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ABSTRACT

We propose a motion deblurring algorithm that exploits spar-
sity constraints of image patches using one single frame. In
our formulation, each image patch is encoded with sparse
coefficients using an over-complete dictionary. The sparsity
constraints facilitate recovering the latent image without solv-
ing an ill-posed deconvolution problem. In addition, the dic-
tionary is learned and updated directly from one single frame
without using additional images. The proposed method itera-
tively utilizes sparsity constraints to recover latent image, es-
timates the deblur kernel, and updates the dictionary directly
from one single image. The final deblurred image is then re-
covered once the deblur kernel is estimated using our method.
Experiments show that the proposed algorithm achieves fa-
vorable results against the state-of-the-art methods.

Index Terms— Image deblurring, sparse representation,
blind deconvolution.

1. INTRODUCTION
Image deblurring is one of the most fundamental problems in
image restoration that has been studied extensively in the lit-
erature [3, 2]. Image blur is usually caused by relative motion
between the camera and the scene during the exposure time,
e.g., camera shake. When there is a lack of ambient light,
slower shutter speed is necessary to increase exposure time.
Consequently, camera shake is likely to happen and degra-
date the image quality significantly. The image blur caused
by camera shake can be modeled by a latent image convolv-
ing with a spatial-invariant kernel K:

B = K ⊗ I + n, (1)
where B, I and n represent the input blurry image, deblurred
(or latent) image as well as noise respectively. Within this
formulation, ⊗ denotes the convolution operator and the de-
blurring problem is thus posed as a deconvolution problem.

If the kernel K is assumed to be known or well estimated,
it becomes a non-blind deconvolution problem. The Weiner
filter [13] and Richardson-Lucy algorithm [11, 10] are two
widely used non-blind deconvolution methods due to their
simplicity and efficiency. Nevertheless, these two methods of-
ten introduce noticeable ringing effects. In [9], Lou et al. pro-
pose a method that operates directly on blurred images, with-

out deconvolution, using a set of learned basis and a known
kernel. Their intuition is that, given a set of learned image
basis, the sparse coefficients of a latent image I remain the
same no matter whether I has been blurred or not. Instead of
tackling image deblurring with deconvolution, one can con-
volve the image basis with K from which sparse coding of
the blurred image I can be computed. However, in most of
the real-world cases, we do not know the exact kernel for
a blurred image, and the deblurring problem with unknown
kernel is posited as a blind-deconvolution problem.

Blind deconvolution is a well-known ill-posed problem,
and deblurring methods within this formulation aim at recov-
ering images with missing high frequency details. To address
this problem, some methods first estimate the kernel K and
then employ non-blind deconvolution algorithm to obtain the
latent image I [7, 14], while others estimate kernel K and
latent image I simultaneously [12, 4]. With known or well-
estimated kernel, there exist numerous algorithms that can
recover the blurred image well (e.g., [11, 10]). If the ker-
nel can be estimated, we can employ these non-blind decon-
volution methods to obtain high-quality latent image. Prior
gradient distribution of nature images and sophisticated ma-
chine learning algorithm are utilized for kernel estimation in
[7]. However, rich and specific information contained in a
blurred image is not exploited for estimating deblur kernel.
In [14] a method that utilizes additional information from a
pair of blurred and noisy images is proposed to estimate ker-
nel. Most recently, an algorithm that models the deblurred
blur kernel and image with wavelets and sparsity constraints
has demonstrated promising results [4]. Nevertheless, this
method does not exploit rich information contained in the
blurred image as the generic bases (i.e., pre-defined basis such
as curvelets and framelets) are used.

In this paper, we propose a deblurring method that ex-
ploits sparse representation using a dictionary learned di-
rectly from the blurred image. Our method utilizes sparsity
constraints to iteratively estimate the deblur kernel and then
applies a standard non-blind deconvolution algorithm to re-
cover the deblurred image. While other methods utilizes prior
statistics learned from a set of additional images for deblur-
ring [7, 8, 14, 12], the proposed algorithm requires only one
image. In contrast to [4], our method benefits from dictionary



learning from the blurred image itself. Compared with state-
of-the-art methods, our experiments show that the proposed
deblurring algorithm achieves favorable results.

2. PROBLEM FORMULATION

It is well-known that natural images can be modeled with
sparse representation over an over-complete dictionary. A
signal (an image patch in this paper) Ip can be approximated
by a sparse linear combination of atom signals in an over-
complete dictionary D ∈ Rn×m, n,m ∈ R and n < m, or
a set of overcomplete bases {dj}mj=1 and a coefficient vector
α ∈ Rm, that satisfy:

min ‖α‖0, s.t. Ip = Dα, (2)

or min ‖α‖0, s.t. ‖Ip −Dα‖2 ≤ ε, (3)

where Ip is an image patch that has the same dimension with
the dictionary basis and ‖ · ‖k is the lk norm. In other words,
any signal can be described using a small number of dictio-
nary bases under the corresponding bases pool.

We pose image deblurring as a joint optimization problem
of the blur kernelK and sparse coefficients α with regulariza-
tion:

min
K,α
‖B −K ⊗DA‖22 + λ

∑
Θ(α), (4)

where each column of B is a raster scan vector of a block
from the blurred image, and each column of A is the sparse
coefficient α of a block of the latent image (from (2) or (3)).
In addition, Θ(α) is the l1 regularization term upon the sparse
representation coefficient α as it has been proved to be equiv-
alent to l0 norm under certain conditions [6]. In (4), there are
three unknown variables: the kernel K, the coefficient vec-
tor α, and the underlying dictionary D. Therefore, a direct
approach to solve this optimization problem is likely to suf-
fer from slow convergence and local minimums. As the main
goal is to estimate the deblur kernel, we propose an iterative
method to alternately estimate the unknown variables, one at
a time, which divides the optimization problem into several
simple ones in each iteration. More importantly, the dictio-
nary D is learned from the input image during this optimiza-
tion process. The proposed algorithm iteratively optimizes
one of K, D, α by fixing the other two, and finally obtains
the deblurring kernel. With the estimated kernel, we can ap-
ply any standard deconvolution algorithm to recover the latent
image.

2.1. Estimating sparse coefficients
At the beginning of each iteration, we fixK andD to estimate
the coefficient α of each image patch, the column of A

α(n+1) = arg min ‖α‖1, s.t. b = (K(n) ⊗D(n))α,

or α(n+1) = arg min ‖α‖1, s.t. b = D̂(n)α,

(5)

where D̂(n) is the blurred dictionary at iteration n. Here, we
use b to represent a block of blur image. At the first iteration,

we need to initialize K0, which will be discussed in Sec. 3.
As K and D are fixed at iteration n, there is only one un-
known variable and the optimization problem can be solved
efficiently using the basis pursuit algorithm [5].

2.2. Updating dictionary
In this step, as kernel K and coefficients α are fixed, we up-
date the dictionary atoms of the latent image based on the
test image itself. However, the extracted information from
the blurred image B cannot be directly applied to update the
underlying dictionary of the clear image. Before the update
of dictionary D, we reconstruct an image Î from deconvolv-
ing the blurred image with the estimated kernel K(n) using a
non-blind deconvolution algorithm, such as the Richardson-
Lucy or Wiener deconvolution algorithms, and then use the
blocks Îp of the image, which shares the same dimension as
the dictionary basis, to update the dictionary D of latent im-
age. Similar to the K-SVD algorithm [1], we decompose the
multiplication Dα to the sum of rank-1 matrices and each
time update a basis di of dictionary D:

d
(n+1)
i = min ‖Îp −D(n)α(n+1)‖22

= min
di
‖Îp − (diα

n+1)
i +

∑
j 6=i

d
(n)
j α

(n+1)
j )‖22

= min
di
‖E(n+1)

i − diα(n+1)
i ‖22,

(6)

whereE(n+1)
i = Îp−

∑
j 6=i d

(n)
j α

(n+1)
j is the residual matrix.

2.3. Recovering latent image and estimating blur kernel
Similar to the ideas proposed in [9], we assume the sparse co-
efficients α of the latent image patch Ip with basis {di}mi=1

are the same as the one of blurred image B relative to the
blurred basis {bi} = {K ⊗ di}mi=1. Thus, we can reconstruct
latent image I(n+1) as the weighted sum of overlapping im-
age blocks

I(n+1)
p = D(n+1)α(n+1). (7)

Next, we can write the convolution K(n+1) ⊗ I(n+1) as a
matrix multiplication A · x (here x corresponds to K(n+1)

and image blocks Ip as the columns of A) and formulate the
kernel estimation problem as

min ‖B −Ax‖22. (8)

Moreover, we introduce additional regularization constraints
in order to get a stable solution from Tikhonov regularization,

min ‖B −Ax‖22 + ‖Γx‖22, (9)
where Γ is the Tikhonov matrix. With Tikhonov regulariza-
tion, the numerical solution, denoted by x̂, is given by

x̂ =
(
A>A+ Γ>Γ

)−1
A>B. (10)

Alternatively, we can use objective functions with penalty of
l1 norm [12] or framelet system [4] , such as

min ‖B −Ax‖22 + ‖x‖1, (11)

to estimateK. As mentioned above, the final deblurred image
can be recovered once the deblur kernel is estimated.



2.4. Algorithm analysis
Our algorithm focuses on estimating the blur kernel and then
employs a standard non-blind deconvolution algorithm to re-
cover the latent image. The success of our algorithm hinges
on the effectiveness and accuracy of kernel estimation. That
is, if the accuracy of the estimated kernel is improved at each
iteration, the proposed algorithm will find a reasonably good
solution. This condition can be achieved under certain situa-
tions. For minimization problem (5), we have D̂ = Ke⊗DI ,
where Ke and DI represent the estimated kernel and dictio-
nary for the latent image I , and Kr = Ke + E, where Kr is
the real kernel and E is the kernel error. If this minimization
problem has been solved precisely, B = (Kr − E) ⊗ DIα.
Meanwhile, B = Kr ⊗ I , then

Kr ⊗ I = (Kr − E)⊗DIα

=⇒Kr ⊗ (I −DIα) = −E ⊗DIα,
(12)

Based on the assumption of coefficients α stated above, if the
dictionary DI for latent image is correctly estimated (DIα ≈
I), which means that the error ‖I−DIα‖2 will be decreased.
Although both sides of the above equation have convolution
operations, from the definition of convolution, it is reasonable
to expect that the variation trend of ‖E‖2 is being decreased.
That is, the estimate of blur kernel is improved over each iter-
ation and thus the latent image can be recovered.

3. EXPERIMENTAL RESULTS

We implement our algorithm and carry out experiments in
MATLAB. The initial kernelK0 is set to be the Gaussian ker-
nel with σ = 1, and λ in (5) as well as Γ in (10) are set as 1
and identity matrix I . We use gray-scale images for our ex-
periments and crop a small portion (e.g. 200× 200 pixels) of
the tested image to estimate kernel using the algorithm listed
in Sec. 2. We use Richardson-Lucy deconvolution algorithm
to reconstruct Î in Sec. 2.2. Each iteration of our algorithm
takes approximately 5 minutes on a windows PC of 2.67 GHz
CPU and 4 GB RAM.

We compare our method with two state-of-art algorithms
[7, 12] which utilize prior information on image edges. As
shown in Fig. 1, although the deblurred images from [7, 12]
have shaper edges, they also contain noise in smooth regions
such as walls and floors. In contrast, our algorithm is able
to recover the deblurred images well in smooth and textured
regions (e.g., fluff of the koala, stipes of tablecloth and ker-
chief) with fewer ringing effects. One possible explanation
is that the assumed prior distribution of edges used in [7, 12]
does not hold well for these images whereas our method ex-
ploits the information from the blurred image.

We also carry out experiments with images blurred by
randomly generated kernel. The existing deblurring algo-
rithms are usually developed to deal with motion blur prob-
lems in which the kernels are oriented and simple. How-
ever, the camera shakes are complex and cannot be modeled
well with simple blur kernels. We evaluate our algorithms

against others using randomly generated kernels. Fig. 2
show that our algorithm is able to recover the latent im-
age with more details and better contrast than [7] (which
does not capture image details) and [12] (which suffers more
ringing effects with fewer details). We also provide root-
mean-square-error (RMSE) to demonstrate the quantitative
comparison among recovered images by different algorithms.
These results can be better viewed with zoom-in on a LCD
display, and their high-resolution images can be found at
eng.ucmerced.edu/people/zhu/deblur.html.

4. CONCLUSION

In this paper, we propose an effective deblurring algorithm
with adaptive dictionary learning using one single image.
By decomposing the blind deconvolution problem into three
simple ones and learning sparse dictionary from the image,
our method is able to estimate blur kernels and thereby de-
blurred images. Experimental results show that our algorithm
achieves favorable performance against two state-of-the-art
algorithms.
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(a) Input image (b) Blurred image (c) Fergus (RMSE: 5.41) (d) Shan (RMSE: 6.57) (e) Ours (RMSE: 5.10)

(a) Input image (b) Blurred image (c) Fergus (RMSE: 5.53) (d) Shan (RMSE: 7.02) (e) Ours (RMSE: 4.61)

Fig. 1. Experiments with motion blur kernel. (a): input image; (b): blurred image; (c): recovered images using approach by
Fergus et al. [7]; (d): recovered images using approach by Shan et al. [12]; (e): recovered images by our algorithm.

(a) Input image (b) Blurred image (c) Fergus (RMSE: 7.87) (d) Shan (RMSE: 7.46) (e) Ours (RMSE: 6.73)

(a) Input image (b) Blurred image (c) Fergus (RMSE: 6.58) (d) Shan (RMSE: 7.21) (e) Ours (RMSE: 6.94)

Fig. 2. Experiments with randomly generated kernel. (a): input image; (b): blurred image; (c): recovered images using approach
by Fergus et al. [7]; (d): recovered images using approach by Shan et al. [12]; (e): recovered images by our algorithm.


