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ABSTRACT

We present a joint algorithm for object segmentation that
integrates both global shape and local edge information in
a deep learning framework. The proposed architecture uses
convolutional layers to extract image features, followed by a
fully connected section to represent shapes specific to a given
object class. This preliminary mask is further refined by
matching segmentation mask patches to local features. These
processing steps facilitate learning the shape priors effec-
tively with a feedforward pass rather than complex inference
methods. Furthermore, our novel convolutional refinement
stage presents a convincing alternative to Conditional Ran-
dom Fields, with promising results on multiple datasets.

Index Terms— Object segmentation, shape priors, con-
volutional neural networks

1. INTRODUCTION

Generating per-pixel foreground-background masks for ob-
jects is a challenging task with many applications in computer
vision and image processing. In this paper, we focus on the
segmentation task itself: given a bounding box and an object
class (e.g., horse, human or bird), we aim to infer the mask
within the bounding box itself. In this process, we make use
of not only local cues but also global shape characteristics of
a specific object class, thereby making our approach robust
against significant amount of occlusion.

In this work, we propose an algorithm to learn effective
shape priors using deep neural networks. Instead of relying on
hand-crafted features, we use the features from a pre-trained
deep neural network on the ImageNet dataset [1]. In addition,
we learn the connection between shapes, pixel masks and im-
age features in a fully supervised way.

The proposed algorithm consists of two modules: image
analysis and mask synthesis. The analysis module of the net-
work processes raw visual information from the object of in-
terest. These features are used by the synthesis module to
determine the overall shape of the object and and to refine its
pixel-wise segmentation mask.

Typically, nodes in the earlier layers of the analysis mod-
ule represent simpler visual features, such as edges or colors,
while the ones in later layers indicate the presence of more
complicated structures, such as human faces or legs of horses.

However, this presents a tradeoff as by collecting visual infor-
mation from larger receptive fields, layers in the later layers
lose location information that would be essential for accu-
rate segmentation. In contrast to the feature extraction stage,
our synthesis network uses the opposite architecture. First,
a coarse, global mask is inferred using inputs from the later,
more high-level layers of the analysis network. This is then
used as one of the inputs for the more fine-grained second
layer, providing the final output. For this step, we use the
early-stage visual information from the analysis side, to bet-
ter localize parts of the mask.

The contributions of this work are twofold. First, we show
that learning shape priors does not require complicated prob-
abilistic inference. Given the effective features, a feedforward
layer can be efficiently applied for this purpose. Second, we
present an algorithm for refining segmentation masks using
convolutional networks. To the best of our knowledge, we are
first to propose such an approach.

2. RELATED WORK AND PROBLEM CONTEXT

For object segmentation, we can make use of not only lo-
cal appearance but also global shape information for ef-
fective inference. One approach to represent global shape
is to use a Conditional Random Field (CRF) with a Potts
model (based on pairwise potentials) to learn foreground-
background masks directly from pixels [2]. This model does
not require learning numerous parameters and the inference
can be performed easily using an efficient Graph Cut algo-
rithm [3]. The method based on Compositional High Order
Pattern Potential (CHOPP) [4] extends the pairwise model by
hidden nodes connected to all mask pixels, and learns global
correlations between them. Eslami et al. [5] use the Re-
stricted Boltzmann Machine with two hidden layers to learn a
shape model. Recently, the Max-Margin Boltzmann Machine
(MMBM) algorithm [6] adds a direct connection from the im-
age features towards the hidden nodes to make their estimates
more robust against spurious local predictions. In this work,
we only use this direct connection towards the hidden nodes
to identify shapes. This enables us to infer the correct output
even with noisy inputs and still keep the simple, feedforward
inference.

Aside from pixel-based representations, object shapes can
also be represented by patches and matched. In [7], Dong



Fig. 1. Architecture of our segmentation network, with the
image analysis stage on the top and the mask synthesis stage
at the bottom where C, U, and FC denote a convolutional
layer, an upsampling operation, and a fully connected layer,
respectively. LR and HR stand for “Low Resolution” and
“High Resolution”.

et al. introduce a deep learning network that formulates the
patch matching process in the form of convolutional and fully
connected layers. In this paper, we exploit both representa-
tions to learn shape priors for effective object segmentation.

3. NETWORK ARCHITECTURE

3.1. Shapes

The first stage of our network is similar in spirit to the
MMBM1 model [6] where the feature vector x is obtained
based on the Histogram of Oriented Gradients (HOG), along
with color and shape histograms, and then fed to a fully
connected layer. Both the features and hidden nodes are con-
nected to an output raster for generating the binary output
mask. However, as demonstrated by our first experiments,
it is not necessary to apply a similarly complex inference
scheme. Using a backpropagation-based, stochastic gradient
descent training process instead is a viable and valuable al-
ternative, with the trade-off of a minor decrease in accuracy
against significantly shorter training times as well as simpler
implementation.

As shown in Fig. 1, the inputs of our synthesis network are
obtained from the convolutional outputs of the analysis stage.
Given an image I, we feed it to the five pre-trained convolu-
tional layers. We extract features using the pre-trained deep
network [1], resulting in the analysis output f (1), . . ., f (5),
from each layer respectively (e.g., if there was a normaliza-
tion component, we take its output; if not, we use the pooling

output instead). We note these feature detectors are generic
as the deep network is trained based on the ImageNet dataset
with a large variety of objects with demonstrated success.

The pre-trained deep network performs pooling after the
first layer and generates the feature map f (1) with half the
resolution of the eventual output mask. Thus, we also perform
the same pooling operation with a stride of 1 instead of 2.
To compensate for the change of resolution, local response
normalization is carried out on this result with a kernel size of
9 rather than 5 to generate the higher-resolution feature maps
f (1HR).

The first half of the synthesis network alone does not
exploit other visual cues that are useful to describe object
shapes. With this network, the global shape information is
encoded in the hidden nodes h1. Since this representation
is only capable of describing global shape information, it
does not account for small local variations in shape, thereby
resulting in the blurry output mask y1 as shown in the second
row of Fig. 2.

3.2. Patches

To better describe object shapes with more visual cues, we
learn a mapping between image features and segmentation
masks both globally and locally, and associate different pat-
terns of output mask patches with image features. We first
describe them with local linear feature maps, and then with a
nonlinear second layer to predict the output center pixel at a
specific location. Although our approach is conceptually sim-
ilar to the recent deep super resolution method [7], the goal
is to refine the global shape prior with local correction, not
learning the segmentation mask only from the image patches.

We formulate the mask refinement stage as a composition
of two convolution steps. The first step uses a 5× 5 kernel to
collect local shape information, followed by Rectified Linear
Units (ReLU) and a local response normalization layer. The
operation for the k-th output feature map can be summarized
as a layer-wise convolution with a filter bank F ,
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in a similar operation to the analysis layers, on the concate-
nation of the prior f (1) and the high-resolution feature maps
y(HR). The local response normalization term within the
neighborhood N (x, y) of the pixel at (x, y) is

Zk(x, y) = (1 + (α/n)
∑

i∈N (x,y)

s2k,i)
β , (2)

where α = 0.0001 and β = 0.75 are parameters, n = 25
is the number of pixels in the receptive field and the sk-s are
the un-normalized feature maps from the left term of (1). We
extract the feature maps h(2) using (1). These are further pro-
cessed by a linear per-pixel transformation, described by a
1× 1 convolution, providing the refined mask output y(2).



The use of local patch representation alone is not suffi-
cient to learn object shape priors well. If we use only local
features, the resulting network may learn local edges but not
the global context and object shape. Thus, in order to combine
local edge information with a global shape prior, we connect
not only the image feature maps f (1) but also an upsampled
version of y(1) of the prior generated by our first layer to the
patch predictors in (1). This allows the refinement process to
discard locally promising regions that do not fit the predicted
shape while still predicting local edge shapes more accurately.

The second row of Fig. 2 shows the shape prior y(1) which
localizes the object and successfully predicts its overall shape,
but produces blurry predictions regarding the exact bound-
aries. This is successfully corrected by the patch match com-
ponent, producing the output y(2).

In practice, we generate the shape prior with a smaller res-
olution than that of y(2) which is upsampled between the two
stages, denoted by U on the figure. Since the shape prior has
low spatial accuracy due to its global nature, this allows us to
decrease the number of parameters in the fully connected lay-
ers without reducing accuracy while speeding up the process.

4. EXPERIMENTS

4.1. Learning deep networks

Implementation details. In this work, we use the Caffe deep
learning framework [8] and extend it with additional layer
types (in-place reshape and upsample) that are not available
in the package. Most of the processing is carried out on an
nVidia GeForce GTX Titan GPU, with the most important
constraint being the amount of available memory (memory
usage being on the order of 2 GB in the training stage). Also,
we are using templates [9] to generate models for the different
stages and datasets, to avoid code repetition. All the source
code and datasets will be made available to the public.

Features. To extract features, we use a pre-trained deep net-
work [1] using the ImageNet dataset in which we re-learn the
biases of the first convolutional layer to account for issues be-
tween different application domains (i.e., cross-domain prob-
lems). For training the first shape prior stage, we experiment
with different choices of input features and find that the num-
ber of pre-trained image processing layers does not affect the
resulting accuracy significantly, given a sufficient amount of
training iterations. Based on these experiments, we use the lo-
cally normalized output f (2) of the second convolutional layer
as the input for our shape prior. For the second convolution
layer, the normalized first convolutional output f (1HR) is used
in order to obtain the highest spatial resolution for accurate
segmentation.

Training process. Although training the two components
of the synthesis network jointly also gives good results, we
find that the training process is more stable if the loss of the

first global stage is assigned significantly more weight dur-
ing the backpropagation process than the loss of the second
layer. Inasmuch, we train the network layer-wise, obtaining
performance gains on the order of a few percents.

Further improvements can be achieved by considering
the different purposes of the first and second layers. For the
global shape prior, in the case of uncertainty, the network can
be better trained with accurate probability estimates using the
logistic loss function

Lglobal(y
(1),y(gt)) =∑

i

− log(1
y
(1)
i =y

(gt)
i
σ(y

(1)
i ) + 1

y
(1)
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i
(1− σ(y(1)i )))

(3)
where y(gt)

i ∈ {−1, 1} are the ground truth mask pixels.
In contrast, the loss function for the final output y(2) ap-

proximates the pixelwise accuracy by

Llocal(y
(2),y(gt)) = ||σ(y(2))− y

′(gt)||2 (4)

where y
′gt = ygt+1

2 is the ground truth scaled to a range of 0 to
1. These loss functions are used in training the first and sec-
ond components of the synthesis network, respectively. For
the proposed network, we use 500 hidden nodes for h(1) and
30 feature maps for h(2).

4.2. Datasets

To validate our model, we use the Weizmann Horses [10] and
Caltech-UCSD Birds 200 [11] datasets where the pixel-wise
ground-truth segmentation mask of each object is manually
annotated. The Weizmann Horses dataset contains 328 im-
ages with large variation of shape, pose, and scale. The
Caltech-UCSD Birds dataset includes 6033 images of 200
species where each one appears in different shapes, sizes,
poses with occlusions by tree branches. For fair comparisons,
we use the same experimental setup as [6] to pre-process and
split the training as well as test samples for both datasets.
Due to space limitations, additional results (including those
on the Penn-Fudan Pedestrians dataset [4]) are available
at http://eng.ucmerced.edu/people/ssafar/
icip15_shapepriors_supp.pdf.

4.3. Results

We evaluate the proposed algorithm against the state-of-the-
art methods in terms of average precision (AP) and intersec-
tion over union (IoU) measures. Table 1 and 2 show the exper-
imental results where for [6], the Graph Cut (GC) method is
used to further improve performance. Some segmentation re-
sults are presented in Fig. 2. Overall, the proposed algorithm
performs favorably against other methods. For the Weizmann
Horses dataset, large shape variation (e.g., caused by leg po-
sition and body pose) can be better accounted for with the
two-layer network of the MMBM method over single-layer



Fig. 2. Example results from the convolutional refinement on the Caltech-UCSD Birds and Weizmann Horses datasets. From
top to bottom: ground truth, global shape prior y(1), refined map y(2), global prior mask, refined mask. On the maps, colors
nearing red correspond to higher probabilities of a pixel being foreground.

Table 1. Results on the Weizmann Horses dataset.
AP IoU

CRF [6] 87.46 67.44
CHOPPs [4] 88.67 71.60
MMBM (1 layer) [6] 89.43 69.59
MMBM (2 layers) 89.80 72.09
MMBM (1 layer), with GC 90.62 74.12
MMBM (2 layers), with GC 90.71 75.78
Ours, global only 83.88 49.96
Ours, refined 95.16 83.55

MMBM approach (74.12% IoU for the MMBM1 with GC,
69.59% for MMBM1 without GC as shown in Table 1). By
using patchwise refinement, our method is able to follow not
only the main body contours but also the outline of the legs
accurately, thereby resulting in significant accuracy increase
on this dataset.

The last column of Fig. 2 shows some cases where the
proposed method does not perform well. The overall shape
prior y(1) constrains where horse legs are likely to appear (un-
der torso), and then the second stage of the learned network
model discovers their exact locations. As the white fence post
on the right of the input image is locally similar to a leg in
shape and appearance at the likely position with respect to the
torso, it is mistakenly classified as part of the foreground ob-
ject. On the other hand, the similar fence post on the left is
mostly classified properly as background thanks to the con-
text given by the global shape prior. Further results on the
interplay between the two stages can be found at the above-
mentioned web page.

The Caltech-UCSD Birds 200 dataset includes a wider
range of shapes and highly variable colors. In terms of over-

Table 2. Results on the Caltech-UCSD Birds 200 dataset.
AP IoU

CRF [6] 83.50 38.45
CHOPPs [4] 74.52 48.84
MMBM (1 layer) [6] 88.07 72.96
MMBM (2 layers) 86.38 69.87
MMBM (1 layer), with GC 90.42 75.92
MMBM (2 layers), with GC 90.77 72.40
Ours, global only 84.02 69.40
Ours, refined 88.27 76.30

lap ratio, the first global segmentation stage of the learned
network model performs similarly to the two-layer MMBM
model. However, while the graph cut refinement is only able
to achieve 2.96% IoU increase in the one-layer model and
2.53% for the two-layer network, our convolutional refine-
ment gains 6.90% over the initial global mask with the best
overlap score of all methods. In terms of average precision,
the graph cut refinement still performs well. In addition, our
method consistently outperforms pure CRF inference and
shows significant gains over CHOPP, which demonstrates the
importance of shape priors and a direct connection of these to
image features.

5. CONCLUSION

In this paper, we describe a two-stage deep neural network for
object segmentation that exploits learned features and shape
priors. Our algorithm is simple to implement and insensitive
to the network parameters (e.g., number of layers). It per-
forms favorably against the state-of-the-art object segmenta-
tion methods on challenging datasets.
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