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ABSTRACT
In this paper, we propose an algorithm to hallucinate faces in
the JPEG compressed domain, which has not been well ad-
dressed in the literature. The proposed approach hallucinates
compressed face images through an exemplar-based frame-
work and solves two main problems. First, image noise in-
troduced by JPEG compression is exacerbated through the
super-resolution process. We present a novel formulation for
face hallucination that uses the JPEG quantization interval-
s as constraints to recover the feasible intensity values from
each image patch of a low-resolution input. Second, existing
face hallucination methods are sensitive to noise contained in
the compressed images. We regularize the compression noise
caused by block discrete cosine transform coding, and re-
construct high-resolution images with the proposed gradient-
guided total variation. Numerous experimental results show
that the proposed algorithm generates favorable results than
the combination of state-of-the-art face hallucination and de-
noising algorithms.

Index Terms— Face Hallucination, Compressed Domain

1. INTRODUCTION

Face hallucination is a domain-specific super-resolution prob-
lem, which aims to generate high-quality high-resolution
(HR) face images from low-resolution (LR) inputs. It is
a well-known ill-posed problem as pixel values in the HR
space need to be recovered based on a LR image with
limited intensity or color information. Numerous methods
have been proposed to address the face hallucination prob-
lem [1, 2, 3, 4, 5, 6, 7, 8, 9]. In [1], exemplar HR patches
are exploited to overcome the limitation of insufficient high-
frequency details in images generated by super-resolution
algorithms with linear constraints. However, due to ambigui-
ties between LR and HR patches (i.e., many HR patches can
be mapped to the same LR patch), the retrieved HR patches
may not be effective for reconstructing HR images without ar-
tifacts. To reduce ambiguities of HR face images, linear sub-
space model learned from HR exemplars are proposed [4, 6],
the high-frequency details are learned from exemplar patches
to the reconstructed HR images via a Markov Random Field
model [4] or sparse dictionaries [6]. While the main parts of
faces (e.g., eyes and noses) are reconstructed well under lin-
ear subspace constraints, contour regions contain significant

ghost effects since large shape variations are modelled less
effectively by a global linear subspace. Although local linear
subspaces are exploited [7] to reduce ghost effects, high-
frequency details of reconstructed HR images are missing
(as subspace methods can be considered as low-pass filters
for denoising). The exemplar-based method [9] decomposes
face into several parts according to facial structure, while it
generates pleasant visual quality for non-compressed images,
it doesn’t perform well for compressed inputs.

To simplify this ill-posed problem, most algorithms as-
sume that the input images do not contain significant amount
of noise. However, in practice a large amount of images are
compressed for storage or transfer. The block discrete cosine
transform (BDCT) coding scheme (e.g., JPEG) is one of the
most commonly adopted methods due to the high efficiency
of compression ratio versus visual quality. It encodes images
using non-overlapping blocks (typically with 8×8 pixels) in-
dependently with different compression qualities, which can
be obtained from the header of a JPEG image. When a LR
input is compressed, both blocking and ringing noisy effect-
s are noticeable compared to a non-compressed image. In
addition, details of face contours, eyes and mouths are miss-
ing, and colors of different regions are smeared. Although
one possible remedy for dealing with compressed images is
to first denoise LR images and then generate the correspond-
ing HR results, we show that a straightforward combination of
restoration schemes [10, 11] and face hallucination methods
does not lead to high-quality HR images. Recently, a two-step
approach is proposed [12] where compressed frames are first
preprocessed by a deblocking algorithm to reduce artifacts
and then upsampled with an edge-enhancing prior to gener-
ate HR results. Although sharp edges are restored, texture
details are missing as the deblocking process eliminates high-
frequency components, and the edge-based priors are not ef-
fective for reconstructing texture regions. To the best of our
knowledge, no significant attempts have been made to address
the face hallucination problem in the compressed domain. As
facial components contain unique high-frequency details, it
is of great importance to exploit specific textures rather than
only edge-based prior from natural images.

In this paper, we address both denoising and super-
resolution problems in one unified framework, and show that
high-quality HR images can be generated from compressed



LR face images. The main contributions are summarized as
follows. First, we propose a novel unified approach for prac-
tical face hallucination applications. We remove the com-
pression noise in the hallucination process by relaxing the
back-projection constraint to a quantization interval, which
is defined in a compressed image. Second, we develop a
gradient-guided total variation method to preserve gradients
from the LR input image in the reconstructed facial textures.
In addition, the color channels are restored via matching
exemplars for better HR results.

2. GRADIENT-GUIDED OPTIMIZATION

We propose a gradient-guided optimization algorithm to gen-
erate high-quality hallucinated face images while minimizing
compression artifacts. Given a LR test image Il, a HR image
gradient map U is generated through matching image from
a LR exemplar set to its corresponding non-compressed HR
set, and U is a guided gradient map. We estimate the hallu-
cinated face image Ih by minimizing the difference between
the gradient map of the HR result∇I and the gradient map U

Ih = argmin
I
‖∇I − U‖2, (1)

where∇ is a gradient operator.
To reconstruct the hallucinated image, a regularization

term is required. Suppose Il is a non-compressed LR image
and Ih is its corresponding HR image, Il can be modeled by
downsampling from a smoothed Ih:

(Ih ⊗G) ↓= Il, (2)

where ⊗ is the convolution operator, G is a Gaussian ker-
nel with kernel width σ, and ↓ is a downsampling operator.
For the compression noise, a novel regularization term is pro-
posed to reduce the amount of undesired JPEG artifacts of
the back-projected result and to resemble the LR input. Each
non-overlapping 8× 8 block is first converted through BDC-
T, and then further quantized by a matrix determined by the
compression quality, thereby introducing significant noise.

To regularize compression noise, we enforce the BDCT
coefficients of the downsampled Ih within the quantization
limits defined by the JPEG quantization matrix T . Given the
quantized integer coefficient qi,j of a JPEG LR image, for
each BDCT block with size of 8 pixels, the BDCT coefficients
di,j of the downsampled Ih in (2) should be regularized in the
quantization interval

di,j ∈ [Ti,j · (qi,j − 0.5) , Ti,j · (qi,j + 0.5)] , i, j ∈ [1, 8].
(3)

In the spatial domain, the compressed JPEG image intensities
of a block are equivalent to its associated JPEG image inten-
sities of the same block. For the whole image,

JQ [(Ih ⊗G) ↓] = Il, (4)

where JQ is a compression operator with quality Q. Here Q
is set to be equal to the compression quality of Il. The spatial
formulation in (4) is equivalent to the frequency formulation

Fig. 1. (a) a LR face image is decomposed into facial compo-
nents, edges and textures. (b) each part is restored through exemplar-
based matching to obtain the corresponding HR counterpart. (c)
gradient maps are extracted from the restored HR images and com-
bined through weight maps to generate a gradient map. (d) result-
ing gradient-guided map U . (e) HR result is obtained through the
proposed gradient-guided optimization. (d) and (e) are of the same
image size as (c), and are magnified for illustration purpose.

of (3). The task for face hallucination in the compressed do-
main is formulated by

Ih = argmin
I
‖∇I − U‖2 s.t. JQ [(I ⊗G) ↓] = Il. (5)

3. GENERATING GRADIENT MAP

Three gradient maps from facial components Uc, edges Ue

and textures Ut, are constructed based on the exemplar-based
method. These maps are then integrated to generate the guid-
ed gradient map U . Figure 1 shows the main steps to generate
the gradient map for a HR image from a LR input. The gradi-
ent maps Uc and Ue are generated in a way similar to [9]. Due
to space constraints, we only describe how the maps are gen-
erated in the JPEG compressed domain in this section. More
details can be found in [9].

3.1. Facial Components and Edges
The gradient map of facial components is generated by
searching for the corresponding components with the max-
imal similarity. Several facial components, including left
and right eyebrows, eyes, nose and mouth, are detected via
a landmark detection algorithm [13]. These landmarks are
used to align all the exemplar face images to the test im-
age, and search for each component such that gradients are
only generated in facial component regions. Once the best
matched facial components are determined, a gradient map
Uc is generated (See Figure 1(b)-(c)).

We model the local edge properties based on a statistical
edge prior between LR and HR to produce sharp HR con-
tours. Facial edges are first detected by the Canny edge de-
tector on the exemplar images. For each edge pixel c with
gradient magnitude mc, we extract the gradient mp for any
of its nearby pixel p, as well as its closest distance dp to
p. The exemplar-based mapping function is built by setting
a lookup-table with corresponding features of (mc,mp, dp)
between the LR and HR datasets. While extracting the edge
features (m′c,m

′
p, d
′
p) that detected by the Canny for a test

image, the corresponding HR gradients information can be



restored through the lookup-table. An illustration of the gra-
dient map Ue is shown in Figure 1(c).

3.2. Facial Textures
We use the exemplar patch match algorithm [14] to recon-
struct the regions (mostly facial textures and background con-
tents) other than facial components and edges. For a patch
that densely sampled with every pixel, the most similar patch
in the LR exemplar set is determined and the corresponding
HR patch is retrieved. Each pixel in a LR image results in a
z × z reconstructed square box, where z is the scaling factor
(z=4 in our experiments). However, the patch match algo-
rithm does not perform well in the compressed domain for
two reasons. First, the reconstructed square boxes are gen-
erated independently without considering the neighbors. As
a result, the reconstructed HR images are not smooth at the
box boundaries. Second, the reconstructed HR image con-
tains significant compression noise from the LR image. We
propose a gradient-guided total variation method to address
these issues.
3.3. Gradient-Guided Total Variation
We improve estimated HR facial textures in two aspects.
First, the facial texture to be estimated, denoted by It, should
be similar to the patch match result, denoted by Ip, to en-
sure the optimal HR mapping. Second, the pixel values of
overlapping blocks should correlate with each other such that
the image contents are continuous to reduce blocky artifacts.
Instead of using a Markov random field to select the best can-
didate for each patch in the intensity domain [4], we enforce
the pixel correlation by exploiting the image structure of the
input LR image via its gradient map VL to estimate It. We
use three regularization terms based on total variation (TV)
for image restoration:
• A L2-norm similarity term that enforces the resulting

image to be similar to the HR patch match result.
• A L2-norm gradient-guided term that enforces the gra-

dients of the estimated HR to be similar to the gradients
of the LR input.

• A L1-norm TV term that eliminates the image noise
introduced by the reconstructed image of a compressed
input based on patch match.

The regularized face image based on texture is generated by

I∗t = argmin
It
‖Ip − It‖22 + β ‖V −D(It)‖22 + λ ‖D(It)‖1 ,

(6)
where D is a matrix such that D(x) is the vector of first or-
der differential of x, non-negative β controls the degree of
gradient guiding, and non-negative λ controls the degree of
smoothing. The vectorized gradient map V is generated by
bilinear interpolation of the input image gradient map VL to
have the same size as D(It). Both V and D(It) are raster-
scanned vectors.

For a JPEG image, the BDCT coefficients are comput-
ed based on non-overlapping blocks. Thus, gradient values

(a) (b) (c) (d)

Fig. 2. Reconstructed images based on facial textures. (a) HR result
generated by the patch match method with blocky artifacts. (c) re-
sult generated by the proposed gradient-guided patch match method.
(b)(d) zoom-in views of (a)(c).

change significantly along block boundaries. As the size of
JPEG blocks are typically fixed as 8× 8 pixels, the block po-
sitions are easy to locate. An improved gradient map VL is
computed through estimating those pixel gradient values on
the block boundaries by the central difference equation,

VL(i) = [VL(i+ 1) + VL(i− 1)] /2, i mod 8 = 0, (7)

where i is a multiple of 8. To solve (6), we iteratively up-
date It by using the majorization-minimization method [11].
Figure 2 shows that the reconstructed image based on the
gradient-guided patch match method contains fewer artifacts,
and thus better gradient map Ut from I∗t (See Figure 1(b)-(c)).

3.4. Integrating Gradient Maps
The gradient maps of facial components Uc, facial edges Ue

and facial textures Ut are integrated into U of (5). The gra-
dient maps are combined based on specific regions using soft
masks as weight maps as shown in Figure 1(c)-(d),

U = wcUc + weUe + wtUt, wt = 1− wc − we, (8)

where wc, we and wt are the weight maps for facial compo-
nents, edges and textures, respectively. With the gradient map
U , a hallucinated face image can thus be computed by (5).

3.5. Restoring Color Channel
Since human eyes are more sensitive to the brightness than to
the color components, the Cb and Cr color channels are down-
sampled (typically reduced by a factor of 2) before computing
BDCT coefficients by the compression standard. As a result,
the color information needs to be better restored rather than
bilinear interpolation [9]. In this work, we reconstruct HR
outputs in color channels by patch match [14] to reconstruct
HR outputs. Thus the color details are better reconstructed
without blocky artifacts.

4. EXPERIMENTAL RESULTS

We first present experimental results using the Multi-PIE [15]
dataset containing face images with pose labels and land-
marks. Two sets are selected for training: one with 2,184
frontal face images of 320 × 240 pixels, and the other 283
images of the same size with pose of 30 degrees in yaw.
Each HR image in the training set is downsampled by (2) to
generate its corresponding exemplar LR image of 80 × 60



Table 1. Quantitative evaluation of Multi-PIE frontal face images with JPEG compression Q=75. set is listed below.
Q=25 Liu [4] Yang [6] Ma [7] Yang [9] [10] + [9] [11] + [9] Proposed
PSNR 18.537 27.789 22.079 30.279 29.580 30.339 29.821
SSIM [19] 0.596 0.698 0.752 0.793 0.801 0.808 0.817
DIIVINE idx. [14] 33.214 27.498 51.622 38.439 38.835 38.643 33.434

LR Liu [4] Yang [6] Ma [7] Yang [9] Proposed

PSNR 24.289 26.751 20.979 29.915 28.531
SSIM 0.689 0.674 0.748 0.803 0.821

PSNR 22.570 21.179 21.748 31.038 30.542
SSIM 0.639 0.418 0.746 0.817 0.850

PSNR 24.043 26.546 19.938 29.856 30.120
SSIM 0.687 0.653 0.743 0.799 0.849

Fig. 3. Hallucinated images using the Multi-PIE (top 2 rows) and
PubFig datasets. LR input with JPEG compression Q=75. (Results
are best viewed on a high-resolution display.)
pixels. The remaining 342 frontal facial images and 9 images
with pose variations are used to form the test set with no
overlap of identity to the training set. The LR test images are
generated by (4) (smoothing, downsampling and compres-
sion) with Gaussian kernel width of 1.6 and downsampling
factor of 4. Facial landmarks are identified by [13] to align
the facial components from exemplars to the test images.
All the face hallucination results are evaluated quantitatively
using PSNR, structural similarity (SSIM) [16] and DIIVINE
index [17]. Implemented in MATLAB, it takes 1 minute to
upsample a LR test image with a scaling factor of 4 on a 3.4G
Hz Quad Core CPU.

We evaluate the proposed algorithm with state-of-the-art
algorithms by using the released code of [9] and implement-
ing the methods of [4, 7, 6], in which the same settings for
training and test datasets are used. Figure 3 shows the hallu-
cinated face images (with Q=75) with a frontal face image
with a frontal smiling face image (first row), and a face at 30
degrees yaw pose (second row). We also use face images from
the PubFig dataset [18] for evaluation where photos are taken
in unconstrained environments and further compressed with
Q=75 (third row). We note that some hallucination method-
s of [4, 6, 7] do not regularize the hallucinated results to be
close to input images via the back-projection [19], the HR im-
ages do not contain magnified JPEG compression noise, as [9]
does. Although the methods based on high-frequency tex-
ture reconstruction [4] and sparse coding [6] generate high-
frequency details, their results do not contain clear facial com-

(a) (b) (c) (d) (e) (f)

Fig. 4. From left: LR input with Q=25, LR with NLM de-
noising [10], TV denoising [11], Yang [9] preprocessed with [10],
Yang [9] preprocessed with [11], and the proposed method. (a)-(c)
upsampled by nearest neighbor interpolation for better observation.
(Results are best viewed on a high-resolution display.)

ponent details or textures. The HR images generated by [7]
are over-smoothed. In contrast, the proposed algorithm per-
forms well in the regions of facial components, and texture
regions without much JPEG compression noise.

We also compare the proposed algorithm with the two-
step approach that carries out denoising and face hallucina-
tion sequentially. The method of [9] which performs perfect
on Multi-PIE with non-compressed image are used here for
comparison. In Figure 4(a), we show a face image that high-
ly compressed with Q=25 and use respectively the non-local
means (NLM) [10] and TV [11] algorithms to denoise the
compressed LR input image. The denoised images, as shown
in Figure 4(b)(c), show that both methods can remove JPEG
blocking and ringing noise significantly. However, these de-
noising algorithms smooth out noise as well as facial textures
of LR images, and thus the generated HR results do not con-
tain details. Although the blocky and ringing effects are re-
duced, the hallucinated images are over-smoothed. All quan-
titative evaluations on the frontal face test set are listed in Ta-
ble 1. Overall, the proposed algorithm performs well with
compressed or non-compressed images. More results and
details can be found at http://graduatestudents.
ucmerced.edu/sliu32/home.

5. CONCLUSION

In this paper, a novel approach to generate HR images by es-
timating the structure from exemplars and the input prior is
proposed. To estimate the HR details and remove JPEG arti-
facts, a structural total variation regularization method is pro-
posed. Experimental results show that the proposed method
generates high-quality images from highly compressed input-
s with favourable performance than both state-of-the-arts and
alternative methods based on straightforward combination of
denoising and super-resolution techniques.
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