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ABSTRACT
Large margin classifiers have demonstrated their advantages
in many visual learning tasks, and have attracted much at-
tention in vision and image processing communities. In this
paper we apply and compare two large margin classifiers,
Support Vector Machines and Sparse Network of Winnows,
to detect faces in still gray scale images. Furthermore, we
study the theoretical frameworks of these classifiers and an-
alyze the empirical results. Experiments on a test set of
24,045 images exhibit good generalization and robustness,
and conform to theoretical analysis.

1. INTRODUCTION
Machine learning and statistical methods have become pop-
ular as tools for addressing a variety of visual learning prob-
lems, ranging from object recognition, pedestrian detection,
to face detection. There are, however, very few attempts to
address theoretical issues and, in particular, study the suit-
ability of different learning algorithms to different vision
problems. The goal of this paper is to present a theoretical
account of a learning approach and its suitability to visual
recognition. We use tools from computational learning the-
ory [14, 15] in order to study the properties of two success-
ful learning approaches. The algorithms are evaluated on
a visual learning problem - face detection - and the theo-
retical generalization properties, along with our analysis of
the data are used to explain the prediction performance and
discuss the suitability of the approaches to visual learning
problems. The learning approaches we study are Support
Vector Machines (SVMs) [15] and the SNoW learning ar-
chitecture [12]. Both have been studied extensively recently
and have shown good empirical performance on several vi-
sual learning problems. We study both generalization and
computational efficiency issues and derive conclusions that
are relevant to further use of these learning methods in vi-
sual recognition tasks.

Several theoretical results have suggested that these two
approaches have incomparable generalization performance
that depend on well defined properties of the domain and the
target concept. We study these properties and conclude that
the face detection data suggests that the SNoW based ap-
proach should have advantages in terms of generalization.
In addition to generalization, the two learning approaches
can also be measured in terms of efficiency. This is im-
portant especially when one wants to “blow” up the feature
space in order to increase the expressivity of the features
and allow a linear classifier to discriminate faces from non-
faces, or to discriminate between objects. In this case, we

argue that the SVM approach is advantageous. We argue
that in order to fully exploit the nice generalization proper-
ties of SNoW, images should be represented using features
that give rise to a fairly small number of active features in
each image. That is an attempt should be made to use rep-
resentations that are not pixel based, but rather based on
sparser phenomenon in the image, such as edges, conjunc-
tions of those or other types of features. We show some
preliminary results that support this and suggest several di-
rections for future work.

2. LARGE MARGIN CLASSIFIERS

Most efficient learning methods known today, including many
probabilistic classifiers, make use of a linear decision sur-
face over the feature space. Among these methods we focus
here on SVMs and SNoW which have demonstrated good
empirical results in vision and natural language process-
ing problems [10, 16]. SNoW and SVM, are representa-
tives of two different classes of linear classifiers/regressors.
SNoW is based on Winnow, a multiplicative update rule al-
gorithm [8, 7]; SVMs are based on perceptron [11], an ad-
ditive update rule. Although SVMs can also be developed
independently of the relation to perceptron, for the sake of
our theoretical analysis viewing them as a large margin per-
ceptron [4, 3] is important. Moreover, recent results [5] have
shown that the generalization properties of SVMs are dom-
inated by those of large margin perceptron, and therefore it
is sufficient here to study those.

2.1. The SNoW Learning Architecture
The SNoW (Sparse Network of Winnows) learning archi-
tecture is a sparse network of linear units over a common
pre-defined or incrementally learned feature space. Nodes
in the input layer of the network represent relations over the
input instance and are being used as the input features. Each
linear unit is called a target node and represents a concept
of interest over the input. In the application described here,
target nodes could represent an object in terms features ex-
tracted from the 2D image input, a face, or a non-face. In
the current presentation we assume that all features are bi-
nary (in f0; 1g), although SNoW can take real numbers as
input. An input instance is mapped into a set of features
which are active (with feature value 1) in it; this variable
size representation is presented to the input layer of SNoW
and propagates to the target nodes. Target nodes are linked
via weighted edges to (some of) the input features.

LetAt = fi1; : : : ; img be the set of features that are ac-
tive in an example and are linked to the target node t. Then



the linear unit corresponding to t is active iff
P

i2At
wt
i >

�t; where wt
i is the weight on the edge connecting the ith

feature to the target node t, and �t is the threshold for the
target node t. Each SNoW unit may include a collection
of subnetworks, one for each of the target relations but all
using the same feature space. A given example is treated au-
tonomously by each target unit; an example labeled t may
be treated as a positive example by the t unit and as a neg-
ative example by the rest of the target nodes in its subnet-
work. At decision time, a prediction for each subnetwork is
derived using a winner-take-all policy. In this way, SNoW
may be viewed as a multi-class predictor. In the application
described here, we may have one unit with target subnet-
works for all the target objects or we may define different
units, each with two competing target objects.

SNoW’s learning policy is on-line and mistake-driven;
several update rules can be used within SNoW, but here we
concentrate on the one which is a variant of Littlestone’s
Winnow multiplicative update rule [8]. The Winnow up-
date rule has, in addition to the threshold �t at the target t,
two update parameters: a promotion parameter � > 1 and
a demotion parameter 0 < � < 1. These are being used
to update the current representation of the target t (the set
of weights wt

i ) only when a mistake in prediction is made.
Let At = fi1; : : : ; img be the set of active features that
are linked to the target node t. If the algorithm predicts
0 (that is,

P
i2At

wt
i � �t) and the received label is 1,

the active weights in the current example are promoted in
a multiplicative fashion: 8i 2 At; w

t
i  � � wt

i : If the al-
gorithm predicts 1 (

P
i2At

wt
i > �t) and the received label

is 0, the active weights in the current example are demoted:
8i 2 At; w

t
i  � � wt

i : All other weights are unchanged.
As will be clear below, the key feature of the Winnow up-
date rule is that the number of examples required to learn a
linear function grows linearly with the number nr of rele-
vant features and only logarithmically with the total num-
ber of features. This property seems crucial in domains in
which the number of potential features is vast, but a rela-
tively small number of them is relevant. Moreover, in the
sparse model, the number of examples required before con-
verging to a linear separator that separates the data (pro-
vided it exists) scales with O(nr logna). Winnow is known
to learn efficiently any linear function (in general cases effi-
ciency scales with the margin) and to be robust in the pres-
ence of various kinds of noise and in cases where no linear
function can make perfect classifications, while still main-
taining its abovementioned dependence on the number of
total and relevant attributes [9, 7].

2.2. Large Margin Perceptron and SVMs
In this section we briefly present perceptron and SVM; the
presentation concentrates on the linearly separable case, al-
though it can be extended to the more general case.

The perceptron also maintains a weight vector w and,

given an input vector xi, predicts that xi is a positive ex-
ample iff w � xi > �. Like Winnow, the perceptron’s up-
date rule is also an on-line and mistake driven, and the only
difference between them is that the weight update rule of
perceptron is additive. That is, if the linear function mis-
classified an input training vector xi with true label yi (here
we assume for notational convenience that y i 2 f�1;+1g)
then we update each component i of the weight vectorw by:
wj  wj + �xiyi; where � is the learning rate parameter.

Like Winnow, the Perceptron is also known to learn ev-
ery linear function, and in the general case, the number of
mistakes required before it converge to a hyperplane that
separates the data depends also on the margin in the data,
that is, on maxxi � yi, where yi 2 f�1;+1g is the true
label of the example xi.

Linear separability is a rather strict condition. One way
to make methods more powerful is to add dimensions of
features to the input space. Usually, if we add enough new
features, we can make the data linearly separable; if the sep-
aration is sufficiently good, then the expected generalization
error will be small, proved that we do not increase the com-
plexity of instances too much by this transformation. How-
ever, from a computational point of view this could be pro-
hibitively hard. This problem can be sometimes solved by
the kernel trick. Aizerman et. al have suggested this meth-
ods and showed that it can be combined with perceptron [1].
Boser et. al showed that the same holds for SVMs [2]. As
will be clear later, the kernel trick serves to aid efficiency, in
case there is a need to work in a higher dimensional space;
however, the generalization properties, in general, depend
on the effective, high dimensional, feature space in which
the linear classifier is determined.

SVMs, or batch large margin classifiers can be derived
directly from a large margin version of perceptron (which
we do not describe here; see e.g., [17]) using a standard
way to convert the on-line algorithm to a batch algorithm.
This is done in order to convert the mistake bounds that
are typically derived for on-line algorithms to generaliza-
tion bounds that are of more interest (e.g. [4]). However, for
completeness, we briefly explain the original, direct deriva-
tion of SVMs. SVMs can be derived directly from the fol-
lowing inductive inference. Given a labeled set of train-
ing samples, an SVM finds the optimal hyperplane that cor-
rectly separates the data points while maximizing the dis-
tance of either class from the hyperplane (maximizing the
margin). Vapnik shows that maximizing the margin is equiv-
alent to minimizing the VC dimension and thus yield best
generalization results [15]. Computing the best hyperplane
is posed as a constrained optimization problem and solved
using quadratic programming techniques. The optimal hy-
perplane is defined by

min
1

2
w2; subject to yi(wTxi + b) � 1 8i = 1; : : : ;M

where b is a bias term computed from the margin.



Finally we note that although large margin perceptron
and SVMs are very related, it turns out that the general-
ization bounds of the large margin perceptron are slightly
better than those of SVMs and therefore we will use those
in our analysis. Although these are worst case bounds, they
have already be shown to be quite representative in some
experiments using synthetic data [7], so we can use them to
guide our understanding.

3. GENERALIZATION AND EFFICIENCY
We consider two issues when comparing learning algorithms
(e.g., SNoW and SVM): generalization and efficiency.

3.1. Generalization Error Bounds
Learning systems use training data in order to generate a hy-
pothesis, but the key performance measure one cares about
is actually how well they will perform on previously un-
seen examples. Generalization bounds are derived in or-
der to estimate, given the performance on the training data,
what will be the performance on previously unseen exam-
ples. The assumption underlying the derivation of general-
ization bounds is the basic assumption of the PAC learning
theory [14], that the test data is sampled from the same (un-
known) distribution from which the training data was sam-
pled. In the following we preset two theorems, one describ-
ing the generalization error bound of large margin classifiers
(e.g., SVMs) and the corresponding theorem for the multi-
plicative update algorithm (e.g., Winnow). The first is a
variant of Theorem 4.19 about the in [3, 17]:

Theorem 1 If the data is L2 norm bounded as jjxjj2 �
b, then consider the family � of hyperplanes w such that
jjwjj2 � a. Denote by err(w) the misclassification error of
w with the true distribution. Then there is a constantC such
that for any  > 0, with probability 1 � � over n random
samples, any w 2 � satisfies:

err(w) �
k

n
+

s
C

2n
a2b2 ln(

nab


+ 2) + ln

1

�

where k = jfi : wTxiyi < gj is the number of samples
with margin less than 
Similarly we present a generalization bound for Winnow
family of algorithms (e.g., SNoW). Derivations of this the-
orem can be found in [3, 17].

Theorem 2 If the data is L1 norm bounded as jjxjj1 �
b, then consider the family � of hyperplanes w such that
jjwjj1 � a and

P
j wj ln(

wj jj�jj1
�j jjwjj1

) � c. Denote by err(w)
the misclassification error of w with the true distribution.
Then there is a constant C such that for any  > 0, with
probability 1� � over n random samples, any w 2 � satis-
fies:

err(w) �
k

n
+

s
C

2n
b2(a2 + ac) ln(

nab


+ 2) + ln

1

�
where k = jfi : wTxiyi < gj is the number of samples
with margin less than 

In order to understand the relative merits of the algorithms,
a closer look at the above bounds shows that, modulo some
unimportant terms, the error bounds Ea and Em for the
additive algorithms and the multiplicative algorithms scale
with:

Ea � jjwjj
2

2
max
i
jjxijj2

2
;

and
Em = 2 ln 2njjwjj2

1
max
i
jjxijj21:

where w is the target hyperplane.
From the theorems, the main difference between SVM

and SNoW is the data assumption. If the data is L2 norm
bounded and there is a small L2 norm hyperplane, then
SVM is suitable for the problem. On the other hand, Win-
now is suitable for a problem where the data is L1 norm
bounded and there is a small L1 norm hyperplane. Theo-
retical analysis indicates that the advantage of the Winnow
family of algorithms (e.g., SNoW) over Perceptron family
of algorithms (e.g., SVM) requires the data to have small
L1 norm but large L2 norm. Numerical experiments in [7]
have confirmed the claim above and demonstrated the gen-
eralization bounds are quite tight.

3.1.1. Experiment I: Generalization
To understand and analyze the performance of SNoW and
SVM, we perform numerous experiments on face detection.
The training set consists of 6,977 images (2,429 faces and
4,548 non-faces), and the test set consists of 24,045 images
(472 faces and 23,573 non-faces). Our training and test sets
are similar to the ones used in [6] which also show that
SVMs with the feature representation of normalized inten-
sity values perform better than the ones with Harr wavelet
and gradient representations. In our experiment, each im-
age is normalized to 20� 20 pixels and processed with his-
togram equalization and quantization (50 rather than 256
scales). Figure 1 shows some face images in the training
and test sets. We use the the normalized intensity values as

Fig. 1. Sample face images: each image is normalized to
20� 20 pixels with histogram equalization.

representations for SVM with linear kernel. For SNoW, we
also use normalized intensity values as features of images,
which we call linear features.

For the baseline study where SNoW and SVM have the
same feature representation, i.e., normalized intensity val-
ues, SNoW clearly outperforms SVM as shown by the lower
two ROC curves in Figure 2. For visual pattern recognition,
most data dimension is not useful as demonstrated in the
Eigenface [13] approach and others. Many studies have also
shown that the target hyperplane function in visual pattern
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recognition is usually sparse. Consequently, the target hy-
perplane has a relatively small L2 norm and relatively small
L1 norm. Under such situations, the Perceptron does not
have any theoretical advantage over Winnow. Thus it is not
surprising to see that the Winnow family and the Perceptron
family of algorithms perform equally well. For the experi-
ment with linear features (i.e., normalized intensity values),
the L2 norm is on the average 10.2 times larger than the L1
norm. The number of active features in the final hyperplane
of SNoW is very sparse, i.e., 1:6% of all possible features.
The number of support vectors is also sparse, i.e., 5% of
all the training examples. The empirical results show that
SNoW outperforms SVM (shown in lower two ROC curves
in Figure 2) and match the predictions of the theorems well.
3.1.2. Experiment II: Efficiency
Since the features in the SVM with polynomial kernel are
more expressive than the linear features, we choose to use
conjunctions of features to capture local information of im-
age patterns. For each pixel, we represent the conjunction
of intensity values of m pixels within a window of w � w

pixels as a new feature value and use them as feature vec-
tors. Each feature value is then mapped to a binary feature
using the method discussed in [16] To make sure that the
combined computational requirement of SNoW (computa-
tional loads of features and training) does not outweigh the
one of SVM, we choose to use a small window of 2 � 2
pixels and conjunctions of 2 pixels.

Figure 2 shows the upper two ROC curves of SVM with
second order polynomial kernel and SNoW with conjunc-
tion of features. Although SVM performs slightly better
than SNoW, we think that SNoW can perform as well as
SVM if the feature representation is as powerful as the one
in SVM with polynomial kernel. We will discuss these is-
sues in Section 4. The L2 norm of the local features (gen-
erated by 2� 2 window) is 2.2 times larger than L1 norm.
In this case, SVM performs slightly better than SNoW. The
results conform to the predictions of the analysis of the the-
orems which indicates that the advantage of SNoW over

SVM requires the data to have large L2 norm but small L1
norm.

4. CONCLUSION
This paper proposes some theoretical arguments that sug-
gest that the SNoW-based learning framework has impor-
tant advantages for visual learning tasks. Given good ex-
perimental results with SNoW on face detection, the main
contribution of this work is in providing an explanation for
this phenomena - by giving a theoretical analysis and vali-
dating it with real world data - and providing ways for think-
ing about good representations for visual learning tasks. We
have shown that SNoW, being based on a multiplicative
update algorithm, has some nice generalization properties
compared to other learning algorithms used in this domain.
On the other hand, algorithms that are based on additive up-
date algorithms, like perceptrons and SVM, have some nice
computational properties, stemming from the ability to use
the kernel trick and to avoid computing with in very high
dimensional data. We then argue that SNoW, with its abil-
ity to handle variable size examples does not suffer from
the dimensionality of the data but only from the presence of
many active features in each examples. Moving to a sparse
representation of images, (e.g., edges, conjunctions of those
or others families of features studied in computer vision)
would allow one to enjoy both worlds - a good generaliza-
tion performance along with computational efficiency. We
believe this to be an important direction for future research.
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