
ONLINE MULTI-PERSON TRACKING VIA ROBUST COLLABORATIVE MODEL

Mohamed A. Naiel, M. Omair Ahmad, FIEEE,
and M.N.S. Swamy, FIEEE

Dept. of Electrical and Computer Engineering
Concordia University

Montreal, Quebec, Canada H3G 1M8
{m naiel, omair, swamy}@ece.concordia.ca

Yi Wu, and Ming-Hsuan Yang, SMIEEE

Dept. of Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344, USA
{ywu29, mhyang}@ucmerced.edu

ABSTRACT

The past decade has witnessed significant progress in object
detection and tracking in videos. In this paper, we present a
model for collaboration between a pre-trained object detector
and multiple single object trackers in the particle filter track-
ing framework. For each frame, we construct an association
between the trackers and the detections, and when a tracker is
successfully associated to a detection, we treat this detection
as the key-sample for this tracker. We present a dual motion
model that incorporates the associated detections with the ob-
ject dynamics. Then, a likelihood function provides different
weights for the propagated and the newly created particles,
reducing the effect of false positives and missed detections in
the tracking process. In addition, we use generative and dis-
criminative appearance models to maximize the appearance
variation among the targets. The performance of the proposed
algorithm compares favorably with that of the state-of-the-art
approaches on three public sequences.

1. INTRODUCTION

Multi-object tracking in videos is one of the challenging prob-
lems in computer vision. It has applications in automatic
analysis of surveillance videos, behavior analysis, road traffic
management etc. The advancement in object detection pro-
motes collaboration between the processes of detection and
tracking in the tracking-by-detection scheme [1].

In the multi-object tracking field, offline approaches based
on the global optimization of all object trajectories usually
achieve better results than online counterparts [2, 3, 4] do.
However, such offline methods are time-delayed. On the other
hand, the online methods [1, 5, 6] have been developed within
the tracking-by-detection framework, and have applied data
association between detections and trackers in an online man-
ner. These approaches perform well for real-time applica-
tions.
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Online multi-object tracking can be achieved by using
joint state-space model for multi-targets [7, 8, 9, 10]. For
instance, a mixture particle filter has been proposed in [8] to
obtain the posterior probability by using the collaboration be-
tween an object detector and the proposal distribution of the
particle filter. However, the joint state-space tracking meth-
ods require high computational complexity. The probability
hypothesis density (PHD) filter [11] has been incorporated for
visual multi-target tracking in [9, 12]. The particle PHD filter
has a linear complexity with respect to the number of targets.
However, it does not maintain the target identity, and as a re-
sult, requires an online clustering method to detect the peaks
of the particle weights and applies data association for each
cluster.

The degeneracy problem of the particle filter [13] has been
addressed by several researchers [6, 14, 15, 16]. To overcome
this problem, it is required to enhance the proposal distribu-
tion and/or the re-sampling step, in order to increase the num-
ber of effective particles and the diversity of the particles. For
instance, Rui and Chen [15] have used the unscented Kalman
Filter (UKF) for generating the proposal distribution of the
particle filter, and the resulting scheme is known as the un-
scented particle filter (UPF). An immune genetic algorithm
for visual tracking was subsequently introduced [17]. Re-
cently, in [6] the Metropolis Hastings algorithm has been used
to sample particles from associated detections in the tracking-
by-detection framework. However, these methods do not ex-
ploit the collaboration between detectors and trackers [15,
17], or consider the effect of false positive detections on the
trackers [6].

In this paper, we propose an online multi-object track-
ing algorithm by using a robust collaborative model for in-
teraction between multiple single-object trackers and a pre-
trained detector in the particle filter framework, where ev-
ery target is tracked independently to avoid the high com-
putational complexity of the joint probability with increas-
ing number of targets. We propose a dual motion model that
incorporates the associated detections with the object dynam-
ics. Furthermore, the likelihood function provides different
weights for the propagated and the newly created particles
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Fig. 1. Effect of changing the collaborative factor γ.

sampled from the associated detections, resulting a reduction
in the effect of false positives and missed detections in the
tracking process. The appearance model of the trackers is
based on the sparsity-based representation [18, 19], and the
two dimensional principal component analysis (2DPCA) [20]
to maximize the appearance variation among targets.

2. PROPOSED ALGORITHM

The proposed multi-object tracking system consists of three
main components: pre-trained object detector, multiple
single-object trackers and data association module. Specif-
ically, the object detector is applied on every frame and
supports the data association module with a set of detections
at time t, Dt. We use FPDW [21] as the baseline pedestrian
detector. The object tracker adopts a hybrid motion model,
and a particle filter with a robust collaborative model is used
to find the best estimate of the target location. Further, it
constructs the target appearance model, which consists of
sparsity-based generative model (SGM) [19] with local fea-
tures, 2DPCA-based generative model (PGM) with holistic
features and sparsity-based discriminative classifier (SDC)
with holistic features. Finally, the data association module
is used to construct the similarity matrix S to find the asso-
ciation between existing trackers, bt ∈ Bte, and detections,
dt ∈ Dt, at time t. Furthermore, it controls the initialization
and termination status of the trackers, and supports the tracker
with key-samples from the target trajectory.

2.1. Tracking Approach

In the Bayesian tracking framework, the posterior at time t
is approximated by a weighted sample set {xit,wit}

Ns
i=1, where

wit is the weight of particle xit. The state x consists of trans-
lation (x, y), average velocity (vx, vy), scale ŝ, rotation angle
θ, aspect ratio η, and skew direction φ. Since in the current
frame, the propagated particles sampled at time t correspond-
ing to the tracker position in the previous frame and the par-
ticles sampled at time t from the associated detection are in-
dependent, it can be shown that given the observation zt at
time t, the weight is proportional to the likelihood, namely,
wit ∝ p(zt|xit). Let Ibt be a gate function representing the
state of the tracker bt associated with the detection dt at time
t.

Motion Model: In our approach, we adopt a hybrid motion
model that depends on the first-order Markov motion model
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Fig. 2. Effect of the proposed collaborative model on the
tracker particles. (a) Illustrates the candidate particles pro-
posed by the object detector (masked as gray) and propagated
particles (colored). (b) Particles weights for new (masked as
gray) and propagated particles (colored).

and the associated detection. The new candidate state xdt at
time t is provided to the motion model if a detection is suc-
cessfully associated to the tracker, i.e., Ibt = 1, and the initial
velocity is set to be the average velocity of the particles of the
tracker. The candidate state at time t, xt, relates to the set of
propagated particles Xbt and the set of associated detection
Xbt,dt as

xt =

{
Fxt−1 +Q if xt ∈ Xbt

xdt + P if xt ∈ Xbt,dt
(1)

where Q and P are the Gaussian noise vectors, F = I +B, I

being an identity matrix of size 8 × 8, B =

[
C 02,4
06,4 06,4

]
,

C =

[
0 0 1 0
0 0 0 1

]
, and 0n1,n2 representing a zero matrix

of size (n1 × n2).
Robust Collaborative Model: The object detector applies
expensive space-scale scanning for the whole image to local-
ize specific class of objects, and proposes candidate locations
that have high probability of existence of the objects. To take
advantage of the high confidence associated detections, we
incorporate a set of new particles, Xbt,dt , in the likelihood
function, in order to allow the object detector to guide the
trackers. Let H(xit) denote the SDC tracker confidence score
of candidate xit. The likelihood of the measurement zt can be
computed as

p(zt|xit) = πiH(xit) (2)

where,

πi =


1− γ if Ibt = 1, xit ∈ Xbt

γ if Ibt = 1, xit ∈ Xbt,dt

1 otherwise, i.e., Ibt = 0

and γ ∈ [0, 1] is the collaborative factor. In (2), the particles
from the associated detections and previous propagated par-
ticles are weighted differently. Figure 1 shows the effect of
changing the collaborative factor value. Figures 2 (a) and (b)
show an example of particle weights for the detector particles
and the propagated particles using γ = 0.54. If Ibt = 1 and
γ > 0.5, the weighting term, πi, allows the detector to guide



the tracker by giving more weights to the newly associated
particles than the propagated particles. However, a detector
may have false positive detections, so the tracker should not
depend completely on the detector. From our experiments, we
find that value of γ between 0.5 to 0.6 gives the best results.
If the detector suffers from missing detections, i.e., Ibt = 0,
the likelihood function in (2) will only depend on the pre-
viously propagated particles xit ∈ Xbt , which represents the
bootstrap particle filter [13]. Our collaborative model is based
on the hybrid motion model that incorporates associated de-
tections with the dynamic motion model. On the contrary, the
motion model adopted in [1] depends only on propagated par-
ticles, and the likelihood function depends on tracker appear-
ance model and the detector confidence density. In [8] the
collaborative model only exists in the proposal distribution
and the likelihood is without weighting collaborative factor.

2.2. Appearance Model
In our approach SGM and SDC are used in a way different
from that in [19]. First, we do not use the collaboration be-
tween SGM and SDC [19], whereas we use the SGM with the
PGM to compute the similarity matrix of the data association
module to take advantage of the occlusion handling scheme
(6), and the modified SDC model is used to obtain the likeli-
hood of the particle filter (2). Therefore, the resulting tracker
is more efficient. Second, our SDC confidence measure de-
pends on the sparsity concentration index (SCI), given by (4).
Finally, we update the SDC tracker with high confidence key-
samples.
Sparsity-based Discriminative Classifier: The SDC is used
to construct the target discriminative appearance model, in
order to evaluate the confidence score in (2). Every SDC
tracker is initialized by using Np positive training samples
taken from the object center with a small variation from the
center of the detection state xdt , and Nn negative samples are
taken from the annular region surrounding the target center
without overlap with a detection window dt. Next, the train-
ing samples are transformed to a fixed size m × n, and then
vectorized, normalized and stacked together to form a matrix
A ∈ Rr×Nt

, where r = m × n and N t = Np + Nn. Let
the measurement corresponding to the candidate location xit
be denoted by zit ∈ Rr. Then, we obtain the sparse coef-
ficients αi for the ith candidate by solving the optimization
problem, min

αi

∥∥zit −Aαi
∥∥2
2

+ λ
∥∥αi∥∥

1
. Then, we can obtain

the classifier confidence score as

H(xit) = exp

(
−

(εi+ − εi−)

σ

)
Ω(αi) (3)

where εi+ =
∥∥zit −A+α

i
+

∥∥2
2
, εi− =

∥∥zit −A−α
i
−
∥∥2
2
, σ is

used to adjust the confidence measure, and Ω(αi) represents
the sparsity concentration index (SCI) [18] defined as

Ω(αi) =
J ·maxj‖δ

′

j(α
i)‖1/‖αi‖1 − 1

J − 1
∈ [0, 1] (4)

δ
′

j being a function that selects the coefficients correspond-
ing to the jth class and suppresses the rest, and J being the
number of classes (J = 2 in our case). The SCI checks the
validity of the candidate so that it can be represented by a
linear combination of the training samples in one class.
Sparsity-based Generative Model: We use the SGM for
contributing to the similarity function of the data association
module in (6). The SGM is concerned with representing the
appearance of the positive class of the tracker by using M lo-
cal patches of the initial object or candidate location c, where
each candidate is represented by a sparse histogram feature
vector ρ. In order to handle occlusion, the patch reconstruc-
tion error is used to suppress the coefficients of the occluded
patches. Let ψj be the non occlusion indicator; the final his-
togram can be represented by ϕ = ρ � ψ, where � denotes
the element-wise multiplication. The resulting histogram, ϕ,
taking the spatial representation into consideration, can han-
dle occlusion effectively. The generative model similarity,
GSGM , between the candidate ϕc and the model ϕ is mea-
sured by using the histogram intersection kernel. We refer the
reader to [19] for more details about SGM.
2DPCA-based Generative Model: We utilize the 2DPCA
[20] as a generative model to compute the data association
similarity in (6). Unlike SGM, PGM is based on holistic rep-
resentation for the object. For each tracker bt, we use N posi-
tive samples, {Yj}Nj=1 each of size m× n. Then, we evaluate
the optimal orthonormal matrix V that maximizes the total
scatter in the learned subspace. For each candidate location,
Y c, the similarity between the testing and the training features
can be computed as

GPGM = exp(−εPGM/σ̂2) (5)

where εPGM represents the reconstruction error between the
candidate sample and the training example with the minimum
l2-norm to the test example in the 2DPCA feature space.

2.3. Data Association
The goal of the data association is to find association between
existing trackers and detections every frame. Furthermore,
new trackers may be created by using un-associated detec-
tions. The similarity matrix, S, is used to measure the relation
between the trackers, bt ∈ Bte, and the detections, dt ∈ Dt.
The similarity between bt and dt is defined as

S(bt, dt) = G(bt, dt)O(bt, dt) (6)

where G(bt, dt) = GSGM (bt, dt) + GPGM (bt, dt) measures
the appearance similarity between the tracker bt and detec-
tion dt, and O(bt, dt) represents the overlap ratio between the
tracker and the detection to suppress confused detections. The
overlap ratio is based on the PASCAL VOC criterion [22],
which is defined as the area of intersection divided by the
area of union. The association is performed using the Hun-
garian algorithm to match a detection to a tracker, similar to
the approach adopted in [1, 5], and is carried out online.
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Fig. 3. Sample tracking results for three sequences. 1st row:
PETS09 S2L1 view1; 2nd row: Soccer; 3rd row: UCF-PL.

Table 1. Performance measures of CLEAR MOT metrics.
Sequence Method MOTA MOTP FNR FPR IDSW

PETS09 S2L1

proposed + FPDW 82.17% 72.11% 8.43% 9.25% 4
Zhang et al. [27] 93.27% 68.17% - - 19
Breitenstein et al. [28] 79.70% 56.30% - - -
Gerónimo et al. [29] 51.1% 75.0% 45.2% - 0

Soccer proposed + FPDW 71.46% 70.80% 16.81% 12.16% 7

UCF-PL

proposed + FPDW 79.26% 73.91% 13.11% 7.60% 13
proposed + [5]1 84.54% 73.24% 8.58% 6.86% 4
Shu et al. [5] 79.30% 74.10% 18.30% 8.70% -

3. EXPERIMENTAL RESULTS

We evaluate the proposed multi-person tracking algorithm on
three challenging datasets: the PETS09 S2L1 view1 [23],
UCF Parking Lot (UCF-PL) dataset [5], and Soccer dataset
[24]. In all datasets we use comparable parameter settings
without extensive parameter tuning, where we use γ = 0.54
as the default value. In order to measure the performance of
our technique and compare it to that of several state-of-the-
art methods, we use the CLEAR MOT metrics [25]: multiple
object tracking accuracy (MOTA), multiple object tracking
precision (MOTP), false negative rate (FNR), false positive
rate (FPR), and identity switches (IDSW). We use an over-
lap threshold of 0.5 to compute the evaluation metrics in all
experiments. For PETS09, we use the ground truth data avail-
able in [26], while for Soccer and UCF-PL we use the ground
truth data provided by the authors. The Matlab implementa-
tion of the proposed algorithm on a PC with 2.9 GHz CPU
takes on average 1.997 seconds per frame2 to track 16 players
in the Soccer sequence of frame size 960× 544.

Figure 3 illustrates the tracking results on the testing se-
quences3 and Table 1 shows the performance of our algorithm
compared to that of some recent online methods. On PETS09

1Using the detection results for the part based detector proposed in [5].
2It does not include the time for object detection.
3Supplementary material shows several qualitative tracking results

https://www.youtube.com/watch?v=1rtz3MVrX2I
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Fig. 4. Performance of the proposed approach on PETS09
S2L1 as the value of the collaborative factor is varied.

S2L1 view1, we achieve the second highest MOTA perfor-
mance. For the Soccer sequence, we achieve a good per-
formance considering that the sequence has high similarity
among targets of the same team, and high missing detections.
For the UCF-PL sequence we achieve a better MOTA perfor-
mance than that offered by the online method [5], when using
the same detection results.

Collaborative factor effect: To measure the effect of the pro-
posed collaborative model, we vary the value of the collabo-
rative factor γ in the interval [0, 1] in steps of 0.2. Figure 4
illustrates the performance of the proposed approach for dif-
ferent values of γ. When γ = 0, the likelihood function of
the particle filter is based completely on the propagated parti-
cles, and hence, the tracker suffers from the degeneracy prob-
lem, whereas when γ = 1, the likelihood function is based on
the associated detections, and the tracker suffers from false
positives, and missed detections. The highest performance is
achieved when γ = 0.6; this is due to the fact that the tracker
achieves a balance between the two particle sets in this case.

4. CONCLUSIONS

We have presented a robust collaborative model that can en-
hance the interaction between a pre-trained object detector
and multiple single-object trackers in a particle filter frame-
work. The proposed algorithm is based on incorporating the
associated detections with the motion model of the particle
filter, in addition to the likelihood function providing differ-
ent weights for the propagated and the newly created particles
sampled from the associated detections, providing a reduction
on the effect of the detector errors on the tracking process.
We have used sparsity-based representation and the 2DPCA
to construct discriminative features that maximize the appear-
ance variation among the trackers. The proposed algorithm
has been evaluated on three public sequences and the perfor-
mance compares favorably with that of the state-of-the-art ap-
proaches.
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