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ABSTRACT

In this paper, we propose to learn temporally invariant fea-
tures from a large number of image sequences to represent
objects for visual tracking. These features are trained on a
convolutional neural network with temporal invariance con-
straints and robust to diverse motion transformations. We em-
ploy linear correlation filters to encode the appearance tem-
plates of targets and perform the tracking task by searching
for the maximum responses at each frame. The learned fil-
ters are updated online and adapt to significant appearance
changes during tracking. Extensive experimental results on
challenging sequences show that the proposed algorithm per-
forms favorably against state-of-the-art methods in terms of
efficiency, accuracy, and robustness.

Index Terms— temporal invariance, feature learning,
correlation filters, object tracking

1. INTRODUCTION

Visual tracking is one of the most fundamental problems in
computer vision with numerous applications [1, 2]. A typical
scenario is to track an arbitrary object initialized by a bound-
ing box in subsequent image frames. In this paper, we aim
at learning an invariant compact representation from large-
scale image sequences to address challenging issues of visual
tracking where target objects undergo significant appearance
changes due to occlusions, deformations, motion blurs, abrupt
motions, illumination variations, and cluttered backgrounds.

Feature representation is of prime importance in visual
object tracking with the goal of discriminating the target from
the background context and has received considerable atten-
tion in the literature. In [3], discriminative local patches are
selected to compute the target displacement using the Lucas-
Kanade method [4]. Similarly, Collins et al. [5] propose an
online ranking mechanism for feature selection by measur-
ing the variance ratio between object and background pixels.
In [6], Adam et al. propose to represent target objects using
multiple random fragments. The compressive tracker [7] em-
ploys random projections to extract data-independent features
as the appearance model. Grabner et al. [8] use key points to
describe the regions containing targets and surrounding con-
text. Several hand-crafted local descriptors, such as SIFT [9],

SURF [10] and ORB [11], have also been exploited as target
representation.

Recently, learning features from raw image pixels on
large-scale dataset to deal with computer vision problems
has made impressive progress compared with hand-crafted
features [9, 12]. Wang and Yeung [13] propose a deep learn-
ing tracking (DLT) method to learn compact features from
generic natural images to augment tracking performance.
However, the DLT method merely uses the still natural im-
ages [14] for training and takes no account of the temporal
slowness of target appearance in adjacent frames. Moreover,
the DLT method transfers the offline learned feature encoder
to initialize a neural network (NN) classifier in the first frame.
The feature invariance is therefore disregarded when the NN
classifier is updated on-the-fly to adapt to the target appear-
ance changes. To address these issues, we propose to learn
compact features from auxiliary large-scale video sequences
as target representation. The features are learned with a tem-
poral invariance constraint and able to handle a wide range
of motion patterns in challenging testing sequences. We fur-
ther take into account the correlation of appearance change
between consecutive frames and develop a linear ridge regres-
sion model using correlation filters to encode the appearance
template based on the learned invariant features. Since the
correlation operator is readily transfered into the Fourier do-
main as element-wise multiplication, the proposed method
effectively reduces the computational load and achieves an
average tracking speed close to real-time.

We briefly discuss existing correlation tracking methods
closely related to this work. Bolme et al. propose to learn
a minimum output sum of squared error (MOSSE) [15] filter
for visual tracking on gray-scale images, where the target ap-
pearance is represented by illumination intensities. Heriques
et al. [16] propose to use correlation filters in a kernel space
(CSK) which achieves the highest speed in a recent bench-
mark [17]. The CSK method builds on illumination intensity
features and is further improved in [18] by using HOG fea-
tures, i.e., the KCF tracker. In [19], Danelljan et al. exploit
color attributes to represent target objects and learn an adap-
tive correlation filter by mapping multi-channel features into a
Gaussian kernel space. Recently, Zhang et al. [20] incorporate
context illumination features into filter learning and model the
scale change based on consecutive correlation responses. The
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Fig. 1. (a) Neural network architecture with square root sub-
space space pooling. The input training data are small patches
of size 16 × 16 pixels with temporal slowness. (b) Learned
filters with the main half of components.

DSST tracker [21] learns adaptive multi-scale correlation fil-
ters using HOG features as target representation to handle the
problem of scale change. Note that our proposed algorithm
differs significantly from existing methods based on corre-
lation filters as our model builds on a temporally invariant
representation learned from a large-scale dataset rather than
hand-tuned features. Extensive experimental validations on
20 challenging video sequences show that the proposed al-
gorithm performs favorably against state-of-the-art tracking
methods in terms of efficiency and effectiveness.

2. PROPOSED ALGORITHM

As we aim to learn temporally invariant features resistant to
appearance deformation, we first describe the architecture of
the neural network for feature learning; then present the linear
correlation model based on the learned representation and dis-
cuss the update scheme to adapt to appearance change during
tracking.
Temporally Invariant Feature Learning. In this work, we
employ an unsupervised single-layer neural network trained
on Hans van Hateren’s natural video repository as used in [22]
to handle diverse motion transformations of objects in visual
tracking. Given N training frames indexed by t, the hidden
features xt are learned from input data (image patches) dt by
solving the following unconstrained minimization problem,

min
W

λ

N−1∑
t=1

‖xt−xt+1‖1+
N∑
t=1

‖dt−W>Wdt‖22+λ′
N∑
t=1

‖xt‖1,

(1)
where W denotes the learned coefficients that connect the
neurons dt and xt; λ and λ′ are regularization parameters.
The hidden features xt are mapped from data dt by a feed-
forward pass in the network as xt =

√
H(Wdt)2, where

H denotes the square root pooling on the linear network
(see [23] for details). The architecture of the network with
the pooling layer is showed in Fig 1(a). In (1), the first term
enforces a temporal invariance constraint on the learned filters
W ; the second term denotes the auto-encoder reconstruction
cost [24]; and the third is the L1 norm regularization to en-
sure that the obtained features have sparse activations. Note
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Fig. 2. The linear regression model R learned from a single
frame. The feature vector x (with an additional layer of spa-
tial weights) of target appearance is generated from the prod-
ucts between the sub-sampled patches and the learned filters
in Fig. 1(b) . The operator F denotes the FFT transformation
and � is the Hadamard product.

that our proposed features are more robust to diverse of mo-
tion patterns as we take the temporal slowness into account.
The auto-encoder feature learning used in the DLT method
is a special case of our objective function (1) when temporal
invariance is disregard (i.e., λ = 0).

In our implementation, the input training data are raw
pixel values of small patches of size 16 × 16 pixels, which
are cropped from consecutive frames using template match-
ing [23] to retain temporal slowness (See Fig. 1(a)). In order
to reduce the computational load, we perform principal com-
ponent analysis (PCA) and only keep one half of the learned
filters with the main components. Fig. 1(b) shows that the
learned filters bears resemblance to edge detectors. Unlike
the way the DLT method transfers the filters to a neural net-
work classifier and retrains the feature representation along
with model update, we learn the filters offline and leave them
unchanged during the tracking process. As a result, the pro-
posed features are data-independent and invariant to signifi-
cant appearance deformation.

Linear Correlation Tracking. We integrate the learned fea-
tures into a linear correlation model similar to [15, 20, 21].
For computational efficiency, we do no perform convolution
directly on an image patch representing a target using the
learned filters in Fig. 1(b). Instead, we use a sub-sampling
strategy with a step l to extractM×N patches of size 16×16
and compute the elementwise product between these patches
and the learned filters as feature representation x. Therefore,
each feature vector of target appearance has M × N × d di-
mensions (e.g., d = 128 in this work). A correlation filter
w (with the same dimensions as x) encodes the target ap-
pearance and is trained from all the circular shifts of x along
dimensions M and N . Each shifted sample xm,n, (m,n) ∈
{0, 1, . . . ,M−1}×{0, 1, . . . , N−1}, is assigned a Gaussian
function label ym,n and the filter w is leaned as

w = argmin
w

∑
m,n

‖w · xm,n − ym,n‖2 + γ‖w‖2, (2)

where the regularization parameter γ is subject to γ ≥ 0 and
the inner product · is induced by a linear kernel [16] in the
Hilbert space, e.g., w · xm,n =

∑
d w
>
m,n,dxm,n,d. Since



Table 1. Comparison of distance precision rate (%) with a
threshold of 20 pixels. The first and second best results are
highlighted by bold and underline.

Sequence Ours
DLT
[13]

CSK
[16]

STC
[20]

KCF
[18]

MIL
[26]

Struck
[27]

CT
[7]

TLD
[28]

SCM
[29]

TGPR
[30]

basketball 100 88.4 100 56.0 92.3 28.4 12.0 29.9 2.8 66.1 99.3
car4 98.9 100 35.5 96.7 95.3 35.4 99.2 28.1 87.4 97.4 100

carDark 100 71.0 100 100 100 37.9 100 100 63.9 100 100
carScale 80.8 72.2 65.1 64.7 80.6 62.7 64.7 71.8 85.3 64.7 80.6
crossing 100 100 100 53.3 100 100 100 100 61.7 100 95.0

david 100 92.6 49.9 83.7 100 69.9 32.9 81.5 100 100 98.7
david3 100 32.1 65.9 92.5 100 73.8 33.7 41.3 11.1 49.6 100
deer 100 38.0 100 4.2 81.7 12.7 100 4.2 73.2 2.8 100

faceocc1 40.7 53.3 94.7 25.0 73.0 22.1 57.5 33.0 20.3 93.3 83.1
faceocc2 92.5 83.9 100 97.4 97.2 74.0 100 68.1 85.6 86.0 97.9

fish 100 46.8 4.2 100 100 38.7 100 88.2 100 86.3 100
fleetface 55.3 40.3 56.7 48.1 46.0 35.8 63.9 43.8 50.6 52.9 39.3
football 81.8 30.4 79.8 80.1 79.6 79.0 75.1 79.8 80.4 76.5 100

girl 86.0 77.8 55.4 59.4 86.4 71.4 100 60.8 91.8 100 90.4
jumping 93.3 38.3 5.1 5.4 34.2 99.7 100 9.6 100 15.3 10.9

mountainBike 100 88.6 100 100 100 66.7 92.1 17.5 25.9 96.9 100
suv 98.0 82.4 56.8 80.5 97.9 12.3 57.2 25.0 90.9 97.8 53.1

sylvester 84.8 83.9 91.0 89.7 84.3 65.1 99.5 90.1 94.9 94.6 94.6
trellis 99.5 34.6 81.0 73.8 100 23.0 87.7 38.7 52.9 87.3 98.1

woman 94.8 94.1 25.0 61.5 93.8 20.6 100 20.4 19.1 94.0 94.0
Average 90.3 67.4 68.3 68.6 87.1 51.5 78.8 46.6 64.9 78.1 86.7

the label ym,n is not binary, the learned filter w contains the
coefficients of a linear ridge regression [25] rather than a bi-
nary classifier. Using the fast Fourier transformation (FFT) to
compute the correlation, this objective function is minimized
as w =

∑
m,n am,n ·xm,n, and the coefficient a is defined by

A = F(a) =
F
(
y)

F(xm,n · x
)
+ γ

. (3)

In (3),F denotes the FFT operator and y =
{
y(m,n)|(m,n) ∈

{0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1}
}

. Fig. 2 shows the
pipeline of extracting the temporally invariant features and
learning the linear regression model (R) using correlation
filters. The tracking task is carried out on an image patch
with feature representation z in the new frame by computing
the response map,

ŷ = F−1
(
A�F(z · x̂)

)
, (4)

where x̂ denotes the learned target appearance model in pre-
vious frames and � is the Hadamard product. Therefore, the
new position of the target is detected by searching for the lo-
cation of the maximal value of ŷ.
Model Update. Since our proposed feature representation
is data-independent, we update the linear regression model
online to adapt to target appearance change during tracking.
We adopt the update strategy similar to [15] as follows,

x̂t = (1− α)x̂t−1 + αxt,

Ât = (1− α)Ât−1 + αAt, (5)

where t is the index of the current frame and α is the on-
line learning rate. This update scheme is computationally
efficient and exploits the temporal relationship over time to
ensure that the correlation filter adapts to appearance defor-
mation quickly.

Table 2. Comparison of overlap success rate (%) with a
threshold of 0.5. The first and second best results are high-
lighted by bold and underline.

Sequence Ours
DLT
[13]

CSK
[16]

STC
[20]

KCF
[18]

MIL
[26]

Struck
[27]

CT
[7]

TLD
[28]

SCM
[29]

TGPR
[30]

basketball 99.0 59.9 87.4 23.6 89.8 27.4 10.2 25.9 2.5 61.1 85.0
car4 39.0 100 27.6 22.5 36.7 27.6 39.8 27.5 79.2 97.3 39.8

carDark 93.4 67.9 99.2 99.7 72.3 17.8 100 0.3 52.9 99.7 100
carScale 44.8 72.2 44.8 52.8 44.4 44.8 43.3 44.8 43.7 65.1 42.1
crossing 95.0 99.2 31.7 17.5 92.5 98.3 94.2 98.3 51.7 100 80.8

david 62.2 82.0 23.6 58.4 62.2 22.9 23.6 42.7 97.0 91.3 77.1
david3 97.6 24.6 62.7 33.3 99.2 68.3 33.7 34.9 10.3 48.4 98.8
deer 100 36.6 100 4.2 81.7 12.7 100 4.2 73.2 2.8 100

faceocc1 65.7 92.8 100 24.3 100 76.5 100 85.4 83.4 100 98.2
faceocc2 97.9 71.9 100 98.0 99.6 93.6 100 74.4 82.9 87.4 99.3

fish 100 44.1 4.2 37.2 100 38.7 100 88.9 96.4 86.3 100
fleetface 67.8 52.8 67.6 46.3 66.9 53.7 66.6 63.8 56.7 70.6 61.0
football 66.3 29.6 65.7 61.9 68.2 73.8 66.0 78.5 41.2 58.6 97.0

girl 77.4 60.6 39.8 30.2 75.6 29.4 98.0 17.8 76.4 88.2 88.2
jumping 92.0 12.5 4.8 4.8 28.1 47.6 79.9 0.6 84.7 12.1 9.6

mountainBike 99.2 36.0 100 87.3 99.1 57.5 85.5 17.1 25.9 96.1 100
suv 98.6 82.5 57.5 51.3 98.5 13.0 57.5 23.1 83.9 98.4 53.5

sylvester 83.4 49.0 71.7 61.0 81.9 54.6 92.9 82.8 92.8 88.6 92.3
trellis 89.1 32.9 59.1 58.0 84.0 24.4 78.4 35.0 47.3 85.4 79.3

woman 86.6 86.4 24.5 25.8 93.6 18.8 93.5 15.9 16.6 85.8 93.5
Average 82.7 59.7 58.6 44.9 78.7 45.1 73.1 43.1 59.9 76.2 79.8

3. EXPERIMENTAL VALIDATIONS

We evaluate the proposed method on 20 challenging se-
quences [17] with comparison to 10 state-of-the-art trackers,
including the DLT [13], CSK [16], STC [20], KCF [18],
MIL [26], Struck [27], CT [7], TLD [28], SCM [29] and
TGPR [30] methods. The temporal invariance term λ in
(1) is set to 50 and the sparsity term λ′ is set to 150. The
regularization term γ in (2) is set to 10−4. The size of the
search window is 1.8 times of that of the initial bounding
box as surrounding context information is usually helpful
to discriminate targets. The down-sample step l is set to
4. The kernel width of the Gaussian function label is set to√
MN/10. The learning rate α in (5) is set to 0.015. The

proposed tracking algorithm is implemented in Matlab on an
Intel i7-4770 3.40 GHz CPU with 32 GB RAM. We keep
the parameters unchanged on all the sequences and report
that the average tracking speed is 10.6 frame per second.
The source code and more experimental results are available
at https://sites.google.com/site/chaoma99/
icip15tracking.

We use two quantitative metrics for evaluation: (i) dis-
tance precision rate, which shows the percentage of frames
whose center location error is within 20 pixels, and (ii) over-
lap success rate, which is the percentage of frames where the
bounding box overlap surpasses 0.5. Table 1 and Table 2
show that our proposed method performs favorably against
state-of-the-art trackers in terms of both distance precision
and overlap success.

In addition, we compare the tracking results of our pro-
posed algorithm with other four state-of-the-art trackers
(DLT [13], KCF [18], STC [20], and Struck [27]) closely
related to this work on 8 challenging sequences in Fig. 3. The
DLT tracker learns the feature representation from large-scale
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Fig. 3. Tracking results of our proposed algorithm, the DLT [13], KCF [18], STC [20], and Struck [27] methods on eight
challenging sequences [17] (from left to right and top to down are basketball, david, david3, fleetface, deer, football, jumping,
and trellis, respectively).

still images. Without temporal invariance, the DLT tracker
drifts in the presence of rotation deformation (david, trellis),
occlusion (david3), abrupt motion (deer, football and jump),
and illumination change (trellis). The KCF tracker is based
on a correlation filter learned from HOG features in Gaus-
sian kernel space and performs well on the basketball, david,
david3, and trellis sequences due to the effectiveness of the
kernel correlation model. However, it fails to follow objects
undergoing significant appearance change caused by abrupt
motion (deer and jumping) as the hand-crafted HOG features
are less effective to discriminate the targets from background.
The STC tracker is also based on correlation filters and able
to estimate scale changes, but does not perform well when
both significant scale changes and rotation occur (basketball,
david, jumping and trellis) or in the presence of abrupt motion
(deer) as it only learns the filter from the brightness channel
rather than temporally invariant features as we do. The Struck
method fails to track objects undergoing rotation (basketball
and david), background clutter (trellis), and heavy occlusion
(david3) since it is less effective in handling significant ap-
pearance change using hand-crafted features (e.g., the Harr
or HOG features).

Overall, our proposed tracker performs well against state-
of-the-art methods on these challenging sequences, which can
be attributed to two main reasons. First, target objects are
represented by the temporally invariant features learned from
large-scale video sequences rather than crafted by hand (e.g.,
the HOG features in the KCF tracker or simple brightness
intensity in the STC tracker). The proposed feature represen-

tation is less sensitive to illumination and background clut-
ter (basketball and trellis) and blurring caused by fast motion
(deer and jumping). Second, our regression model is based on
correlation filters, which consider the temporal relationship of
the target and surrounding context between adjacent frames,
and is updated sequentially to adapt to appearance change.
Therefore, our method effectively maintains a trade-off be-
tween model stableness and adaptivity for visual tracking and
is able to handle the challenges of significant rotation (basket-
ball, david and fleetface) and severe occlusion (david3).

4. CONCLUSIONS

In this paper, we propose an effective algorithm for visual ob-
ject tracking. Our method learns temporally invariant features
from large-scale video sequences using a convolutional neu-
ral network. The learned features for representing target ob-
jects are robust to diverse of motion patterns and thus augment
the tracking performance effectively and efficiently. We fur-
ther model the temporal relationship between adjacent frames
using a linear ridge regression based on correlation filters.
Extensive experimental results show that the proposed algo-
rithm performs favorably against the state-of-the-art methods
in terms of accuracy and robustness.
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