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Abstract

Visual tracking, in essence, deals with non-stationary image streams that change over time. While most existing

algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant

variation of the object’s appearance or surrounding illumination. One reason for such failures is that many algorithms

employ fixed appearance models of the target. Such models are trained using only appearance data available before

tracking begins, which in practice limits the range of appearances that are modelled, and ignores the large volume of

information (such as shape changes or specific lighting conditions) that becomes available during tracking. In this

paper, we present a tracking method that incrementally learns a low-dimensional subspace representation, efficiently

adapting online to changes in the appearance of the target. The model update, based on incremental algorithms for

PCA, includes two important features: a method for correctly updating the sample mean, and a forgetting factor to

ensure less modelling power is expended fitting older observations. Both of these features contribute measurably

to improving overall tracking performance. Numerous experiments demonstrate the effectiveness of the proposed

tracking algorithm in indoor and outdoor environments where the target objects undergo large changes in pose, scale,

and illumination.

Index Terms: Visual tracking, subspace update, online algorithms, adaptive methods, particle filter, illumination.
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1. Introduction

Visual tracking essentially deals with non-stationary data, both the target object and the background, that change over

time. Most existing algorithms are able to track objects, either previously viewed or not, in short durations and in

well controlled environments. However these algorithms usually fail to observe the object motion or have significant

drift after some period of time, due to drastic change in the object’s appearance or large lighting variation in its

surroundings. Although such situations can be ameliorated with recourse to richer representations, effective prediction

schemes or combination, most algorithms typically operate on the premise that the model of the target object does not

change drastically over time. Examples abound, ranging from representation methods based on view-based appearance

models, [6], contours [16], parametric templates of geometry and illumination [12], integration of shape and color [4],

mixture models [5], 3D models [19], exemplars [32], foreground/background models [15] templates with updating

[24]; prediction schemes using particle filters [16], joint probabilistic data association filters [28], kernel-based filters

[8] [10], support vector machines [2] [34] and variational inference [33]. These algorithms usually build or learn a

model of the target object first and then use it for tracking, without adapting the model to account for changes in the

appearance of the object, e.g. large variation of pose or facial expression, or the surroundings, e.g. lighting variation.

Furthermore, it is assumed that all images are acquired with a stationary camera. Such an approach, in our view, is

prone to performance instability, thus needs to be addressed when building a robust visual tracker.

The chief challenge of visual tracking can be attributed to the difficulty in handling the appearance variability

of a target object. Intrinsic appearance variability includes pose variation and shape deformation,whereas extrinsic

illumination change, camera motion, camera viewpoint, and occlusions inevitably cause large appearance variation.

Due to the nature of the tracking problem, it is imperative for a robust algorithm to model such appearance variation.

In this paper we propose a method1 that, during visual tracking, efficiently learns and updates a low dimensional

subspace representation of the target object. The advantages of this adaptive subspace representation are several fold.

The subspace representation provides a compact notion of the “thing” being tracked rather than treating the target

as a set of independent pixels, i.e., “stuff” [1], and facilitates object recognition. An efficient incremental method

continually updates the subspace model to reflect changes in appearance caused by intrinsic and extrinsic factors,

thereby facilitating the tracking process. Incrementally updating the subspace removes the offline learning phase

required by other eigentrackers, allowing one to track objects for which a database of training images is not even

available. To estimate the locations of the target objects in consecutive frames, we use a sampling algorithm with

likelihood estimates, which is in contrast to other tracking methods that usually solve complex optimization problems

using gradient descent. Furthermore, while numerous algorithms operate under the assumption that there there is no

camera motion, our method is able to track objects without this constraint.

The remaining part of this paper is organized as follows. We begin, in the next section, by reviewing the most

relevant algorithms that motivated this work. The details of our algorithm are described in Section 3., where we

propose an efficient incremental subspace method with a mean update and forgetting factor, followed by an effective

tracking algorithm. The results of numerous experiments and performance evaluation are presented in Section 4..

We conclude this paper with remarks on potential extensions for future work. The data, source code, and videos

corresponding to this work can all be found at http://www.cs.toronto.edu/˜dross/ivt/.

2. Related Work and Motivation

There is a rich literature in visual tracking and a thorough discussion on this topic is beyond the scope of this paper.

In this section we review only the most relevant visual tracking work, focusing on algorithms that operate directly

on grayscale images. We contrast our method with these methods in terms of their representation scheme, target

prediction approach, and their ability to handle changes in illumination as well as appearance.

Visual tracking problems have conventionally been formulated as prediction tasks within which fixed templates

and optical flow techniques are utilized to estimate the motion of a target object [23]. Such approaches do not take

the appearance variability into consideration, and thus perform well only over short periods of time. To enhance the

robustness of such object trackers, Black and Jepson proposed an algorithm using a pre-trained view-based eigenbasis

1Preliminary results of this paper were presented in [29] and [21].
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representation and a robust error norm [6]. Instead of relying on the brightness constancy principal assumed in optical

flow techniques, they advocated the use of a subspace constancy assumption for motion estimation. Although their

algorithm demonstrated excellent empirical results, it entailed learning a set of view-based eigenbases before the

tracking task began. To achieve robust visual tracking with this method, it is imperative to collect a large set of

training images covering the range of possible appearance variation (including viewing angles and illumination) from

which to construct the eigenbasis, as this representation, once learned, is not updated.

Observing that low-dimensional linear subspaces are able to effectively model image variation due to illumination

[3], Hager and Belhumeur developed a tracking algorithm to handle the appearance variation caused by illumination

and pose change using parametric models [12]. Their method extends a gradient-based optical flow algorithm by

incorporating low-dimensional representations [3] for object tracking under varying illumination conditions. Before

tracking begins, a set of illumination bases needs to be constructed at a fixed pose in order to account for changes

in appearance due to lighting variation. However, this basis does not attempt to account for changes in pose such as

out-of-plane rotations.

Realizing the limitations of having a single (unimodal or Gaussian) hypothesis of target location at each timestep—

as produced by the Kalman filter and its relatives—Isard and Blake introduced particle filters to visual tracking and

presented the Condensation algorithm for contour tracking in which multiple plausible interpretations are propagated

over time [16]. This probabilistic approach has demonstrated success in tracking the outline of target objects in clutter.

However, the representation scheme employed (curves or splines) ignores the internal appearance of the target, and is

not updated to account for variations in its appearance, due to pose or illumination change.

Supervised discriminative methods for classification and regression have also been exploited to solve visual

tracking problems. In [2], a tracking algorithm that employs the support vector machine (SVM) classifier within

a optic flow framework was developed. Avidan modified the conventional use of the SVM classification score to

instead predict target location, by computing image gradients as is done in optical flow algorithms. Although this

algorithm has demonstrated success in tracking specific objects, e.g. cars from a mounted camera in a moving vehicle,

significant effort is required in training a SVM. Along similar lines, Williams et al. developed a method in which an

SVM-based regressor was used for tracking [34]. Instead of relying on optical flow to predict object location, they

learned a perturbation function of spatial in-plane displacements between frames, thereby predicting the most likely

object location. As a result of training the regressor on in-plane image motion, this method is not effective in tracking

objects with out-of-plane movements.

Mixture models have been studied as alternatives to linear representations, to better account for appearance change

in motion estimation [5] [17]. In [5] Black et al. identified four possible factors causing appearance change, fitting

them with a mixture model which was then used to estimate image motion. A more elaborate mixture model fit via

an online EM algorithm was recently proposed by Jepson et al. [17], in which three components were used to model

the responses of wavelet filters, and thereby account for appearance variation during tracking. Their method is able

to handle variations in pose, illumination and expression. However, their appearance model treats pixels within the

target region independently (ignoring their covariance) and thus does not have notion of the “thing” being tracked.

This can result in modelling background rather than the foreground, thereby failing to track the target object[17].

Attempts to improve the classic Lucas-Kanade tracker [23] with updates was recently made by Matthews et al.

[24]. They developed a template update method for visual tracking, which employs an active appearance model [9]

to account for image variation. Thus instead of using a fixed template, the object appearance is modelled by a linear

combination of appearance images. The tracking problem is then formulated as a search (using gradient descent)

for the affine parameters and linear combination which minimize the difference between the target object and the

current appearance model. The newly tracked object is then used to update appearance model, as necessary. They

demonstrated good tracking results on vehicles and faces with varying expressions. However, the authors noted that

the computation cost for updating the template increases dramatically as principal component analysis is carried out

at each update, and that their work covers the case where the visibility of the target object does not change.

Our work is motivated in part by the prowess of subspace representations as appearance models [26] [3], the ef-

fectiveness of particle filters [16], and the adaptability of on-line update schemes [17]. In contrast to the eigentracking

algorithm [6], our algorithm does not require a training phase but learns the eigenbases on-line during the object

tracking process. Thus our appearance model can adapt to changes in pose, view angle, and illumination not captured

by the set of training images—in fact the need to manually collect training images prior to tracking is eliminated.
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Further, our method uses a particle filter for motion parameter estimation rather than the gradient descent method,

which often gets stuck in local minima or is distracted by outliers [6]. Our appearance-based model provides a richer

description than simple curves or splines as used in [16], and has a notion of the “thing” being tracked. In addition, the

learned representation can be utilized for other tasks such as object recognition. With respect to the template update

method [9], we concurrently developed an efficient subspace update algorithm that facilitates object tracking under

varying pose and lighting conditions. Furthermore, our algorithm is able to handle camera motion while learning

compact representations and tracking objects. In this work, an eigenbasis representation is learned directly from

pixel values corresponding to a target object in the image space. Experiments show that good tracking results can

be obtained using this representation without employing more complicated wavelet features as in [17], although this

elaboration is still possible and may lead to even better results. Note also that the view-based eigenbasis representation

has demonstrated its ability to model the appearance of objects in different poses [26], and under different lighting

conditions [3]. Consequently, the learned eigenbasis facilitates tracking objects undergoing illumination and pose

change.

3. Incremental Learning for Tracking

We present details of the proposed incremental learning algorithm for object tracking in this section. First we propose

an efficient method that incrementally updates an eigenbasis as new observations arrive, which is used to learn the

appearance of the target while tracking progresses. Next we describe our approach for drawing particles in the

motion parameter space and predicting the most likely object location with the help of the learned appearance model.

Collectively, we show how these two modules work in tandem to track objects well under varying conditions.

3.1 Incremental Update of Eigenbasis and Mean

The appearance of a target object may change drastically due to intrinsic and extrinsic factors as discussed earlier.

Therefore, to produce a robust tracker, it is important to adapt the appearance model online, while tracking, to reflect

these changes. The appearance model we have chosen, a eigenbasis, is typically learned off-line from a set of training

images {I1, . . . , In}, by taking computing the eigenvectors U of the sample covariance matrix
1

n−1

∑n

i=1(Ii− Ī)(Ii−

Ī)⊤, where Ī = 1
n

∑n
i=1 Ii is the sample mean of the training images. Equivalently one can obtain U by computing

the singular value decomposition UΣV ⊤of the centered data matrix [(I1− Ī) . . . (In− Ī)], with columns equal to the
respective training images minus their mean.

Adapting the appearance model to account for novel views of the target can be thought of as retraining the

eigenbasis with an additional m images {In+1, . . . , In+m}, for some value of m. Naively, this update could be
performed by computing the singular value decomposition U ′Σ′V ′T of the augmented (centered) data matrix [(I1 −
Ī ′) . . . (In+m − Ī ′)], where Ī ′ is the average of the entire n + m training images.
Unfortunately this approach is unsatisfactory for online applications, like visual tracking, due to its storage and

computational requirements. Firstly, the naive approach uses the entire set of training images for each update. If an

update is made at each video frame, then the number of images which must be retained grows linearly with the length

of the sequence. Secondly, the cost of computing the mean and singular value decomposition grows with the number

of images, so the algorithm will run ever slower as time progresses. Instead, the requirements of our application dictate

that any algorithm for updating the mean and eigenbasis must have storage and computational requirements that are

constant, regardless of the number of images seen so far.

Numerous, more-sophisticated algorithms have been developed to efficiently update an eigenbasis as more data

arrive [11] [13] [20] [7]. However, most methods assume the sample mean is fixed when updating the eigenbasis,

or equivalently that the data is inherently zero-mean. Neither assumption is appropriate in our application. An

exception is the method by Hall et al. [14], which does consider the change of the mean as each new datum arrives.

Although similar to our (independently-developed) algorithm, it lacks the forgetting factor, which hurts its suitability

for tracking, and has a greater computational cost. (Both of these disadvantages are demonstrated quantitatively in

Section 4.3.) Part of the additional complexity comes, because Hall’s algorithm is based on the notion of adding

eigenspaces, from computing the eigenvalue decomposition of each block of new data as it arrives. In this respect our

algorithm is simpler, since it incorporates new data directly, without the additional step.
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Here we extend one of these efficient update procedures—the Sequential Karhunen-Loeve (SKL) algorithm of

Levy and Lindenbaum [20]—presenting a new incremental PCA algorithm that correctly updates the eigenbasis as

well as the mean, given one or more additional training data. Our algorithm, a variation of which was first presented

in [21], has also been applied to algorithms where the subspace mean plays an important role. For example, it can be

applied to adaptively update the between-class and within-class covariance matrices used in Fisher linear discriminant

analysis [22]. We begin with a summary of the SKL algorithm, then describe our new incremental PCA algorithm,

and follow with a discussion of a forgetting factor which can be used to down-weight the effect of earlier observations

on the PCA model.

Putting aside for the moment the problem of the sample mean, suppose we have a d × n data matrix A =
{I1, . . . , In} where each column Ii is an observation (a d-dimensional image vector in this paper), for which we
have already computed the singular value decomposition A = UΣV ⊤. When a d×mmatrix B of new observations is
available, the goal is to efficiently compute the SVD of the concatenation of A and B: [A B] = U ′Σ′V ′⊤. Letting B̃
be the component ofB orthogonal to U , we can express the concatenation ofA andB in a partitioned form as follows:

[

A B
]

=
[

U B̃
]

[

Σ UT B

0 B̃⊤B

] [

V ⊤ 0
0 I

]

. (1)

Let R =
[

Σ UT B
0 B̃⊤B

]

, which is a square matrix of size k + m, where k is the number of singular values in Σ. The

SVD of R, R = Ũ Σ̃Ṽ ⊤, can be computed in constant time regardless of n, the initial number of data. Now the SVD
of [A B] can be expressed as

[

A B
]

=
(

[

U B̃
]

Ũ
)

Σ̃

(

Ṽ ⊤

[

V ⊤ 0
0 I

])

.

Since an incremental PCA is only interested in computing U ′ and Σ′, V ′, whose size scales with the number of

observed data, need not be computed. Thus we arrive at the following formulation of the SKL algorithm.

Given U and Σ from the SVD of A, compute U ′ and Σ′ from the SVD of [A B]:

1. Obtain B̃ and R by taking the QR decomposition of [UΣ B]: [U B̃]R
QR
= [UΣ B].

2. Compute the SVD of R: R
SV D
= Ũ Σ̃Ṽ ⊤.

3. Finally U ′ = [U B̃]Ũ and Σ′ = Σ̃. If the desired number of basis vectors in U ′ is less than the number of

non-zero singular values, then these excess vectors and singular values may be discarded.

The algorithm can also be made slightly faster, although somewhat more complicated, by modifying the arrange-

ment of calculations in Step 1. Instead of computing the QR decomposition of [UΣ B̂], B̃ and R can be obtained

directly as follows: B̃ = orth(B̂ − UU⊤B̂) and R =
[

Σ U⊤B̂

0 B̃(B̂−UU⊤B̂)

]

, where orth() performs orthogonalization,

perhaps via QR. This reorganization, which follows from (1), avoids performing QR on the entire matrix [UΣ B̂] (note
that the columns corresponding to U are already orthogonal), instead only orthogonalizing (B̂−UU⊤B̂), which is the
component of B̂ not already in the subspace U .
The computational advantage of the SKL algorithm over the naive approach is that it has space and time complexity

that is constant in n, the number of training data seen so far. Specifically each update makes use of only the k largest
singular values and basis vectors from the previous stage. This, together with the storage required for the m new
images, reduces the space complexity to O(d(k + m)), down from O(d(n + m)2) with the naive approach. Similarly,
the computational requirements are also reduced to O(dm2), versus O(d(n + m)2) for recomputing the entire SVD.
More details and complexity analysis of the SKL algorithm are described in [20].

The problem with the SKL algorithm as stated above is that it makes no attempt to account for the sample mean

of the training data, which changes over time as new data arrive. We will now show how this can be overcome. The

essence of the approach is, at each update of the eigenbasis, to augment the new training data with an additional vector

carefully chosen to correct for the time-varying mean. We begin by proving the following lemma:
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Lemma 1 Let A = [I1, I2, . . . , In], B = [In+1, In+2, . . . , In+m] be data matrices and C = [A B] be their
concatenation. Denote the means and scatter matrices of A, B, C as ĪA, ĪB , ĪC , and SA, SB , SC respectively.

It can be shown that SC = SA + SB + nm
n+m

(ĪB − ĪA)(ĪB − ĪA)⊤.
In this lemma, we define a scatter matrix to be the outer product of the centered data matrix, for example SB =

∑m
i=n+1(Ii− ĪB)(Ii− ĪB)⊤. Thus a scatter matrix differs from the sample covariance matrix by only a scalar multiple

SB = m Cov(B). The proof of this lemma appears in the Appendix.

From Lemma 1 we can see that the SVD of (C − ĪC) is equal to the SVD of the horizontal concatenation of

(A− ĪA), (B − ĪB), and one additional vector
√

nm
n+m

(ĪB − ĪA). (The slight abuse of notation (A− ĪA) is meant as

a shorthand for the matrix [(I1 − ĪA) . . . (In − ĪA)].) This motivates our new algorithm, appearing in Figure 1.

Given U and Σ from the SVD of (A − ĪA), as well as ĪA, n, and B, compute ĪC as well as U
′ and Σ′ from the

SVD of (C − ĪC):

1. Compute the mean vectors ĪB = 1
m

∑n+m
i=n+1 Ii, and ĪC = n

n+m
ĪA + m

n+m
ĪB .

2. Form the matrix B̂ =
[

(Im+1 − ĪB) . . . (In+m − ĪB)
√

nm
n+m

(ĪB − ĪA)
]

.

3. Compute B̃ = orth(B̂ − UU⊤B̂) and R =
[

Σ U⊤B̂

0 B̃(B̂−UU⊤B̂)

]

.

Note that B̃ will be one column larger than in the SKL algorithm.

4. Compute the SVD of R: R
SV D
= Ũ Σ̃Ṽ ⊤.

5. Finally U ′ = [U B̃]Ũ and Σ′ = Σ̃.

Figure 1: The incremental PCA algorithm with mean update.

As can be seen, this algorithm shares the favorable complexity of the SKL algorithm, incurring only a small

constant overhead to store, update, and correct for the changing sample mean.

3.1.1 Forgetting Factor

In numerous vision applications it can be desirable to focus more attention on recently-acquired images and less on

earlier observations. For example, when tracking a target with a changing appearing, it is likely that recent observations

will be more indicative of its appearance than would more distant ones. Down-weighting the contribution of earlier

observations also plays an important role in online learning. As time progresses the observation history can become

very large, to the point of overwhelming the relative contribution of each block of new data, rendering the learner

‘blind’ to changes in the observation stream.

One way to moderate the balance between old and new observations is to incorporate a forgetting factor in the

incremental eigenbasis update, as suggested by [20]. To do this, at each update the previous singular values are

multiplied by a scalar factor f ∈ [0, 1], where f = 1 indicates no forgetting is to occur. Thus at Step 3 in Figure 1,

R =
[

fΣ U⊤B̂

0 B̃(B̂−UU⊤B̂)

]

, which is equivalent to taking the QR decomposition of [fUΣ B̂] instead of [UΣ B̂].

Although they propose the use of a forgetting factor, Levy and Lindenbaum do not provide any analysis as to its

effect on the resulting eigenbasis. We address this with the following lemma:

Lemma 2 A forgetting factor of f reduces the contribution of each block of data to the overall covariance modelled
by an additional factor of f2 at each SVD update.

Hence, after the kth update of the eigenbasis, the block of m observations added during the jth update (j < k) will
have its covariance down-weighted by a factor of f2(k−j). The proof of Lemma 2 appears in the Appendix. The

objective of PCA is to locate a subspace of dimension k that retains as much of the data covariance as possible (i.e.
maximizes the determinant of the projected data covariance |U⊤Cov(Data)U | [18]). Therefore it is a ‘win’ for PCA
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to select as basis vectors directions of large covariance in recent data, at the expense of directions favored only by

earlier data.

An important consideration not previously addressed is the affect of the forgetting factor on the mean of the

eigenbasis. Since the contribution of the previously-observed data to the covariance is decreased, it is necessary to

also reduce its contribution to the resulting mean. When a forgetting factor of f is used, we propose the following
modification to the mean update (Step 1 in Figure 1):

ĪC =
fn

fn + m
ĪA +

m

fn + m
ĪB

and at each update to compute the effective size of the observation history as n← fn + m.
A benefit of incorporating the forgetting factor into the mean update is that the mean can still change in response

to new observations, even as the actual number of observations approaches infinity. Specifically, using n← fn + m,
the effective number of observations will reach equilibrium at n = fn + m, or n = m/(1 − f). For instance, when
f = 0.95 and m = 5 new observations are included at each update, the effective size of the observation history will
approach n = 100.

3.2 Sequential Inference Model

The visual tracking problem is cast as an inference task in a Markov model with hidden state variables. The state

variable Xt describes the affine motion parameters (and thereby the location) of the target at time t. Given a set
of observed images It = {I1, . . . , It}, we aim to estimate the value of the hidden state variable Xt. Using Bayes’

theorem, we have the familiar result

p(Xt| It) ∝ p(It|Xt)

∫

p(Xt|Xt−1) p(Xt−1| It−1) dXt−1 (2)

The tracking process is governed by the observation model p(It|Xt), where we estimate the likelihood ofXt observing

It, and the dynamical model between two states p(Xt|Xt−1). The Condensation algorithm [16], based on factored
sampling, approximates an arbitrary distribution of observations with a stochastically generated set of weighted

samples. We use a variant of the Condensation algorithm to model the distribution over the object’s location, as it

evolves over time.

3.2.1 Dynamical Model

The location of a target object in an image frame can be represented by an affine image warp. This warp transforms the

image coordinate system, centering the target within a canonical box such as the unit square, as illustrated in Figure 2.

In this work the state at time t consists of the six parameters of an affine transformation Xt = (xt, yt, θt, st, αt, φt)
where xt, yt, θt, st, αt, φt, denote x, y translation, rotation angle, scale, aspect ratio, and skew direction at time t.
To develop a tracker for generic applications, the dynamics between states in this space is modelled by Brownian

motion. Each parameter in Xt is modelled independently by a Gaussian distribution around its counterpart in Xt−1,

and thus the motion between frames is itself an affine transformation. Specifically,

p(Xt|Xt−1) = N (Xt;Xt−1,Ψ) (3)

where Ψ is a diagonal covariance matrix whose elements are the corresponding variances of affine parameters, i.e.,

σ2
x, σ

2
y , σ

2
θ , σ

2
s , σ

2
α, σ

2
φ. These parameters dictate the kind of motion of interest to a tracker and this generic dynamical

model assumes the variance of each affine parameter does not change over time. More the complex dynamics can be

modelled, such as first or second order dynamic systems, as well as other adaptive techniques for specific applications

[27]. Like all the other applications using particle filters, there is a trade off between the number of particles needed to

be drawn (i.e. efficiency) and how well particle filters approximate Brownian motion (i.e. effectiveness). With larger

values in the diagonal covariance matrix Ψ and more particles, it is possible to track the object with higher precision
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Figure 2: The model of dynamics. A location is represented by an affine transformation (e.g. Xt−1), which warps the

coordinate system so that the target lies within the unit square. Particles representing possible target locations Xt at

time t are sampled according to P (Xt|Xt−1), which in this case is a diagonal-covariance Gaussian centered atXt−1.

at the cost of increased computation. In this paper, we find a balance between these factors for efficient and effective

visual tracking.

3.2.2 Observation Model

Since our goal is to use a representation to describe the “thing” that we are tracking, we model image observations

using a probabilistic interpretation of principal component analysis [31]. Given an image patch It predicated by Xt,

we assume It was generated from a subspace of the target object spanned by U and centered at µ. The probability of a
sample being generated from this subspace is inversely proportional to the distance d from the sample to the reference
point (i.e., µ) of the subspace, which can be decomposed into the distance-to-subspace, dt, and the distance-within-

subspace from the projected sample to the subspace center, dw. This distance formulation, based on a orthonormal

subspace and its complement space, is similar to [25] in spirit.

The probability of a sample generated from a subspace, pdt
(It|Xt), is governed by a Gaussian distribution:

pdt
(It |Xt) = N (It ; µ, UU⊤+ εI) (4)

where I is an identity matrix, µ is the mean, and εI term corresponds to the additive Gaussian noise in the observation
process. It can be shown [30] that the negative exponential distance from It to the subspace spanned by U , i.e.,
exp(−||(It − µ)− UU⊤(It − µ)||2), is proportional to N (It;µ, UU⊤+ εI) as ε→ 0.
Within a subspace, the likelihood of the projected sample can be modelled by the Mahalanobis distance from the

mean as follows:

pdw
(It |Xt) = N (It ; µ, UΣ−2U⊤) (5)

where µ is the center of the subspace and Σ is the matrix of singular values corresponding to the columns of U . Put
together, the likelihood of a sample being generated from the subspace is governed by

p(It|Xt) = pdt
(It|Xt) pdw

(It|Xt) = N (It;µ, UU⊤ + εI)N (It;µ, UΣ−2U⊤) (6)

Given a drawn particle Xt and the corresponding image patch It, we aim to compute p(It|Xt) using (6). To

minimize the effect of noisy pixels, we utilize a robust error norm [6], ρ(x, σ) = x2

σ2+x2 instead of the Euclidean

norm ||x||2, to ignore the outliers (i.e., the pixels that are not likely to appear inside the target region given the

8



current eigenbasis). We use a method similar to that used in [6] in order to compute dt and dw. This robust error

norm is helpful when we use a rectangular region to enclose the target object (which inevitably contains some noisy

background pixels).

3.2.3 Distance Metric

The two distances, dt and dw, have a probabilistic interpretation within a latent variable model, and care should

be taken to leverage their contributions within the observation model specified in (6). Denote x ∈ Rd as a high

dimensional data sample (i.e., image observation It at time t discussed in the previous section) and z ∈ Rq as the

corresponding low0dimensional latent variable. We can define a latent model with Gaussian noise ǫ ∼ N (0, σ2Id) as:

x = Wz + µ + ǫ (7)

whereW ∈ Rd×q is an orthogonal matrix,WT W = Iq, and z is a zero mean Gaussian z ∼ N (0, L) with L being a
diagonal matrix. From equation (7), we have

p(x|z) ∼ N (Wz + µ, σ2Id) (8)

In addition, we can compute the likelihood that observed sample x is generated from the model, p(x):

p(x) =

∫

p(x|z)p(z)dz ∼ N (µ,WLWT + σ2Id) (9)

By taking the log of p(x), we get

log p(x) = −
1

2
{log(2π)d + log |WLWT + σ2Id|+ (x− µ)T (WLWT + σ2Id)

−1(x− µ)} (10)

When parametersW , L and σ2 are fixed. log p(x) is determined by (x−µ)T (WLWT +σ2Id)
−1(x−µ). According

to the Sherman-Morrison-Woodbury formula

(WLWT + σ2Id)
−1 =

1

σ2
Id −

1

σ2
W (L−1 +

1

σ2
Iq)

−1WT 1

σ2
(11)

and since

(L−1 +
1

σ2
Iq)

−1 = σ2(Iq −D−1), (12)

where D is a diagonal matrix with Dii = Lii + σ2, we can get:

(WLWT + σ2Id)
−1 =

1

σ2
(Id −WWT ) + WD−1WT . (13)

In the probabilistic PCA model, W and D correspond to the eigenvectors and the diagonal matrix of eigenvalues
of the sample covariance matrix. Plugging (13) into (10), it is clear that log p(x) is determined by two terms: the
Euclidean distance to the subspace, (x − µ)T (Id −WWT )(x − µ) (i.e. dt in our formulation) weighted by

1
σ2 , and

the Mahalanobis distance within the subspace, (x− µ)T WD−1WT (x− µ) (i.e., dw in our model).

In (13) dt is scaled by σ2 in computing log p(x). As the observation noise σ2 increases, the contribution of dt is

reduced. On the other hand, the contribution of dw decreases if D is increased when L in (7 is increased. When D
goes to infinity, the contribution of dw becomes null and log p(x) is solely determined by dt. In this case, the Gaussian

model of latent variable z has infinite variance, which is equivalent to the case that z is uniformly distributed.
In summary, if we only use dt as a measurement of p(x), effectively we assume latent variable z is uniformly

distributed in the subspace. If we use both dt and dw in computing p(x), then we assume that the distribution of z in
the subspace is Gaussian as it covers only a local region in the subspace. In this work, we take the later view.
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3.3 Summary of the tracking algorithm

We now provide a summary of the proposed tracking algorithm in Figure 3. At the very beginning when the eigenbasis

1. Locate the target object in the first frame, either manually or by using an automated detector, and use a

single particle to indicate this location.

2. Initialize the eigenbasis U to be empty, and the mean µ to be the appearance of the target in the first frame.
The effective number of observations so far is n = 1.

3. Advance to the next frame. Draw particles from the particle filter, according to the dynamical model.

4. For each particle, extract the corresponding window from the current frame, and calculate its weight, which

is its likelihood under the observation model.

5. Store the image window corresponding to the most likely particle. When the desired number of new images

have been accumulated, perform an incremental update (with a forgetting factor) of the eigenbasis, mean,

and effective number of observations. In our experiments, the update is performed every fifth frame.

6. Go to step 3.

Figure 3: A summary of the proposed tracking algorithm.

is empty (i.e., before the first update), our tracker works as a template based tracker. There is a natural tradeoff between

update frequency and speed of movement. Likewise, there is a tradeoff between the number of particles and granularity

of movement. We will discuss these implementation issues in the next section.

4. Implementation and Experiments

To evaluate empirical performance of the proposed tracker, we collected a number of videos recorded in indoor and

outdoor environments where the targets change pose in different lighting conditions. Each video consists of 320×240-
pixel grayscale images recorded at 30 frames per second, unless specified otherwise. Note that there exists large and

unpredictable camera motion in the videos. For the eigenbasis representation, each target image region is resized to a

32× 32 patch, and the number of eigenvectors used in all experiments is set to 16, though fewer eigenvectors can also
work well. The forgetting term is empirically set to be 0.95, and the batch size for the eigenbasis update is set to 5

as a trade-off between computational efficiency and effectiveness of modelling appearance change during fast motion.

Implemented in MATLAB with MEX, our algorithm runs at 7.5 frames per second with 600 particles on a standard

2.8 GHz computer. Here we present selected tracking results, with more tracking results as well as videos available

at http://www.cs.toronto.edu/˜dross/ivt/. Note that the results can be better viewed on high resolution

displays or color printouts. Sample code and data sets are also available at the aforementioned website.

We begin by showing the results of our tracker on several sequences, then compare it qualitatively to two other

state-of-the-art trackers. Next we evaluate and compare the trackers’ quantitative performance, and empirically

demonstrate the accuracy of our incremental PCA algorithm. We conclude with a discussion of the experimental

results.

4.1 Experimental Results

We first tested our algorithm using a challenging video studied in [17]. The image sequence was downsampled every

other frame. Figure 4 shows the empirical results using our proposed method, where the first row of each panel

shows the tracked objects (enclosed with rectangles) and the second row shows (from left to right) the subspace

center, tracked image patch, residue, and reconstructed image using current eigenbasis. The red window shows the

maximum a posteriori estimate of the particle filter, and green windows show the other particles whose weights are

above a threshold. The eigenbasis images of the current subspace are shown in the third row of each panel (sorted

10



according to their eigenvalues). Note that our method is able to track the target undergoing pose (#46, #185, #344,

#376, #481), expression (#277, #398), and lighting (#344, #440) variation. Further, our method is able to track the

target with temporary occlusion (#104) and structured appearance change such as glasses (#6, #185). Compared with

the results reported in [17], our method is able to efficiently learn a compact representation while tracking the target

object without using wavelets. All the eigenbases are constructed automatically from scratch and constantly updated to

model the appearance of the target object, while it undergoes intrinsic and extrinsic changes. The eigenbases capture

the appearance details of the target in different pose, expression, and with or without glasses,

Figure 4: A person undergoing large pose, expression, appearance, and lighting change, as well as partial occlusions.

The red window shows the maximum a posteriori estimate of the particle filter, and the green windows show the other

particles with weight above a threshold. The results can be better viewed on high resolution displays or color printouts.

More results are shown in the accompanying video.

The second image sequence, shown in Figure 5, contains an animal doll moving in different pose, scale, and

lighting conditions. Once initialized in the first frame, our algorithm is able to track the target object as it experiences

large pose change (#65, #272, #364, #521, #550, #609), a cluttered background (#65, #450, #521, #609), scale change

(#65, #225), and lighting variation (#225, #364, #450, #609). Notice that the non-convex target object is localized

within a rectangular window, and thus it inevitably contains some background pixels in its appearance representation.

The robust error norm enables the tracker to ignore background pixels and estimate the target location correctly. The

results also show that our algorithm faithfully models the appearance of an arbitrary object, as shown in eigenbases

and reconstructed images, in the presence of noisy background pixels. Nevertheless, our tracker eventually fails after

frame 614 as a result of a combination of drastic pose and illumination change. Since the proposed algorithm is not

limited to rectangular patches when specifying a region of interest for tracking, better results can be expected with

more compact enclosing windows for specific targets.

Figure 6 shows the tracking results using a challenging sequence, recorded at 15 frames per second with a moving

digital camera, in which a person moves from a dark room toward a bright area while changing his pose, moving

underneath spotlights, changing facial expressions and taking off his glasses. Notice that there is also a large scale

variation in the target relative to the camera. Even with the significant camera motion and low frame rate (which

makes the motions between frames more significant, as when tracking fast-moving objects), our algorithm is able to

track the target throughout the sequence, experiencing only temporary drifts. In contrast, most gradient or contour
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Figure 5: An animal doll moving with significant pose, lighting and scale variation in a cluttered scene. The results

can be better viewed on high resolution displays or color printouts.

based trackers are not expected to perform well due to the large lighting variation, cast shadows, and unknown camera

motion. With the use of a particle filter, our tracker is able to recover from temporary drifts due to a sudden and large

pose change (between frames #166 and #167 in the accompanying video). Furthermore, the eigenbasis is constructed

from scratch and is updated to reflect the appearance variation of the target object.

We recorded a sequence to evaluate our tracker in outdoor environments, where lighting conditions often change

drastically. In it, a person walks underneath a trellis covered by vines, resulting in a significant variation in appearance

due to cast shadows. As shown in Figure 7, the cast shadows change the appearance of the target face significantly

(#96, #155, #170, #180, #223, #278). Furthermore, the pose and lighting variation combined with a low frame rate

(15 fps) makes the tracking task rather challenging (#198, #303). Nevertheless, our algorithm is able track the target

fairly accurately and robustly. In this sequence the forgetting term plays an important role, down-weighting the

previously seen face images and focusing on the most recent ones, as the object appearance changes drastically.

Figure 8 shows the results of tracking a moving vehicle, as it passes beneath a bridge and under trees. Although

there is a sudden illumination change (#12, #184, #192, #232) in the scene, our tracker is able to track the target well.

Our algorithm is also able to track objects in low resolution images, such as the sequence of a vehicle driving at night,

shown in Figure 9. Despite the small size of the target relative to the image, and the difficult illumination conditions,

our algorithm is able to track the vehicle well.

4.2 Qualitative Comparison

As a qualitative benchmark, we ran two state-of-the-art algorithms, the WSL[17] and Mean Shift[8] trackers, on four

of the sequences. The results are depicted in Figure 10. As can be seen in the figure (and corresponding videos), our

method provides comparable performance to the WSL tracker. In the case of the first “Dudek” sequence, it is able to

do so despite using a tighter target window around the face. However in the “animal doll” and “trellis”, sequences, the

WSL tracker proves to be more robust, continuing to track after our method fails. In both cases the targets experience

drastic non-uniform changes in illumination from directed light sources. The WSL tracker gains a distinct advantage

in these cases, based on its use of wavelet phase features as an input representation. (It is possible that the performance
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Figure 6: A person moves from a dark to a bright area, undergoing large lighting and pose changes. The images

in the second row show the current sample mean, tracked region, reconstructed image, and the reconstruction error

respectively. The third and fourth rows show the top 10 principal eigenvectors.

Figure 7: A person moves underneath a trellis with large illumination change and cast shadows while changing his

pose. More results can be found in the project web page.
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Figure 8: A vehicle moving underneath an overpass and trees. Our algorithm is able to track the target despite the

large illumination variation.

Figure 9: A vehicle moving in the night time with large illumination changes. Our algorithm is able to track the target

when the images have low resolution and contrast.
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of our tracker could also be improved by using a wavelet representation.) Further, our method not only tracks a target

object, it also learns a compact low-dimensional representation which can be used for other applications such as

recognition.

On the other hand, the Mean Shift tracker performs poorly, experiencing significant drift off the target objects. This

can be attributed to the appearance model of the Mean Shift tracker, based on histograms of pixel intensities, which

does not adapt over time, and is not sufficiently discriminative on these grayscale-only sequences. We expect that

variants of the Mean Shift tracker using more sophisticated representations or adaptive multi-component models [10],

would show improved performance.

Figure 10: A comparison of our tracker (indicated with a yellow box) with the WSL [17] (shown in highlighted ellipse)

and the Mean Shift [8] (depicted by a green dashed box) on four video sequences.

4.3 Quantitative Analysis

To evaluate the tracking precision quantitatively, we tested the ability of our algorithm to consistently track seven facial

feature points in the “Dudek” sequence. We compare our results with the manually-labelled “ground truth” locations

of the features, as initially presented in [17].

To obtain estimates of the feature locations, we began by tracking the face, obtaining a sequence of similarity

transformations approximately describing its motion from one frame to the next. For this image sequence, we used

slightly larger variances, more particles (4000), and a forgetting factor of 0.99. Given the locations of the facial

features in the first frame, we applied the sequence of transformations to these points, obtaining at each frame an
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estimate of where the features lay. Representative tracking results are shown in Figure 11, with red x’s used to indicate

our estimates of the feature locations, and yellow x’s for the ground-truth positions.

Finally we computed the root mean square (RMS) error between the estimated locations of the features and the

ground-truth. The error is plotted for each frame in Figure 12. For most frames our tracking results match the ground

truth well, the largest errors occurring during brief occlusions or fast pose changes. The average RMS error of our

method is 5.07 pixels per feature per frame, which is slightly better than the error of 5.2 pixels reported for the WSL

tracker in [17]. In contrast, the Mean Shift tracker described in Section 4.2 has an average error of 48.7 pixels. Note

that the errors in most frames are rather small and the errors in a few frames contribute most to the average RMS error.

Comparing the ability to track labeled features also allows us to quantitatively assess the contribution of the correct

mean update and forgetting factor in our incremental algorithm to overall tracking performance. First, we re-ran the

tracker without incrementally adapting the mean of the eigenbasis. The resulting average error increased to 5.86

pixels per feature per frame. Next, we removed the forgetting factor from the algorithm (while using the correct

mean update) and re-ran the tracker. This caused an even larger increase in error, to 7.70 pixels. Substituting our

incremental algorithm with that of Hall et al. [14], which lacks the forgetting factor, also produced an error of 7.70.

These results demonstrate that the mean update and, particularly, the forgetting factor provide a measurable boost to

tracking performance.

Figure 11: A person undergoing large pose, expression, appearance, and lighting change, as well as partial occlusions.

The yellow crosses denote the ground truth data and the red crosses represent our tracking results. The differences can

be best viewed when the images are magnified on displays

To demonstrate the effectiveness of the proposed eigenbasis update algorithm in modelling object appearance,

we compare the reconstruction results of our method to the conventional PCA algorithm, and to the incremental
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Figure 12: The RMS error at tracking feature points, for each frame in the “Dudek” sequence. The abrupt increases in

error occur when there is temporary occlusion or motion blur.

algorithm of Hall et al. [14]. For a fair comparison we do not use the forgetting factor in this experiment, so that

the reconstruction error of each input image is treated equally by all algorithms. Unlike conventional PCA, which

constructs a subspace using all the frames in the video (i.e., batch mode), the incremental algorithms—Hall’s and

our own—update the subspace periodically as frames arrive. For this experiment, as with the tracker, we update the

basis every five frames. At any given time the incremental algorithms retain only the top few eigenvectors, thereby

providing an efficient method with a compact representation.

We used the “animal doll” sequence for experiments, extracting images of the target object from the first 605

frames of the sequence to use as training data. A selection of these images are depicted in the first row of Figure 13.

The conventional batch PCA algorithm, our algorithm, and that of Hall et al. were used to construct bases consisting

of 16 top eigenvectors. For both incremental algorithms this entailed 121 incremental updates, retaining only the top

16 eigenvectors after each update. When the learned bases were used to reconstruct the training images, batch PCA

incurred a RMS reconstruction error of 7.93×10−2 per pixel, whereas the error of our algorithm was only slightly

higher, at 8.03×10−2. The reconstructed images using the batch PCA algorithm and our algorithm are shown in rows

2 and 4 of Figure 13 respectively, and rows 3 and 5 contain the corresponding residue images.

In comparison, Hall’s algorithm achieved the same reconstruction error as our own, 8.03×10−2, however its

runtime, averaged over 100 repetitions, was 38% greater than that of our algorithm. (The results of Hall’s algorithm

are not included in the figure since, when the forgetting factor is not used, they are visually indistinguishable from

our own.) The batch PCA algorithm takes on average 6 times longer than our incremental algorithm, even after we

rearrange the computation to calculate the eigenvectors of the Gram matrix (XT X) rather than the covariance matrix
(XXT ), as described in [26].

Thus, from these experiments we can conclude that our incremental eigenbasis update method is able to effectively

model the object appearance without losing detailed information, at a cost appreciably less than that of Hall et al.’s

algorithm.

4.4 Discussion

The robust tracking performance of our algorithm can be attributed to several factors. One reason is that our incremen-

tal eigenbasis learning approach exploits the local linearity of appearance manifold for matching targets in consecutive

frames. It is well known that the appearance of an object undergoing pose change can be modelled well with a view-

based representation [26]. Meanwhile at fixed pose, the appearance of an object in different illumination conditions

can be approximated well by a low dimensional subspace [3]. Our empirical results show that these variations can
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Figure 13: The first row shows a selection of test images. The second and fourth rows show the reconstructions of

these images using the conventional batch algorithm and our incremental algorithm, respectively. Their corresponding

residues are presented in the third and fifth rows.

be learned on-line without any prior training phase, and also the changes caused by cast and attached shadows can

still be approximated by a linear subspace to certain extent. Consequently the appearance of an object undergoing

illumination and pose variation can be approximated by a local subspace within a short span of time, which in turns

facilitates the tracking task. Notice that at any time instant, it suffices to use an eigenbasis to account for appearance

variation if the object motion or illumination change is not instantly drastic. This work demonstrates that a tracker

based on the idea of an incremental eigenbasis update can be both efficient and perform well empirically when the

appearance change is gradual. A few additional failure cases for this algorithm can be seen at project the web site,

mentioned earlier. Typically, failures happen when there is a combination of fast pose change and drastic illumination

change.

In this paper, we do not directly address the partial occlusion problem. Empirical results show that temporary and

partial occlusions can be handled by our method through constant update of the eigenbasis and the robust error norm.

Nevertheless situations arise where we may have prior knowledge of the object being tracked, and can exploit such

information for better occlusion handling.

5. Conclusions and Future Work

We have presented an appearance-based tracker that incrementally learns a low dimensional eigenbasis representation

for robust object tracking while the target undergo pose, illumination and appearance changes. Whereas most algo-

rithms operate on the premise that the object appearance or ambient environment lighting conditions do not change

as time progresses, our method adapts the model representation to reflect appearance variation of the target, thereby

facilitating the tracking task. In contrast to the existing incremental subspace methods, our eigenbasis update method

updates the mean and eigenbasis accurately and efficiently, and thereby learns to faithfully model the appearance of

the target being tracked. Our experiments demonstrate the effectiveness of the proposed tracker in indoor and outdoor

environments where the target objects undergo large pose and lighting changes.

Although our tracker performs well, it occasionally drifts from the target object. With the help of particle filters, the

tracker often recovers from drifts in the next few frames when a new set of samples is drawn. For specific applications,

better mechanisms to handle drifts could further enhance robustness of the proposed algorithm. The current dynamical

model in our sampling method is based on a Gaussian distribution, but for certain specific applications the dynamics

could be learned from exemplars for more efficient parameter estimation. Our algorithm can also be extended to

construct a set of eigenbases for modelling nonlinear aspects of appearance variation more precisely and automatically.

We aim to address these issues in our future work.
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Proof of Lemma 1: By definition, ĪC = n
n+m

ĪA+ m
n+m

ĪB, ĪA− ĪC = m
n+m

(ĪA− ĪB); ĪB− ĪC = n
n+m

(ĪB− ĪA)
and,

SC =
∑n

i=1(Ii − ĪC)(Ii − ĪC)⊤ +
∑n+m

i=n+1(Ii − ĪC)(Ii − ĪC)⊤

=
∑n

i=1(Ii − ĪA + ĪA − ĪC)(Ii − ĪA + ĪA − ĪC)⊤+
∑n+m

i=m+1(Ii − ĪB + ĪB − ĪC)(Ii − ĪB + ĪB − ĪC)⊤

= SA + n(ĪA − ĪC)(ĪA − ĪC)⊤ + SB + m(ĪB − ĪC)(ĪB − ĪC)⊤

= SA + nm2

(n+m)2 (ĪA − ĪB)(ĪA − ĪB)⊤ + SB + n2m
(n+m)2 (ĪA − ĪB)(ĪA − ĪB)⊤

= SA + SB + nm
n+m

(ĪA − ĪB)(ĪA − ĪB)⊤ �

Proof of Lemma 2:

When a forgetting factor of f is used, the incremental PCA algorithm in Figure 1 computes the left-singular
vectors U ′ and singular values Σ′ of the matrix [fUΣ B̂]. This is equivalent to computing the eigenvectors and (the
square-roots of) the eigenvalues of [fUΣ B̂][fUΣ B̂]⊤. Now

[fUΣ B̂][fUΣ B̂]⊤ = f2UΣ2U⊤+ B̂B̂⊤

= f2UΣV ⊤V Σ⊤U⊤+ B̂B̂⊤

= f2(A− ĪA)(A− ĪA) + B̂B̂⊤

= f2SA + SB + ct

where ct is a correction term that adjusts the mean of the eigenbasis, and SA and SB are scatter matrices–a scalar

times the covariance matrix–as defined in Lemma 1. �
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