.733 1.000

Q
=
25

PSNR 25.093 24.483 17.446 24.667 24.213 25.339 Infinite
SSIM 0.697 0.652 0.628 0.648 0.674 0.712 1.000

Fig. 8 The test image (Katherine_Heigl_0215_face1) is detected from
a frame in the PubFig dataset (Kumar et al. 2009). The input images are
enlarged by nearest neighbor interpolation for ease of presentation. The
proposed method generates clearer facial details and less noise than

other methods. Results are best viewed on a high-resolution display
with an adequate zoom level to show each image with at least 320 ×
240 pixels for full resolution

separately. As the LY method requires solving an optimiza-
tion problem for edges and searching through numerous
patches using the PatchMatch scheme, the computational
load is significantly heavier than the proposed method. On
the same machine equipped with a 3.6 GHz Quad-Core pro-
cessor, it takes 20 and 900 seconds for the proposed and LY
methods to enlarge a face image of 60 × 80 pixels with a
scaling factor of 4.

We discuss the differences between the proposed and LY
methods since both are developed for face hallucination of
compressed images. The proposed method uses the state-
of-the-art InfraFace (Xiong and la Torre 2013) scheme for
landmark detection, which is more robust than the one (Zhu

and Ramanan 2012) used in the LY approach. As shown
in Fig. 8 (when Q is 100 or 25), the HR images gener-
ated by the LY method contains ghost effects around the
left eyes because the landmark localization algorithm (Zhu
and Ramanan 2012) does not perform well for these images.
In addition, the proposed method exploits exemplar images
with larger pose and illumination variations than those con-
sidered by the LY method. For example, the lighting source
of Fig. 4 is from an elevated position and there exist cast
shadows on the cheek regions. Similarly, the mouth regions
in Figs. 5 and 8 are different from those face images in
upright frontal poses. As the proposed algorithm is able
to determine exemplars most similar to those in the inputs
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Table 2 Quantitative evaluations of 100 PubFig images at four JPEG compression levels

JPEG Q value Metric Bicubic
interpola-
tion

LSF (Liu et al.
2007)

MZQ (Ma
et al. 2010)

YLY (Yang
et al. 2013)

LY (Liu and
Yang 2014)

Modified LY Proposed

100 PSNR 28.294 26.117 24.194 28.017 27.918 27.918 29.590

SSIM 0.799 0.678 0.683 0.784 0.789 0.790 0.830

75 PSNR 27.356 25.860 24.042 26.761 26.697 26.708 27.808

SSIM 0.750 0.664 0.670 0.704 0.723 0.724 0.758

50 PSNR 26.681 25.564 23.868 26.086 26.081 26.085 26.984

SSIM 0.722 0.652 0.659 0.673 0.700 0.702 0.732

25 PSNR 25.811 25.067 23.565 25.243 25.223 25.232 26.099

SSIM 0.690 0.635 0.644 0.641 0.673 0.674 0.706

We modify the LY method by replacing its landmark localization algorithm with the same one used by the proposed method to show a same-
component comparison. The evaluations for Q as 25 are averaged from 99 images rather than 100 because the modified LY method fails to detect
a face in one of the 100 images due to its high compression noise. Using the same localization algorithm, the proposed method can process that
image because it utilizes a deblocking precessing step in which compression noise is reduced

Table 3 Quantitative evaluations of 100 PubFig images based only on central facial regions at four JPEG compression levels

JPEG Q
value

Metric Bicubic
interpola-
tion

LSF (Liu et al.
2007)

MZQ (Ma
et al. 2010)

YLY (Yang
et al. 2013)

LY (Liu and
Yang 2014)

Modified LY Proposed

100 PSNR 27.960 25.715 24.911 25.716 26.576 26.573 29.146

SSIM 0.813 0.701 0.709 0.747 0.774 0.776 0.841

75 PSNR 26.919 25.411 24.654 25.050 25.319 25.354 27.286

SSIM 0.758 0.684 0.691 0.680 0.700 0.707 0.762

50 PSNR 26.199 25.087 24.398 24.661 24.750 24.761 26.423

SSIM 0.729 0.669 0.676 0.657 0.675 0.681 0.734

25 PSNR 25.320 24.593 24.006 24.055 23.861 23.884 25.500

SSIM 0.695 0.649 0.657 0.627 0.644 0.650 0.705

All settings are the same as Table 2 and the evaluated images are shown at http://faculty.ucmerced.edu/mhyang/project/FHCI/

under varying pose and lighting conditions, the enlarged
face images tend to be of higher quality. Third, to pro-
cess skin and texture regions, the proposed method utilizes
an effective regression-based generic super resolution algo-
rithm (Timofte et al. 2014) which is more effective than
those used in the LY scheme. Quantitative results in Tables 2
and 3 show that the proposed method performs favorably
against the evaluated methods at different compression lev-
els.

5.3 Real-World Face Images

Figures 9, 10, and 11 show the qualitative comparisons of
three real-world images obtained from the Internet (i.e., the
LR images are not downsampled via (1) to conduct experi-
ments). Fig. 9 contains 11 faces of different races in similar
poses and illumination conditions at a high compression
ratio. While the artifacts generated by the LSF, MZQ, and
YLY methods in this figure are similar to those on synthetic
images, the differences between the LY and proposed algo-

rithms are discussed here. On faces 1, 4, 8 and 10, eyes and
mouths generated by the proposed method are more accu-
rate than the LY method, especially on the eye, eyebrow, and
nose regions. The noses generated by the proposed method
on faces 4, 8, 9, 10, 11 are more plausible than those gener-
ated by the LY method.

Figure 10 shows the generated results from a slightly com-
pressed image.Because landmark points of some face images
cannot be detected by the localization algorithm used in the
YLY and LYmethods, no enlarged results are presented. The
images generated by the LSF method contain compression
noise, and those by the MZQ method are affected by ghost
effects especially on face 2 due to the head pose and back-
ground. The YLY and LY methods perform well on faces 1,
3 and 4, but fail on face 2 and generate a fake left eye and
right eyebrow on face 5. In contrast, the proposed algorithm
performs well especially on the nose of face 1 and eyes of
face 3.

Figure 11 contains 17 faces in various poses and illumi-
nation conditions. The proposed algorithm performs well
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Fig. 9 A JPEG image of 960 × 720 pixels obtained from
the Internet (http://img.gawkerassets.com/img/18l4dh51uk3wxjpg/
original.jpg). The JPEG Q value is 67 estimated by JpgQ (Voska and
Mediachancecom 2001) and the scaling factor is 4 in this experiment.
No numerical evaluation is reported because there is no ground truth

image. Images are best viewed on a high-resolution display with an
adequate zoom level to show each image with at least 320 × 240 pixels
for full resolution. a Input. b Bicubic Interpolation. c LSF (Liu et al.
2007). d MZQ (Ma et al. 2010). e YLY (Yang et al. 2013). f LY (Liu
and Yang 2014). g Proposed
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Fig. 9 continued

for all face images without obvious artifacts or amplified
compression noise as generated by the LSF, MZQ, and YLY
methods. The YLY and LY methods fail to generate images
for faces 9 and 16 because the landmark localization algo-
rithm reports face 9 as a profile due to the side light and
does not detect the face 16 due to its makeup. The proposed
algorithm reconstructs facial components better than the LY
method in several regions: the left eyebrow of face 7, eyes of
faces 6, 11, 12, 14, and 17, mouth of face 13, and noses of
faces 6, 10 and 14.

5.4 Discussion

Although the proposed algorithm performs favorably against
the state-of-the-art face hallucinationmethods, it is less effec-

tive in handling certain types of images. First, the success of
the generated images depends on the effectiveness of local-
ized landmark points. While they are not well localized,
gradients may be incorrectly transferred and the generated
images are likely to contain ghost artifacts such as the
eyes in Fig. 12a, b. Second, the proposed method does not
address other facial components (e.g., ears, beards, wrin-
kles) and foreign objects (e.g., glasses). As a result, the
glasses appear unclear in Fig. 6 and blurry in Fig. 12c,
d, and the beards look vague in Fig. 12e, f. Third, the
exemplars in the Multi-PIE dataset do not encompass all
poses such that some test images cannot be well recon-
structed. Theproposedmethodgenerates artifacts inFig. 12g,
h because there are not sufficient exemplar faces with the
same gaze direction available in the Multi-PIE dataset. We
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1

2 N.A. N.A.

3

4

5

(a) (b) (c) (d) (e) (f) (g)

Fig. 10 A JPEG image (698 × 261 pixels) obtained from the Inter-
net (http://blogs.reuters.com/sport/files/2009/07/pres1.jpg). The JPEG
Q value is 96 estimated by JpgQ (Voska and Mediachancecom 2001)
and the scaling factor is 4 in this experiment. Some results (2(d) and
2(f)) are not available due to the landmark localization algorithm used
in the YLY and LYmethods does not detect a face in the test image. No

numerical evaluation is reported because there is no ground truth image.
Images are best viewed on a high-resolution display with an adequate
zoom level to show each image with at least 320 × 240 pixels for full
resolution. a Input. b Bicubic Interpolation. c LSF (Liu et al. 2007). d
MZQ (Ma et al. 2010). e YLY (Yang et al. 2013). f LY (Liu and Yang
2014). g Proposed
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(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

1 2

3 4

5 6

7 8

9 N.A. N.A. 10

11 12

13 14

15 16 N.A. N.A.

17

Fig. 11 A JPEG image (1539 × 877 pixels) obtained from
the Internet (http://thewardrobedoor.com/wp-content/uploads/2014/
05/x-men-days-of-future-past-cast.jpg). The JPEG Q value is 84 esti-
mated by JpgQ (Voska and Mediachancecom 2001) and the scaling
factor is 4 in this experiment. The evaluatedmethods are a bicubic inter-
polation b LSF (Liu et al. 2007) cMZQ (Ma et al. 2010) d YLY (Yang

et al. 2013) e LY (Liu and Yang 2014) f the proposed scheme. No
numerical evaluation is reported because there is no ground truth image.
Images are best viewed on a high-resolution display with an adequate
zoom level to show each image with at least 320 × 240 pixels for full
resolution. a Bicubic Interpolation. b LSF c MZQ d YLY e LY f Pro-
posed

123

http://thewardrobedoor.com/wp-content/uploads/2014/05/x-men-days-of-future-past-cast.jpg
http://thewardrobedoor.com/wp-content/uploads/2014/05/x-men-days-of-future-past-cast.jpg


Int J Comput Vis

Fig. 12 Failure cases and their image IDs. a, b Wrong left eyes. c, d
Blurry glasses. e, f Blurry beards. g, h Wrong pupils. Images are best
viewed on a high-resolution display with an adequate zoom level to
show each image with at least 320 × 240 pixels for full resolution. The
ground truth images are shown in the project web page. a #52. b #87.
c #45. d #82. e #2. f #30. g #14. h #55

note that all subjects in the Multi-PIE dataset gaze straight
forward, but the subjects in Fig. 12g, h stare upward and
leftward. Thus the proposed method is unable to find an
effective pair of eyes in the Multi-PIE dataset and results
in unrealistic pupils in the reconstructed images. Forth, the
proposed method focuses on the brightness channel, but sim-
ply upsamples the chromatic channels, which may brings on
ineffective reconstructed colors. For example, the color of the
irises in Fig. 5 is originally brown, but becomes gray after
reconstruction.

6 Conclusions

We address the problem of generating high-resolution face
images from JPEG compressed LR inputs in this paper. The
proposed algorithm integrates a deblocking method and a
generic super resolution method, and exploits a large set
of exemplar face images to transfer high-frequency details
for image reconstruction. Experimental results show that
the proposed algorithm generates high-quality images with
favorable results against state-of-the-art face hallucination
methods qualitatively and quantitatively.

Acknowledgements This work is supported by NSF CAREER Grant
1149783, and gifts from Adobe and Nvidia.

Appendix

Solving (2) Given a LR image D(L), and gradient maps U ,
we generate a HR image H∗ through

H∗ = argmin
H

‖∇H −U‖2 s.t. (H ⊗ Gσ ) ↓s= D(L).

To handle the nonlinear constraint, we relax the problem by

H∗ = argmin
H

‖∇H −U‖2 + β‖(H ⊗ Gσ ) ↓s −D(L)‖2,
(9)

where β is a weight parameter. We use the gradient descent
method to solve the optimization problem.

Algorithm 1 shows the details how (9) is solved. The orig-
inal energy value e is computed on Line 9, and a descent

Algorithm 1: Generating Hallucination Images

Data: Low-resolution image D(L), gradient maps {Uk}, Gaussian kernel G, initial image H0, weight β, tolerance value t , loop number l,
line search step number m

Result: High-resolution image H∗
1 H ← H0 Initialize
2 for i ← 1 to l do
3 e ← ‖(H ⊗ G) ↓ −D(L)‖2 + β‖∇H −U‖2 //Compute the original energy value

4 A ←
((

(H ⊗ G) ↓ −D(L)
) ↑

)
⊗ G + β

(∑K
1 Uk − Div(H)) //Compute the descent direction

5 for j ←1 to m do
6 τ ← 21− j //Set the step length
7 H ′ ← H − τ A //Compute a new image
8 r j ← β‖∇H ′ −U‖2 + ‖(H ′ ⊗ G) ↓ −D(L)‖2 //Record the new energy value in an array
9 end

10 j∗ ← argmin
j

r j //Find the index whose energy value is minimal

11 if r j∗ < e then
12 τ ← 21− j∗ //Compute the step length for updating the image
13 H ← H − τ A //Update the image
14 end
15 end
16 H∗ ← H //Return
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direction for generating a new image is computed on Line
10, where the Div(·) is a divergence operator and Uk means
the k-th map in U for one of the eight derivative directions.
We carry out a line search on Lines 11 to 15 and record the
energy values of all step lengths in an array r . We find the
best step index j∗ and check the energy value r [ j∗] on Line
17. If the new energy value r [ j∗] is smaller than the original
energy value e, the image is updated on Lines 18 to 19.
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