
Int J Comput Vis
DOI 10.1007/s11263-009-0283-4

3D Human Motion Tracking with a Coordinated Mixture
of Factor Analyzers

Rui Li · Tai-Peng Tian · Stan Sclaroff ·
Ming-Hsuan Yang

Received: 30 January 2008 / Accepted: 24 July 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract A major challenge in applying Bayesian tracking
methods for tracking 3D human body pose is the high di-
mensionality of the pose state space. It has been observed
that the 3D human body pose parameters typically can be
assumed to lie on a low-dimensional manifold embedded
in the high-dimensional space. The goal of this work is to
approximate the low-dimensional manifold so that a low-
dimensional state vector can be obtained for efficient and
effective Bayesian tracking. To achieve this goal, a globally
coordinated mixture of factor analyzers is learned from mo-
tion capture data. Each factor analyzer in the mixture is a
“locally linear dimensionality reducer” that approximates a
part of the manifold. The global parametrization of the man-
ifold is obtained by aligning these locally linear pieces in a
global coordinate system. To enable automatic and optimal
selection of the number of factor analyzers and the dimen-
sionality of the manifold, a variational Bayesian formula-
tion of the globally coordinated mixture of factor analyz-
ers is proposed. The advantages of the proposed model are
demonstrated in a multiple hypothesis tracker for tracking
3D human body pose. Quantitative comparisons on bench-
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mark datasets show that the proposed method produces more
accurate 3D pose estimates over time than those obtained
from two previously proposed Bayesian tracking methods.
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1 Introduction

Tracking articulated human motion is of great interest in var-
ious applications: video surveillance, human computer inter-
faces, computer animation, biometrics and medical applica-
tions. Marker-based motion tracking methods are commonly
used in computer games and clinical human motion analysis.
However, these methods are considered to be too intrusive
and/or too expensive for daily deployment because: (1) sub-
jects usually need to bare most of their skin or wear tight-
fitting clothes, (2) markers are placed on the subject’s skin or
clothes, (3) marker placement is time consuming, and (4) a
controlled environment is required.

Therefore, vision based tracking methods that require
neither special clothing nor markers on the human body
have been actively studied. These tracking methods can be
broadly categorized as either 2D or 3D, depending on the
type of human pose information they can recover.

2D methods track human motion in the image plane by
making use of image features and/or a 2D human model
(Agarwal and Triggs 2004; Cham and Rehg 1999; Ioffe and
Forsyth 2001; Ju et al. 1996; Lan and Huttenlocher 2004;
Ramanan et al. 2007), thereby avoiding the need for com-
plex 3D models or camera calibration information. While
these methods are usually efficient, only 2D joint locations
and angles can be inferred. As a result, the 2D methods have
difficulty in handling occlusions and they are less effective
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for applications where accurate 3D information is required.
To better understand human motion, 3D methods resort
to detailed 3D articulated models that require significantly
more degrees of freedom. Consequently, algorithms that are
able to handle high-dimensional, non-linear data efficiently
and effectively are essential to the success of the 3D meth-
ods. Recent research addresses this issue by combining 3D
Bayesian tracking methods with carefully designed strate-
gies for search within the state space (Choo and Fleet 2001;
Deutscher et al. 2000; Sidenbladh et al. 2000; Sigal et al.
2004; Sminchisescu and Triggs 2001), as well as methods
for dimensionality reduction of the state space (Agarwal
and Triggs 2004; Elgammal and Lee 2009; Li et al. 2006,
2007; Sminchisescu and Jepson 2004; Tian et al. 2005b;
Urtasun et al. 2006).

In this paper, we exploit the physical constraints of hu-
man motion by learning a low-dimensional latent model
from high-dimensional motion capture data. Our approach
is motivated by the fact that while the representation of hu-
man pose is high-dimensional, the intrinsic dimensionality
is much lower, as human body movements are highly co-
ordinated (Safonova et al. 2004). Furthermore, not all poses
are equally likely given the specific types of motions we aim
to track. For our application domain, the preferred dimen-
sionality reduction method should:

(1) minimize information loss during dimensionality reduc-
tion so that the low-dimensional representation of the
human pose captures key kinematic information;

(2) preserve continuity so that similar poses are mapped to
nearby locations in the low-dimensional latent space;

(3) approximate the densities of the training human motion
capture data to handle outliers;

(4) provide non-linear bidirectional mapping functions so
that data that resides in the latent space can be mapped
back to the high-dimensional human pose space, and
conversely, poses can be mapped back to the latent space
for validation; and

(5) handle large training datasets with ease, as with today’s
motion capture technology, large training data sets are
easily accessible.

To meet these requirements, we employ a globally co-
ordinated mixture of factor analyzers (GCMFA) framework
(Verbeek 2006). As has been demonstrated in (Li et al.
2006), the GCMFA is effective in preserving important
information when applied to human motion capture data.
The GCMFA provides a global parametrization of the low-
dimensional manifold. Each factor analyzer in the mixture is
a “locally linear dimensionality reducer” that approximates
a part of the manifold. The global parametrization of the
manifold is obtained by aligning these locally linear pieces
in a global coordinate system. The embedded data forms
clusters within the globally coordinated low-dimensional

space; this makes it possible to derive an efficient multiple
hypothesis tracking algorithm based on the distribution of
the modes. By tracking in the low-dimensional space, we
avoid the sample impoverishment problem and retain the
simplicity of the multiple hypothesis tracking algorithm at
the same time.

However, even with all the desirable properties that suit
our application, for the GCMFA to effectively model the re-
lationship between the high-dimensional observation space
and low-dimensional latent space, it still requires careful ini-
tialization and model selection, i.e., the number of the factor
analyzers in the mixture and the dimensionality of the la-
tent space. In (Roweis et al. 2001; Teh and Roweis 2002;
Verbeek 2006), a good embedding algorithm like (Roweis
and Saul 2000) was used for initialization and the model
structure was fixed before training. In this paper, we take
a different approach: we derive a variational Bayesian so-
lution for automatic selection of the optimal model struc-
ture. A single factor analyzer is used as the initial model
and model splitting is performed iteratively until the op-
timal model structure is obtained based on the variational
Bayesian criterion.

The performance of a 3D tracker that employs the model
learned via the variational Bayesian formulation is eval-
uated on the HumanEvaI benchmark datasets (Sigal and
Black 2006). In experiments with real video, the system
reliably tracks body motion during self-occlusions and in
the presence of motion blur. Given clusters formed in the
latent space, our tracker can accurately track large move-
ments of the human limbs in adjacent time steps by prop-
agating each cluster’s information over time in the multi-
ple hypothesis tracking algorithm. A quantitative compari-
son shows that the formulation produces more accurate 3D
pose estimates than those obtained using two previously-
proposed Bayesian tracking methods (Deutscher et al. 2000;
Urtasun et al. 2005) that also employ smart search strategies
in the state space. Furthermore, the dimensionality of the
state space in our tracker and the number of FA’s in the mix-
ture is determined automatically using the proposed varia-
tional Bayesian learning method.

Hence, our main contributions in this work are: (1) to
propose a variation Bayesian learning approach for model
selection of the GCMFA model; and (2) to successfully ap-
ply this model in a Bayesian tracking method to achieve ac-
curate 3D human tracking.

2 Related Work

Bayesian tracking methods combined with carefully de-
signed search strategies of the state space have been ac-
tively studied. This is especially important in 3D human
motion tracking, where the number of parameters needed
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to represent a 3D body pose is large (usually 20–60 de-
pending on the level of detail). Besides adopting methods
like (Cham and Rehg 1999; Deutscher et al. 2000; Mac-
Cormick and Blake 1999; Sminchisescu and Triggs 2001;
Sullivan and Rittscher 2001) to carefully explore the 20–60
dimensional space, recent efforts (Elgammal and Lee 2004;
Li et al. 2006; Sminchisescu and Jepson 2004; Urtasun et al.
2005) have been dedicated to reducing the dimensional-
ity of the state space to achieve efficient tracking. It has
been shown in (Elgammal and Lee 2004; Li et al. 2006;
Sminchisescu and Jepson 2004; Urtasun et al. 2005) that the
relationship between the high-dimensional pose parameters
and low-dimensional manifold is non-linear. Hence, before
we move on to the discussion of 3D human tracking algo-
rithms that employ a dimensionality reduced state space, we
first review non-linear dimensionality reduction (NLDR) al-
gorithms.

2.1 Non-Linear Dimensionality Reduction (NLDR)
Algorithms

NLDR techniques can be broadly classified into two cate-
gories: embedding techniques vs. mapping techniques. Em-
bedding techniques model the structure of the data that gen-
erates the manifold without providing mapping functions
between the observation space and the latent space. ISOmet-
ric feature MAPping (ISOMAP) (Tenenbaum et al. 2000)
and its variants (Jenkins and Matarić 2004; Silva and Tenen-
baum 2003), Locally Linear Embedding (LLE) (Roweis
and Saul 2000) and spectral embedding (Belkin and Niyogi
2001) are widely-used NLDR algorithms in this category.
These techniques never explicitly learn the mapping func-
tions; therefore, there is no simple method to map data out-
side the training set to the low-dimensional space or back. In
order to use these algorithms for vision problems like track-
ing, (Elgammal and Lee 2004) and (Sminchisescu and Jep-
son 2004) have proposed regression methods to learn the
mapping functions after embedding.

Mapping-based techniques learn the nonlinear mapping
functions either by modeling the nonlinear functions directly
(Bishop et al. 1998; Lawrence 2003; Schölkopf et al. 1998)
or by using a combination of local linear models (Brand
2002; Roweis et al. 2001; Teh and Roweis 2002) during
dimensionality reduction. Mapping functions provide ways
to map unseen data to the latent space (we use the term
latent space and low-dimensional space interchangeably)
and/or to synthesize new data from the latent space; hence,
mapping-based techniques have been widely used in the
computer vision. Recent publications demonstrate success-
ful applications in human motion analysis (Li et al. 2006;
Tian et al. 2005a; Urtasun et al. 2006, 2005) and image man-
ifold modeling (Verbeek 2006).

In this paper, we make use of the globally coordinated
mixture of factor analyzers framework proposed by (Ver-
beek 2006) and derive a variational Bayesian formulation
to infer the number of mixture components and the dimen-
sion of the latent space together with the model parameters.
This circumvents the problem of fixing the model structure
before training as in (Li et al. 2006).

2.2 Human Motion Tracking

There is a broad range of work related to human motion
tracking. See (Poppe 2007b; Wang et al. 2003) for recent
surveys. Our focus is on the Bayesian tracking techniques
that exploit a dimensionality reduced state space.

Recently, researchers have proposed the use of dimen-
sionality reduction techniques on the state space to reduce
the size of the body pose state vector. This is justified by the
insight that the space of possible human motions is intrin-
sically low-dimensional (Safonova et al. 2004). Particle fil-
tering in the dimensionality reduced state space is faster be-
cause significantly fewer particles are required to adequately
approximate the state space posterior distribution.

Three recent works (Sminchisescu and Jepson 2004;
Tian et al. 2005b; Urtasun et al. 2005) are most closely re-
lated to our proposed algorithm for tracking human motion
in a dimensionality-reduced space. In (Sminchisescu and
Jepson 2004), different regression algorithms are used for
the forward mapping (dimensionality reduction) and inverse
mapping. The representatives used in the regression are cho-
sen in an heuristic manner (Sminchisescu and Jepson 2004).
In (Urtasun et al. 2005), a Gaussian process latent vari-
able model (GPLVM) and a second order Markov model are
used for tracking applications. The learned GPLVM model
is used to provide a human pose prior. Tracking is then ac-
complished by minimizing the cost of 2D image matching,
with the negative log-likelihood of the model prior as the
regularization term. Both (Sminchisescu and Jepson 2004)
and (Urtasun et al. 2005) advocate for the use of gradi-
ent descent optimization techniques; thus, the learned low-
dimensional space must be smooth. An alternative approach
(Tian et al. 2005b) employs the GPLVM in a modified par-
ticle filtering algorithm where samples are drawn from the
low-dimensional latent space modeled by a trained GPLVM.
This approach is similar to our work in the sense that a
non-linear dimensionality reduction method is used to at-
tain good particle filter based 3D tracking of human motion
in video.

In tracking, if we use the estimate from the previous time
step as the initialization for the next step, the gradient de-
scent optimization process may stop at local optima and the
samples generated based on the previous estimate may fail
to capture an abrupt change of human motion. To combat
this problem, global methods like annealing (Deutscher et al.
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2000) and hybrid Monte Carlo (Choo and Fleet 2001) can be
used.

In a more recent work (Urtasun et al. 2006), dynami-
cal model information has been exploited in constructing
the low-dimensional manifold and improved results have
been reported. But this method cannot handle large training
datasets due to the kernel sparsification problem, as there is
no principled way to choose an active set for a dynamic se-
quence. Without sparsification, the full kernel matrix must
be inverted at each iteration of learning. Thus, it is difficult
to apply the dynamics extension of GPLVM to large data
sets. To avoid the discontinuity problem caused by the use
of an active set, Snelson and Ghaharmani propose sparsifica-
tion techniques that make use of psuedo-inputs (Snelson and
Ghahramani 2006). There are still two open problems with
(Snelson and Ghahramani 2006): how to choose the number
of psuedo-inputs, and how to avoid overfitting. Furthermore,
the success of applying such techniques to human tracking
has yet to be demonstrated.

There also exists another interesting line of research
(Mori and Malik 2002; Poppe 2007a; Shakhnarovich et al.
2003; Stenger et al. 2003) where the methods employ a data-
base that stores pairs of training images and their corre-
sponding 3D poses. For a given input image, the correspond-
ing 3D pose is estimated by searching for similar training
images and interpolating using their corresponding 3D poses
from the database. Good results on the HumanEvaI datasets
have been reported in (Poppe 2007a). Discriminative image
features, good similarity functions for comparison, and fast
search strategies for large datasets are important for the suc-
cess of these methods.

The aim of our work is to make Bayesian tracking more
efficient and accurate for the task of 3D human tracking.

The work presented in this paper is an extension of our pre-
viously published work (Li et al. 2006). In (Li et al. 2006),
a globally coordinated mixture of factor analyzers is learned
from motion capture data to parameterize a low-dimensional
manifold where the state of the multiple hypothesis tracker
resides. However, the number of factor analyzers and the di-
mensionality of the latent space are chosen empirically. In
this paper, we provide a variational Bayesian learning algo-
rithm so that the optimal model setup is automatically deter-
mined during learning. This solves one of the open problems
as discussed in (Li et al. 2006).

3 Overview

There are two main components in the proposed tracking
algorithm as shown in Fig. 1. The first component is an
offline algorithm that learns a bidirectional mapping func-
tion between the low-dimensional manifold and the high-
dimensional human pose manifold. The second component
is an online algorithm for articulated human pose tracking
that makes use of a modified multiple hypothesis tracking
algorithm; the state space of this multiple hypothesis tracker
lies on the low-dimensional manifold.

One key step in the modified multiple hypothesis track-
ing method is the likelihood computation using the hypothe-
ses generated from the low-dimensional state space. Hence,
a mapping function is needed to map the low-dimensional
hypotheses to the 3D human body poses lie on the high-
dimensional pose manifold. Let x denote the pose on the
high-dimensional pose manifold, and g be the correspond-
ing point on the low-dimensional manifold. The goal of our
offline learning is to find the mapping function: fg→x such

Fig. 1 The overview of the system. To update Xt+1, first the hypothe-
ses generated from the low-dimensional state space are mapped to pose
space using fg→x. The mapped poses are then projected onto the im-

age to compute image likelihood for weighting the hypotheses. The
output pose is obtained using fg→x with the input from the updated
state estimate Xt+1



Int J Comput Vis

that:

x = fg→x(g) + nx, (1)

where nx is a zero-mean, white Gaussian noise process. One
can also view this mapping function as the measurement
function in the Kalman filter.

We propose to approximate fg→x (and hence fx→g since
the mapping is bidirectional) using piecewise linear func-
tions. It is desirable to have fg→x together with fx→g, as
fg→x can be used to generate an observation from a point in
the latent space, and fx→g can be used to map an observa-
tion to a point in the latent space. Our problem of approx-
imating the mapping function using piecewise linear func-
tions can be formulated as a parameter estimation problem
for the combination of these linear functions. In order to au-
tomatically determine the number of linear functions needed
to approximate fg→x and the dimensionality of g, we will
derive a variational Bayesian learning method.

In the following sections, we first give a quick review
for the globally coordinated mixture of factor analyzers
(GCMFA) in Sect. 4. The variational Bayesian learning al-
gorithm of the GCMFA is proposed Sect. 5. Application of
the learning algorithm to the HumanEvaI datasets (Sigal and
Black 2006) is described in Sect. 6. First we apply this learn-
ing algorithm to obtain the globally coordinated mixture
of factor analyzers from motion capture data in Sect. 6.1.
The multiple hypothesis tracking algorithm that makes use
of the resulting dimensionality reduced state space is then
described in Sect. 6.2. Experimental evaluation of this ap-
proach is given in Sect. 7, where the HumanEvaI datasets
are used in 3D human tracking. Finally, we conclude and
discuss future work in Sect. 8.

4 Learning the Globally Coordinated Model

The goal of our off-line learning algorithm is to learn map-
ping functions fg→x and fx→g. The function fx→g maps
high-dimensional observations to their corresponding low-
dimensional representations. The function fg→x does the in-
verse. Tables 1 and 2 explain the variables and parameters of
the GCMFA model.

We start with the basic building block of the GCMFA
model, which is called Factor Analyzer (FA). FA performs
linear dimensionality reduction by modeling a linear rela-
tionship between the observed data x and the corresponding
latent low-dimensional representation z: x = �z + μ + ν,

where the factor loading matrix � is a D × d rectangular
matrix that lifts the latent representation z to the observation
space; the latent variable z follows a Gaussian distribution
with zero mean and identity covariance matrix, z ∼ N (0, I);
μ is the factor mean and ν is the noise random variable and
follows a Gaussian distribution with zero mean and noise
covariance matrix � , ν ∼ N (0,�).

The next step to obtain the GCMFA model is to assemble
the multiple linear FAs together. Given the low-dimensional
representation z(s) from factor analyzer s, the linear process
to obtain x now takes the form of:

x = �(s)z(s) + μ(s) + ν, (2)

where we use superscript s in parentheses to index the para-
meters for different FAs. We treat ν as the observation noise
process and as a result, the same noise covariance matrix �

is used for all the FA’s.
A straightforward solution would be to use a mixture of

factor analyzers (MFA) as proposed in (Ghahramani and

Table 1 Variables used in the GCMFA model. d represents the dimen-
sionality of the low-dimensional representations; D is the dimensional-
ity of the high-dimensional observations (poses); N denotes the length

of the training data and S refers to the number of factor analyzers (FA)
in the mixture model

Symbol Size Description

xn D × 1 n-th observation vector

z(s)
n d × 1 n-th local latent space representation of xn in the s-th FA

g(s)
n d × 1 n-th global latent space representation of xn in the s-th FA

x1:N D × N training observation sequence

Table 2 Parameters used in the
GCMFA model Symbol Size Description

π (s) scalar prior distribution of the s-th FA

κ (s) d × 1 the mean of the s-th FA in the latent space

�(s) d × 1 the covariance of the s-th FA in the latent space

μ(s) D × 1 the mean of the s-th FA in the observation space

�(s) D × d factor loading matrix of the s-th FA

� D × D observation noise covariance matrix
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Hinton 1996). MFA is used to describe a low-dimensional
density model of high-dimensional data and it parameter-
izes a joint distribution over observation x and hidden vari-
ables z:

p(x, s, z(s)) = p(x|s, z(s))p(z(s)|s)p(s), (3)

where x ∈ R
D , z(s) ∈ R

d and D � d . The discrete variable
s ∈ {1, . . . , S} is the index of s-th FA in the mixture and
z(s) is the local coordinate of the low-dimensional represen-
tation in s-th FA. In MFA, it is assumed that data is sam-
pled from different FAs in the mixture with prior probabil-
ity π (s). Therefore, the marginal data distribution p(x) can
be obtained by integrating over the low-dimensional repre-
sentation z’s and summing over all the factor analyzers in
the mixture. Based on Eqs. 2 and 3, the resulting p(x) is
a mixture of Gaussian distributions with parameterized co-
variance matrices of the form:

p(x) =
∑

s

π (s)

∣∣∣∣�
(s)

[
�(s)

]T + �

∣∣∣∣
−1/2

× exp

{
− 1

2
(x − μ(s))T

(
�(s)

[
�(s)

]T + �

)−1

× (x − μ(s))

}
. (4)

To estimate the model parameters, θ , where θ = {{π (s),μ(s),

�(s)}Ss=1,�} for all the FAs in the mixture, an EM algorithm
is proposed in (Ghahramani and Hinton 1996) that attempts
to maximize the total log likelihood of logp(x), which is
summed over all training samples.

Unfortunately, this type of mixture model is only good
for density modeling. It does not describe a single, coher-
ent low-dimensional coordinate system for the data since
there is no constraint for the local coordinates z(s) of each
FA to agree. Given that the local coordinates z(s) follow a
Gaussian distribution with zero mean and identity covari-
ance matrix, they are subject to arbitrary rotation with rota-
tion matrix R as RRT = I. This means that we could apply
an arbitrary rotation to z(s) without changing the marginal
data distribution p(x). Thus, maximum likelihood estima-
tion in MFAs does not favor any particular alignment; in-
stead, it would produce models whose internal representa-
tions change unpredictably as one traverses connected paths
on the manifold.

The graphical model of our globally coordinated MFA
is shown in Fig. 2(b) while the model proposed in (Roweis
et al. 2001) is shown in Fig. 2(a). As in (Roweis et al. 2001),
the global coordination is achieved by maximizing the like-
lihood of data with an additional variational penalty term to
encourage the internal coordinates z(s)of the FAs to agree.
This means that we prefer a global coordination scheme to
produce a manifold so that as one traverses a connected path

Fig. 2 (a) The original model defined in (Roweis et al. 2001). (b) The
modified model proposed in (Verbeek 2006) for the globally coordi-
nated of mixture of factor analyzers. x, z, g and s represents the vari-
ables used in the model as explained in Table 1. The model shown
in (b) is different from the model in (a) as the local low-dimensional
representation z of the corresponding observed x does not appear in
the model. This is due to the deterministic transformation between the
global low-dimensional representation g and the local coordinate z. We
choose to use the model in (b) given its computation efficiency. Both
the discrete variable s and the continuous variable g are hidden. Only x
in the shaded node is observed

on the manifold, the internal coordinates change smoothly
and continuously even when the path crosses the domains
of many different local models. In our implementation, we
choose to use a model that is similar to the one proposed
in (Verbeek 2006) by treating the transformations needed to
obtain globally consistent coordinates g from local coordi-
nates z(s) to be deterministic. As a result, we can take z(s)

out from our graphical model as shown in Fig. 2(b) and we
only need to estimate an additional set of alignment parame-
ters κ (s) and �(s), which correspond to the translation and
rotation parameters to align all the FAs in the mixture so that
a globally consistent representation g of x can be obtained.
The difference between our model and the model proposed
in (Verbeek 2006) is that we treat the observation noise as
sensor noise and we use the same noise covariance � for all
the FAs in the mixture.

The additional variational penalty term to enforce global
consistency is obtained by introducing a family of unimodal
distributions of factorized form:

q(gn, s|xn) = q(gn|xn)q(s|xn),

where q(gn|xn) ∼ N (ĝn,�gn) and q(s|xn) = q
(s)
n is a

scalar. ĝn is the expected value of low-dimensional coor-
dinate gn for n-th observation xn. The factorized form of
q(gn, s|xn) implies that p(gn|xn, s1) ≈ p(gn|xn, s2) and gn

is independent of FA s for a given data point xn. These ex-
actly are the constraints we want to achieve in order to obtain
a globally consistent latent representation gn for the corre-
sponding high-dimensional observation data xn.

The parameters of GCMFA θ = {{π (s),μ(s),�(s),κ (s),

�(s)}Ss=1,�} are estimated by optimizing the following ob-
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jective function:

� =
∑

n,s

∫
q(gn, s|xn) log

p(xn,gn, s)

q(gn, s|xn)
dg. (5)

� is a lower-bound on the total data log-likelihood logp(x)

using variational distribution q(gn, s|xn). We estimate the
GCMFA parameters θ together with the variational regular-
izing parameters {ĝn,�gn , q

(s)
n } by iteratively optimizing �

via coordinate ascent in learning. The learning algorithm is
summarized in Appendix.

As a result of the above formulation, the mapping func-
tions fg→x and fx→g are described by the following proba-
bilistic relations between xn and gn:

p(gn|xn) =
∑

s

p(gn|xn, s)p(s|xn), (6)

p(xn|gn) =
∑

s

p(xn|gn, s)p(s|gn). (7)

The main issue with this maximum likelihood learning
approach is that the model structure is chosen a priori and a
coordinate ascent method is used to determine the parame-
ter values. For model selection, one typical approach is to
try many possible model setups and the best of these is cho-
sen. However, this tends to compound the training cost as
many models need to be tested. Moreover, since the parame-
ter learning is prone to local optima, we might unwittingly
end up comparing a “good” GCMFA to a “bad” GCMFA
with different numbers of factors and latent dimensions. The
“bad” GCMFA might be chosen if the learned local optimal
parameters of the “good” GCMFA actually lead to a lower
likelihood than those of the “bad” GCMFA.

Because of these problems, we propose to use a top-down
variational Bayesian formulation that enables automatic op-
timal model selection. It is a top-down approach in the sense
that the training starts with a single component model and
component splitting is performed iteratively until there is no
further improvement based on a variational Bayesian crite-
rion. Therefore, our proposed solution allows model selec-
tion during parameter learning. This is different from (Ver-
beek 2006) where a variant of the EM algorithm is used
for the learning of the model parameters with a fixed model
structure.

5 Variational Bayesian Learning

A Bayesian approach tackles the model selection problem
by treating the model parameters θ as unknown entities and
averaging over the ensemble of models they produce. The
marginal likelihood p(x) of the MFA for Bayesian learning
can be rewritten as:

p(x) =
∫

dθp(θ)p(x|θ)

=
∫

dπp(π)

∫
d�p(�)

∫
dμp(μ)

×
N∏

n=1

∫
dznp(zn)

×
[

S∑

s=1

p(s|π)p(xn|s, z(s)
n ,�(s),μ(s),�)

]
. (8)

By integrating out the model parameters, the principle of
Occam’s razor is incorporated naturally (Jefferys and Berger
1992; MacKay 1992). From Eq. 8, the factorization of the
model parameter distributions are derived from the struc-
ture of the graphical model shown in Fig. 2(a). The super-
scripts (s) for π , �, μ and zn are dropped because they rep-
resent the terms after summing over all factor analyzers. We
choose these notations to make the equation more succinct.
Instead of using π (s), we use p(s|π ) for clear explanation
as we later use variational distribution q(s) to approximate
p(s|π). Similar notation conventions have been adopted in
the lower bounds defined in Eqs. 10 and 11.

While the Bayesian approach provides a mechanism for
automatic model selection, the integrals in Eq. 8 are often
computationally intractable. To approximate these integrals,
one can use sampling based approaches (Rasmussen 2000;
Richardson and Green 1997) or analytical local Gaussian
approximation based approaches (Cheeseman and Stutz
1996; Kass and Raftery 1995; Schwarz 1978). However,
sampling approaches tend to be slow and it is generally diffi-
cult to assess their convergence, while the analytical approx-
imation approaches are based on the large data limit (Beal
2003), and the local Gaussian approximation is not suitable
for bounded or positive parameters, such as the mixing pro-
portions of the model.

We adopt a variational Bayesian (VB) approach in our
formulation. Using Jensen’s inequality, a lower bound can
be formulated using the log marginal likelihood p(x) by in-
troducing a variational distribution q(θ) over the model pa-
rameters θ :

L ≡ logp(x)

= log
∫

dθp(x, θ)

≥
∫

dθq(θ) log
p(x, θ)

q(θ)

= −KL(q(θ)‖p(θ)) +
∫

dθq(θ) lnp(x|θ)

≡ F (V B). (9)

Based on the above equation, maximizing F (V B) is equiv-
alent to minimizing the KL-divergence between q(θ) and
p(θ |x), since p(x, θ) = p(θ)p(x|θ). As a result, we can use
a tractable q(·) to approximate the intractable posteriors.
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Table 3 MFA model parameter priors. N (·, ·) stands for normal distri-
bution; G(·, ·) refers to Gamma distribution and D(·) represents Dirich-
let distribution. We exclude the prior distribution of the observation

noise, � , since it does not grow with the model complexity. The pa-
rameters in different components are independent, e.g., p(�|ρ,β∗) =∏S

s=1 p(�(s)|ρ(s),β∗)

Parameter Prior

p(π |u∗) π ∼ D(u∗), where u∗ = ((u∗)(1), . . . , (u∗)(s), . . . , (u∗)(S))

p([�(s)]T
j ·|ρ(s),β∗

�) [�(s)]T
j,· ∼ N (0, [ρ(s)]−1[diag(β∗

�)]−1) , for j = 1, . . . ,D.

p(ρ(s)|a∗,b∗) [ρ(s)] ∼ G(a∗,b∗), for i = 1, . . . , dmax .

p(μ(s)|μ∗,β∗
μ) μ(s) ∼ N (μ∗, [diag(β∗

μ)]−1)

Compared to the sampling based and the analytical ap-
proximation based approaches, the VB approach has the fol-
lowing advantages:

(1) convergence can be easily assessed by monitoring
F (V B),

(2) a suitable q leads to an efficient solution, and
(3) the form of q can be tailored to each parameter.

In (Beal 2003), a variational Bayesian learning algorithm
is derived for the of mixture of factor analyzers (MFA). Our
proposed method extends the work of (Beal 2003) for the
variational Bayesian learning of the globally coordinated
mixture of factor analyzers (VBGCMFA). To help the reader
in understanding our derivation of VBGCMFA, we first re-
view the derivation of (Beal 2003) (Sect. 5.1). We then show
that the VBMFA algorithm can be easily extended to our
VBGCMFA model (Sect. 5.2).

To demonstrate the strength of our variational Bayesian
formulation, we apply it on a standard data dimensionality
reduction and reconstruction task (Sect. 5.3). We compare
its performance with a two-step solution proposed in (Teh
and Roweis 2002) which we used in our previous work (Li
et al. 2006).

In the following derivations, we use θ to denote the para-
meters of the mixture model. The parameters that describe
the distribution of the model parameters are referred to as
hyperparameters and denoted as �.

5.1 Variational Bayesian Mixture of Factor Analyzers
(VBMFA)

In (Beal 2003), conjugate priors for θ in Eq. 9 are used to
simplify inference. We refer the interested reader to (Beal
2003) for the detailed explanation for the choices of prior
distributions. We provide an overview of the VB solution
for the MFA of (Beal 2003) in this section, so that the VB
derivation for GCMFA in Sect. 5.2 is self-contained.

First, we give the prior distributions of the MFA model.
The model priors are listed in Table 3. The priors we choose
are conjugate to the likelihood terms in the last term of Eq.
4. Variables with superscript “∗” are hyperparamters to the
MFA model. We use [·]j · to indicate the j -th row and [·]ji

to index the entry at j -th row and i-th column of the matrix
inside the brackets. If the variable inside the brackets is a
vector, then single index is used to denote the entries in the
vector. We use [·]T to represent the matrix/vector transpose
operation and [·]−1 to denote the inverse operation on the
matrix or element-wise inverse operation on the vector.

The dimensionality of the latent space is determined
through the precision parameter ρ(s) using the automatic
relevance determination mechanism proposed in (MacKay
1996). For the precision parameter vector ρ(s), we set the
dimensionality of ρ(s) to be dmax , i.e., the maximal possible
dimensionality of the latent space. If one of these precisions
[ρ(s)]i → ∞ (for i = 1, . . . , dmax ), then the i-th factor of the
s-th FA will have to be very close to zero which leads to the
analyzer to ignore this factor and thus reduce that dimension
of the corresponding latent representation in the s-th FA.

From Eq. 9, we have the following derivation to obtain
the lower bound F (V B):

L ≡ lnp(x)

= ln

(∫
dπp(π |u∗)

∫
dρp(ρ|a∗, b∗)

×
∫

d�p(�|ρ,β∗
�)

∫
dμp(μ|μ∗,β∗

μ)

×
N∏

n=1

∫
dznp(zn)

×
[ S∑

s=1

p(s|π)p(xn|s, zn,�
(s),μ(s),�)

])

≥
∫

dπdρd�dμ q(π ,ρ,�,μ)

×
(

ln
p(π |u∗)p(ρ|a∗, b∗)p(�|ρ,β∗

�)p(μ|μ∗,β∗
μ)

q(π ,ρ,�,μ)

+
N∑

n=1

[ S∑

s=1

∫
dznq(s, zn)

(
ln

p(s|π)p(zn)

q(s, zn)
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Algorithm 1 VB learning algorithm for MFA
1: Initialize parameters. Initialize hidden variables and state priors.
2: for n1 = 1:max_iter_1 do
3: VBM Step:
4: Compute the expected natural parameters of q(θ).

5: VBE Step:
6: Compute the sufficient statistics of hidden variable distributions q(s) and q(g).

7: Optimize hyperparameters.
8: end for

+ lnp(xn|s, zn,�
(s),μ(s),�)

)])

≡ F (V B)(q(θ), q(s, z),�). (10)

Thus, the resulting lower bound F (V B) is a functional over
the variational posterior distributions of the model parame-
ters q(θ), a functional of the variational posterior distrib-
utions of the hidden variables of every data point, q(s, z)
(we use q(s, z) to denote the set of distributions), and also a
function of the hyperparameters �.

The VB learning algorithm aims to optimize the lower
bound F (V B) defined in Eq. 10 with the model parameter
priors defined in Table 3.

5.1.1 Inferring the Number of FAs in the Mixture

Our learning algorithm already provides an automatic rele-
vance determination (ARD) mechanism to discover the lo-
cal dimensionality for each FA in the mixture through the
precision parameter ρ. To infer the optimal number of FAs
in the mixture, a top-down approach is used. Therefore, the
training process starts with one FA and allows it to split if
F (V B) can be optimized though the splitting. The candidate
for splitting is chosen stochastically with probability propor-

tional to exp−ωF (V B)
s , where ω is a temperature parameter

to be set empirically and F (V B)
s is the last bracketed term

in Eq. 10 normalized by
∑N

n=1 q(sn). This splitting process
causes F (V B) to decrease as the newly spawned component

is initialized by partitioning the responsibilities of the par-
ent component for the data. If a split is legitimate, after opti-
mization, the spawned components should fit the data better
and overcome the penalty of the increasing model complex-
ity. As a result, after the initial decrease, F (V B) should re-
cover or increase. By monitoring the progress of F (V B), we
can determine whether to accept this splitting or not.

This algorithm can be used to infer the dimensionality of
the latent space and the number of FAs automatically. How-
ever, as pointed out in Sect. 4, we would prefer a globally co-
ordinated mixture of factor analyzers. Thus, we must extend
this formulation to incorporate the prior distributions for the

global coordination parameters �(s) and κ (s) so that we can
perform variational Bayesian learning for the GCMFA. This
formulation will be described in the next section.

5.2 Variational Bayesian GCMFA (VBGCMFA)

The GCMFA described in Sect. 4 has two sets of addi-
tional parameters {κ (s)} and {�(s)} for global coordination.
Since the size of these parameters increases with the num-
ber of FAs and the dimensionality of the latent space, we
introduce hyperparameters for the prior distribution κ (s)

and �(s). The prior for κ (s) is Gaussian distributed with
p(κ (s)|κ∗, [diag(β∗

κ )]−1) and a Gamma prior is placed on
�(s) such that p(�(s)|a∗

�(s) , b
∗
�(s) ). The corresponding lower

bound can be derived as:

L ≡ lnp(x)

= ln

(∫
dπp(π |u∗)

∫
dρp(ρ|a∗, b∗)

∫
d�p(�|ρ,β∗

�)

∫
dμp(μ|μ∗, β∗

μ)

∫
dκp(κ |κ∗, β∗

κ )

×
∫

d�p(�|a∗
�, b∗

�)

N∑

n=1

∫
dgnp(gn)

[
S∑

s=1

p(s|π)p(xn|s,gn,�
(s),μ(s),κ (s),�(s),�)

])

≥
∫

dπdρd�dμdκd� q(π ,ρ,�,μ,κ,�)
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×
(

ln
p(π |u∗)p(ρ|a∗, b∗)p(�|ρ, β∗

�)p(μ|μ∗, β∗
μ)p(κ |κ∗, β∗

κ )p(�|a∗
�, b∗

�)

q(π ,ρ,�,μ,κ,�)
+

N∑

n=1

∫
dgnq(gn) ln

p(gn)

q(gn)

+
S∑

s=1

q(s) ln
p(s|π)

q(s)
+

N∑

n=1

∫
dgnq(gn)

[
S∑

s=1

q(s) lnp(xn|s,gn,�
(s),μ(s),κ (s),�(s),�)

])

≡ F (V B)(q(θ , q(s), q(gn),�)).
(11)

The hidden variable distributions now are q(sn) and
q(gn) compared to q(sn) and q(zn|sn) in the VBMFA for-
mulation. The factorization is from the enforcement of
the global alignment constraint such that q(g, s1|xn) ≈
q(g, s1|xn) described in Sect. 1.

Given these changes, the same derivation procedure for
VBMFA can be reused. Furthermore, the same top-down ap-
proach for splitting FAs in the mixture can still be used.

5.3 Comparison with the Post-Coordination Solution (Teh
and Roweis 2002)

The goal of this experiment is to compare the varia-
tional Bayesian formulation of two different coordination
schemes. The solution proposed in this paper advocates the
idea of learning the coordination parameters in concert with
the MFA parameters in a variational Bayesian framework.
This is in contrast with (Teh and Roweis 2002), which em-
ploys a two-step approach: first a MFA is learned, then the
coordination is performed by solving a generalized eigen-
value problem. To realize automatic model selection for the
post-coordination solution, the algorithm proposed in (Beal
2003) is used as the first step in the post-coordination ap-
proach. The coordination step stays the same. We use the
S-CURVE data with added noise of 0.06. 1200 3D data
points are used for training. In both approaches, the vari-
ational Bayesian formulation gives the same number of fac-
tor analyzers and 2 as the dimension of the latent space. The
experiment is conducted using Matlab on a 3.46 GHz Intel
Pentium PC with 4 GB memory. The training for the post co-
ordination method takes about 5 minutes while our method
takes 8 minutes as there are more parameters to optimize in
the variational Bayesian learning.

The embedding results are shown in Fig. 3. The first row
shows the resulting globally coordinated MFA that is ob-
tained using the post-coordination approach and the second
row shows the results obtained using our method. We can
see that even with noisy data, our proposed solution is still
able to produce a good embedding. In contrast, the post-
coordination approach uses many overlapping FAs and the
data points in the resulting 2D embedding are not as evenly
spaced out as in our method. This is due to the presence of
noise in data; the factors in MFA could capture the wrong

orientation in the first step since there is no constraint to
force it to align with neighboring factors. This problem can
be observed in the high curvature areas of the S-CURVE
set. Quantitatively, if we look at the reconstruction errors
reported in Table 4, the function fg→x learned from our
method also provides more accurate mapping from the la-
tent coordinate g to its corresponding coordinate x.

6 Application Demonstration on the HumanEvaI Data
Sets

To demonstrate the application of the proposed varia-
tional Bayesian formulation for the one-step solution of the
GCMFA, we first apply it to 10 motion capture sequences
from HumanEvaI datasets to learn the latent space represen-
tation of the joint angles in Sect. 6.1. Then we make use
of the latent space representations in a multiple hypothesis
tracking algorithm in Sect. 6.2 for tracking corresponding
test video sequences from HumanEvaI data set.

We use 10 motion capture sequences from Trial 3 as our
training data.1 These 10 sequences consist of two subjects
(S2 and S3) performing various actions. These contains 5
different actions performed by two different subjects S1 and
S2, including interesting and challenging sequences such as
Throw/Catch and Box, as the limb movements in these ac-
tions are relatively fast and involve abrupt changes in move-
ment directions and velocity.

6.1 Learning the Joint Angle Configurations

In our application for using VBGCMFA to learn the dimen-
sionality reduced space, each training data sample per frame
xn is a column vector that consists of the exponential map
representations of the joint angles computed from the mo-
tion capture data. We adopt the same 3D cylindrical model
used in (Sidenbladh et al. 2000); we leave out the global
translation from training. Hence, the human pose data sam-
ple per frame is represented as a 28-dimensional column
vector.

1We refer interested readers to (Sigal and Black 2006) for the detailed
setup of the motion capture sessions.
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Fig. 3 Comparison of model learning and data embedding results. The
data we used for training is the S-CURVE dataset from http://www.cs.
toronto.edu/~roweis/lle/code.html. This is a data set of 1200 uniformly
sampled data points from the manifold with added noise of 0.06 along
each dimension. The visualization of the training dataset is shown
in the 3D plots in the first row. The first column a shows the post-
coordination method (Teh and Roweis 2002) where the mixture of
factor analyzers (MFA) learning step is replaced by the variational
Bayesian MFA (Beal 2003). The results for our method are shown in
the second column. The ellipsoids in the 3D plots represent the FAs in
the mixture and the ellipses are their corresponding 2D projections. It

can be seen from the 2D plots that our method produces more evenly
spaced out FAs while the FAs in the post-coordination method are
mostly overlapped. This is undesirable as some of the FAs might be re-
dundant if there is too much overlap among them. Furthermore, given a
fixed number of FAs, overlapping FAs might cause some regions on the
manifold uncovered. As evident in the plots for both 3D and 2D, our
method is less susceptible to noise thanks to the global coordination
constraint. This is especially visible in the high curvature areas of the
S-CURVE as the noise has caused some of the FA’s to orient towards
the orthogonal direction of the tangential direction of the manifold

Table 4 Comparison of the Reconstruction Error. We take the inferred
2D coordinates g and make use of the mapping function fg→x to re-
construct the 3D data. The error statistics reported here are the mean

and variances of the root mean squared error between the reconstructed
data and the training S-CURVE data

Mean error Variance of the error

Post-Coordination (Teh and Roweis 2002) [0.6973,0.8207,0.4127] [0.1919,0.2186,0.0665]
Our method [0.6002,0.2332,0.3011] [0.0863,0.0211,0.0373]

http://www.cs.toronto.edu/~roweis/lle/code.html
http://www.cs.toronto.edu/~roweis/lle/code.html
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Table 5 Number of factor
analyzers (S) and
dimensionality of the latent
space (d) obtained from
applying the proposed
VBGCMFA to the training
motion capture sequences

Subject Action Length Number of factor analyzers Latent space dimension

S2 Walk 1500 10 4

S2 Jog 1500 12 5

S2 ThrowCatch 3000 9 4

S2 Gesture 3000 14 5

S2 Box 3000 19 6

S3 Walk 2000 13 4

S3 Jog 1500 15 6

S3 ThrowCatch 2000 7 5

S3 Gesture 1500 9 4

S3 Box 1500 11 7

In the VBGCMFA learning, the dimension d for the la-
tent space coordinate g and the number of mixtures S are
determined automatically as described in Sect. 5.2. Clusters
in the latent space correspond to factor analyzers in the mix-
ture. This cluster-based representation leads to a straightfor-
ward algorithm for multiple hypothesis tracking, as will be
described in Sect. 6.2.

In the training, we start with a single factor analyzer and
allow it to split during iteration until convergence. On av-
erage, training takes about 3–6 hours in Matlab on a 3.46
GHz Intel Pentium PC with 4 GB memory. The results from
training are shown Table 5.

In (Li et al. 2006; Sminchisescu and Jepson 2004; Tian
et al. 2005b; Urtasun et al. 2005), the dimensionality of the
latent space is determined empirically, mostly 2–5 dimen-
sions. The dimensionality of the latent space reported in Ta-
ble 5 is obtained by examining the posterior distributions
over ν, the precisions of each factor analyzer’s columns, and
thresholding on the mean of each distribution.

6.2 3D Articulated Human Tracking

In the application to 3D articulated human tracking, at each
time step t , the tracker state vector is represented by Xt =
(Pt ,gt ), where Pt is the 3D location of the pelvis (which is
the root of the kinematic chain of the 3D human model) and
gt is the point in latent space. Once the tracker state has been
initialized, the basic idea of a filtering based tracking algo-
rithm is to maintain a time-evolving probability distribution
over the tracker state. Let Zt denote the aggregation of past
image observations, i.e., Zt = {z1, z2, . . . , zt }. Assuming zt

is independent of Zt−1 given Xt , we have the following stan-
dard equation:

p(Xt |Zt ) ∝ p(zt |Xt )p(Xt |Zt−1). (12)

Here we use a multiple hypothesis tracker (MHT) together
with the learned VBGCMFA model. As VBGCMFA pro-
vides clusters in the latent space, it is natural to make use of

the centers of the clusters as the initial modes in the MHT,
where p(g|s) follows a Gaussian distribution. Given that in
each cluster, the points in the latent space represent the poses
that are similar to each other in the original space, we can ap-
ply a much simpler dynamical model in the prediction step
of the filtering algorithm. The modified MHT is summarized
in Algorithm 2.

To compute the likelihood for the current prediction and
the input video frame, first the silhouette of the current video
frame is extracted through background subtraction. The pre-
dicted model is then projected onto the image and the cham-
fer matching cost between the projected model and the im-
age silhouettes is considered to be proportional to the neg-
ative log-likelihood. The reader is referred to (Balan et al.
2005) for a more detailed discussion.

The MHT algorithm proposed here differs from the al-
gorithm proposed in (Cham and Rehg 1999) in the use of
the latent space to generate proposals in a principled way.
In (Cham and Rehg 1999), the modes were selected empir-
ically and the distributions were assumed to be piecewise
Gaussian. In contrast, the output from the off-line learning
algorithm (VBGCMFA) forms clusters, where each cluster
is described by a Gaussian distribution in the latent space
and the samples generated from the latent space are indeed
drawn from a piecewise Gaussian distribution. The choice
of modes to propagate over time becomes automatic given
the statistics of the clusters in the latent space.

7 Experiments

Given the above implementation, we evaluate the proposed
tracker’s performance in comparison with two competing
approaches on the 10 test video sequences from HumanEvaI
Trial 2 of subjects S2 and S3 performing the actions as listed
in Table 5. In the experiments, we chose to use the videos
from cameras C1–C3. The reason for using multiview in-
formation is mainly due to the weak image feature as the
silhouettes extracted from the videos are rather noisy.
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Algorithm 2 A modified multiple hypothesis tracker
for each time instance t do

Prediction:
generate the prior density p(Xt |Zt−1) by passing through the modes of p(Xt |Zt−1) through a simple constant velocity
predictor.

Likelihood computation:

(1) Create the initial hypothesis seeds by sampling the distribution of p(Xt |Zt−1). Note the samples of g are drawn
around the modes of G in the latent space based on the covariance matrix of each cluster in the latent space.

(2) Obtain the modes (local maxima) of the likelihood function p(zt |Xt ) by computing the matching cost of the sam-
ples.

(3) Measure the local statistics associated with each likelihood mode.

Posterior density computation:
The posterior density p(Xt |Zt ) is updated through Eq. 12.

end for

Table 6 Error statistics of Fig. 4. The means (and standard deviations) of the 3D tracking errors (in millimeters) computed over 200 tracked
frames

Action Subject 2 Subject 3

APF GPLVMPF Our Method APF GPLVMPF Our Method

(Deutscher et al. 2000) (Tian et al. 2005b) (Deutscher et al. 2000) (Tian et al. 2005b)

Walking 107.77(50.58) 88.35(25.66) 68.67(24.66) 110.21(53.53) 87.39(21.69) 69.59(22.22)

Jog 120.53(55.67) 91.69(25.93) 72.14(54.66) 111.82(47.91) 99.05(21.90) 70.13(21.34)

Throw/Catch 107.68(46.71) 85.95(21.25) 68.03(22.18) 104.62(40.42) 84.50(23.01) 59.13(24.00)

Gesture 102.55(45.06) 84.63(18.60) 67.66(23.85) 100.37(33.78) 87.15(11.69) 50.61(18.53)

Box 107.68(34.09) 85.95(18.23) 70.02(22.74) 120.11(58.55) 90.34(25.60) 67.17(23.03)

The quantitative comparisons of our method are car-

ried out against (1) annealed particle filtering (Deutscher

et al. 2000) (APF), and (2) the tracking algorithm pro-

posed by (Tian et al. 2005b) where the Gaussian process

latent variable model (GPLVM) was used to reduced state

space dimensionality of a particle filtering algorithm. We

use GPLVMPF to refer this tracking algorithm. APF and

GPLVMPF are chosen for comparison as both address the

issue of sample impoverishment problem for particle filter-

ing in 3D human tracking. Smart sampling (Deutscher et al.

2000) in the original state space is used in APF and a di-

mensionality reduced state space is used in GPLVMPF. Our

work is similar to GPLVMPF as we also proposed a method

to reduce the dimensionality of the state space.

The number of modes and dimensionality of the latent

state space for our tracking algorithm are set according to

Table 5. For APF, 5 layers and 500 particles for each layer

are used. For GPLVMPF, the latent space dimensions for

different sequences are set to be the same as the correspond-

ing setup for our method (Table 5). 500 particles are used
for our implementation of GPLVMPF.2

Three camera views are used for the implementation of
all three tracking algorithms. The frame rate for both our
proposed method and the method of (Tian et al. 2005b) on
a 3.46 GHz machine with 4 GB RAM was approximately
0.6 minutes per frame, while the annealed particle filtering
algorithm took 1.5 minutes per frame. In both our proposed
algorithm and (Tian et al. 2005b), the global translation was
modeled separately by simple linear dynamics learned from
motion capture data.

In Table 6, the mean and the standard deviation of tracker
error of the three tracking algorithms are reported. As pro-
posed in (Balan et al. 2005), the error is measured as the
absolute distance in millimeters between the true and esti-
mated 3D marker positions on the body limbs. Fifteen mark-
ers are used, which correspond roughly to the locations of
the joints and “ends” of the limbs.

Our method consistently outperforms the competing ap-
proaches. Moreover, with our method, the optimal model pa-

2Fewer particles were used in (Tian et al. 2005b) as the dimensionality
of the latent space was only 2.
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Fig. 4 3D Tracking error of S3 for the 5 actions. The vertical axis represents the mean tracker error in millimeters while the horizontal axis shows
the frame indices

rameters were selected automatically. In Fig. 4, the mean
3D tracking errors of subject S3 for all 5 actions for all
three methods are plotted. As can be seen in the plot, our
method has the smallest mean error among the three meth-
ods. Compared to the results reported in (Poppe 2007b)
where an exhaustive search of the (pose, image feature) pair
database is used, the mean errors of method on actions like
Throw/Catch and Box are about 40 mm better with smaller

standard deviation too. For actions like Walking, Jog and
Gesture, our method reports comparable numbers. This is
because for actions like Throw/Catch and Box, the complex
motion variations might be challenging for (Poppe 2007b)
as the estimation is based on the interpolation of the top k

retrieval results.
Figures 5 and 6 show example tracking results and

the corresponding estimated 3D poses from the boxing se-
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Fig. 5 Sample tracking result. The first two rows show the results of frame 35 from the test video sequence of S3 performing boxing. The first
two rows show the results of frame 55
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Fig. 6 Sample tracking result of frame 140 from the test video sequence of S3 performing boxing

quence of subject S3. With a learned prior model, both the
proposed algorithm and GPLVMPF are able to track reli-
ably when self-occlusion or motion blur occur. In contrast,
annealed particle filtering usually loses track of some body
limbs. Therefore, smart sampling alone does not do a very
good job in tracking given the weak image likelihood func-
tion used (chamfer matching between the silhouettes). At
frame 35 in Fig. 5 and frame 140 in Fig. 6, GPLVMPF loses
track of the subject’s left arm. The strength of the GPLVM
(global smoothness) in this case may be its weakness. As
GPLVM ensures temporal smoothness, it may learn an over-
smoothed density function and consequently fail to capture
large pose changes over time. In contrast, our method prop-
agates modes over time. At each time step, the samples are
generated from each mode separately and temporal smooth-
ness is only enforced on samples drawn from the same clus-
ter; hence, our proposed algorithm tends to capture large
movements more accurately.

Additional tracking results for other test sequences are
shown in Figs. 7, 8 and 9. It can be seen that our method

consistently tracked body limbs over time with the automat-
ically selected model setup. The tracking performance of
GPLVMPF is not far from the proposed method, however,
the latent dimension must be set manually.

The APF does not require any special training. It only
learns a simple linear dynamical model from the training
data. The APF does not perform as well as the other two
methods, as smart sampling alone does not ensure the sam-
pled hypotheses are similar to the training motion. The weak
dynamical model may also cause the relatively large training
error. Hence, if we know the motions that we want to track,
it is always beneficial to encode such prior information and
incorporate it into tracking.

8 Discussion and Future Work

A learning based approach was proposed to reduce the di-
mensionality of the state space of Bayesian tracking. A vari-
ational Bayesian formulation for the one-step solution of
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Fig. 7 Sample tracking results from the test video sequence of S2 performing boxing. The first row is frame 1, the second row is frame 80 and the
last row is frame 140
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Fig. 8 Sample tracking results from the test video sequence of S2 performing jogging. The first row is frame 1, the second row is frame 80 and
the last row is frame 140

the globally coordinated mixture of factor analyzers was de-
rived. Its success in the application to human motion track-
ing was evaluated on the HumanEvaI benchmark datasets.
The variational Bayesian formulation solves the problem of
choosing the optimal model setup in a principled way. With
the automatically chosen model setup, our tracker demon-
strates better performance than the competing approaches
(Deutscher et al. 2000; Tian et al. 2005b) in terms of mean
and standard deviation of the estimated marker error in the
experiments. Hence, the variational Bayesian formulation
maintains the advantages of the approach proposed in (Li
et al. 2006), but without the trouble of guessing the optimal
model setup.

Since tracking involves time series data, one promis-
ing direction would be to exploit the temporal information
in learning the dimensionality-reduced space. Such tempo-

ral extensions have been proposed in (Jenkins and Matarić

2004; Li et al. 2007; Lin et al. 2006; Wang et al. 2008). How-

ever, how to choose the optimal model setup still remains an

open problem. Thus, our future work would be to derive a

variational Bayesian formulation for the methods proposed

in (Li et al. 2007; Lin et al. 2006) where the temporal exten-

sions of the mixture of factor analyzers are proposed.

Another interesting direction to explore is to enforce

topological constraints in the latent space. As pointed out

in (Elgammal and Lee 2009; Urtasun et al. 2008), the la-

tent spaces of certain motions demonstrate specific known

topologies. Therefore, such constraints should be exploited

when learning the dimensionality-reduced space, and meth-

ods to encode such constraints in the mixture models should

be investigated.



Int J Comput Vis

Fig. 9 Sample tracking results from the test video sequence of S3 performing jogging. The first row is frame 1, the second row is frame 80 and
the last row is frame 140

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

In GCMFA, the latent coordinate g(s)
n is normally distrib-

uted with each factor analyzer: p(gn|s) = N (κ (s),�(s)).
Furthermore, the observation xn and its corresponding la-
tent coordinate in factor analyzer s are related by a lin-
ear process parameterized by centers μs , factor loading
matrix �(s) and sensor noise covariance �: p(xn|gn, s) =
N (μ(s) + �(s)g(s)

n ,�), where g(s)
n = ĝn − κs . The objective

function shown in Eq. 5 can be written as:

� =
N∑

n=1

S∑

s=1

q(s)
n (S (s)

n − ξ (s)
n ), (13)

where

q(s)
n = q(sn),

S (s)
n = 1

2
log |�gn | − logq(s)

n + d

2
log(2π),

ξ (s)
n = − logπ (s) + D + d

2
log(2π) + 1

2
log |�(s)|

+ 1

2
log |�| + 1

2
Tr{�(s)(�gn + g(s)

n g(s)
n

T
)}

+ 1

2
Tr{�gn [�(s)]T �−1�(s)}
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Algorithm 3 Learning the globally coordinated mixture of factor analyzers
1: E-step: Optimize � with respect to the parameters of q(sn) and q(gn)

2: q
(s)
n = exp−ξ

(s)
n

∑S
s′=1 exp−ξs′

n

,

3: �gn = ( q
(s)
n V(s) )−1, where V(s) = [�(s)]−1 + [�(s)]T�−1�(s) ,

4: ĝn = �gn

∑S
s=1q

(s)
n V(s)m(s)

n , where m(s)
n = κ(s) + [V(s)]−1[�(s)]T�−1(xn − μ(s)).

5: M-step: Optimize � with respect to the parameters of p(xn,g, s)

6: π (s) = 1
N

∑N
n=1 q

(s)
n ,

7: κ(s) = ∑N
n=1q̃

(s)
n ĝn, where q̃

(s)
n = q

(s)
n /

∑N
n′=1 q

(s)
n′ ,

8: μ(s) = ∑N
n=1q̃

(s)
n xn,

9: �(s) = ∑N
n=1q̃

(s)
n [g(s)

n [g(s)
n ]T + �gn ],

10: �(s) = C(s)[�(s)]−1 where C(s) = ∑N
n=1q̃

(s)
n x(s)

n [g(s)
n ]T,

11: [�]ii = ∑S
s=1

∑N
n=1q̃

(s)
n ([x(s)

n − �(s)g(s)
n ]2

i
+ [�(s)�gn [�(s)]T]ii ),

where [·]ii and [·]i denote the i-th diagonal entry of a matrix or i-th entry of a vector.

+ 1

2
(x(s)

n − �(s)gs
n)

T �−1(x(s)
n − �(s)g(s)

n ),

g(s)
n = ĝn − κ (s) and x(s)

n = xn − μ(s).

We can obtain the GCMFA model parameters θ together
with the variational regularizing parameters {ĝn,�gn , q

(s)
n }

from the variational distributions by iteratively optimiz-
ing � using an EM-like coordinate ascent algorithm in
learning. � is maximized in turn with respect to the vari-
ational distributions q(·) and the model parameters θ =
{{�(s),μ(s),�(s),κ (s)}Ss=1,�} respectively. This process is
summarized in Algorithm 3. To initialize the GCMFA, we
make use of local linear embedding method (Roweis and
Saul 2000).
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