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ABSTRACT
We propose a Bayesian framework for modeling and predict-
ing traffic patterns using information obtained from wireless
sensor networks. For concreteness, we apply the proposed
framework to a smart building application in which traffic
patterns of humans are modeled and predicted through de-
tection and matching of their images taken from cameras at
different locations. Experiments with more than 2,500 im-
ages of 20 subjects demonstrate promising results in traffic
pattern prediction using the proposed algorithm. The al-
gorithm can also be applied to other applications including
surveillance, traffic monitoring, abnormality detection, and
location-based services. In addition, the long-term deploy-
ment of the network can be used for security, energy conser-
vation and utilization improvement of smart buildings.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General; I.4.9
[Computing Methodologies]: Image Processing and Com-
puter Vision—Applications

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Camera Sensor Network, Traffic Modeling and Prediction,
Pedestrian Detection, Image Matching, Smart Cameras

1. INTRODUCTION
In this paper, we propose a Bayesian framework for mod-

eling traffic pattern of moving objects using information ac-
quired from wireless sensor networks. The traffic pattern
here refers to the moving pattern of humans, vehicles or
other moving objects within the region of interest. We as-
sume that the way objects move around within the network
follows some regular patterns, as limited by the constraints
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of area layouts. Based on the observations, we extract use-
ful information about how the objects move in the scenes.
For example, we can predict the transition probability of
an object moving from the sensing region of one sensor to
another. In addition, we can estimate the expected trav-
eling time for an object moving between regions using the
predicted transition probabilities.

In our formulation, no overlapping sensing regions are re-
quired and the sensing region of each sensor can have dif-
ferent shapes. The sensors are not calibrated, i.e., we do
not know the accurate positions or viewpoints of the sen-
sors. The above-mentioned scenario requires an efficient
and effective data association algorithm to match objects
observed by different sensors, as there are multiple objects
moving freely in the scenes. For concreteness, we describe
our framework using a smart building application in which
we show humans can be identified and matched based on im-
ages taken from cameras with different field of views. The
proposed framework can be applied, with different sensing
devices, to other applications, such as surveillance, traffic
monitoring, abnormality detection, location-based services,
to name a few.

We conduct experiments in a smart building with a low-
power, low-bandwidth distributed camera sensor network.
With five CITRIC camera motes [2] placed at the intersec-
tions of stairways, hallways and elevators, we show that the
traffic pattern of dwellers can be modeled and predicted well
with the proposed model.

The contributions of our work are summarized as follows.
We propose a Bayesian framework, based on semi-Markov
process, for modeling the traffic patterns. The proposed ap-
proach deals with identity uncertainty, and hence it is appli-
cable for realistic situations where a large number of objects
move among the region of interest and their identities are
not known a priori. Due to intrinsic characteristics of cam-
eras, the association results are not guaranteed to be accu-
rate, not to mention that the images from different camera
are always under different viewpoint or lighting conditions.
Thus, we derive a maximum-likelihood solution to exploit
the association results in a probabilistic way. Furthermore,
the proposed framework exploits both spatial and temporal
information such that only local information between neigh-
boring sensors is used and thus the computational load can
be reduced.

2. RELATED WORK
There is a rich literature on wireless sensor networks [1,

24] and a comprehensive review is beyond the scope of this
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paper. In this section, we discuss the most relevant works in
camera sensor networks, and their applications for modeling
human activities.

There has been a consistent interest in applications with
smart cameras, especially in tracking objects using multi-
ple cameras [10, 23, 12, 9, 21, 13], object identification [11],
learning network topology [19], people counting [28], etc.
In [11], a traffic monitoring system is presented in which
image matching and known traveling time are combined to
establish vehicle correspondence between deployed camera
sensors along a highway. However, it only models one single
traffic pattern where the traffic generally follows highway
lanes. Kettnaker and Zabih [15] introduce a Bayesian for-
malization to reconstruct the paths of objects across multi-
ple cameras. While the cameras have non-overlapping field
of view (FOV), they need to be calibrated. Their system re-
quires a pre-defined set of allowable paths, transition proba-
bilities and expected duration as a prior. Consequently, the
proposed method has rather limited application domains. A
method that exploits space-time cues (e.g., location of ex-
its and entrances, moving directions, average traveling time
and object appearance) to establish object correspondences
is presented in [12]. Although the results are promising,
the proposed method does not predict the traveling time of
moving objects. To track people moving across cameras,
a method based on a stochastic transition matrix is pro-
posed [6] in which both Kalman filter and Markov model
are used. The Kalman filter is used to resolve short tracks
between frames, whereas the Markov model is applied to
cope with discontinuity and track fast motion or motion that
the Kalman filter cannot predict. However, this method re-
lies on background subtraction which is known to be prob-
lematic for long-term deployment. In addition, it does not
model the traveling time of moving people. Spatial and vi-
sual cues are used in [13] for tracking objects in multiple
non-overlapping cameras. The non-parametric Parzen ker-
nel function is used to estimate the space-time probability
density function between each pair of cameras, thereby fa-
cilitating tracking with non-overlapping views. A method
proposed in [9] incrementally updates transition matrix and
color calibration mappings for tracking people across dis-
joint camera views. Song and Roy-Chowdhury [23] propose
a stochastic, adaptive strategy for tracking multiple people
in non-overlapping camera networks. With its long-term
feature dependency models, their system can adaptively de-
termine feature correspondence and correct association er-
rors. However, they assume that the distribution of the
travel time between two nodes is known and people can be
tracked within the view of each camera, which is a strong
assumption.

In our experiment, a camera sensor network is formed us-
ing CITRIC camera motes [2]. Besides the CITRIC mote,
there are numerous camera sensor platforms [22, 18, 8, 16,
7]. These platforms vary in configuration, processing capa-
bility, memory and image resolutions. In the last few years,
there has been a growing interest in applications of camera
sensor networks [17, 27, 25]. Yan et al. [27] implement a
distributed image search system over a camera sensor net-
work where each node is a search engine that senses, stores
and searches for visual information. The node consists of a
iMote2 mote [3] and low-power cameras with extended flash
storage. Sundarraj et al. [25] propose an algorithm that
matches images from multiple camera sensors, using spatial

and temporal consistency. In [5], a real-time surveillance
application for object tracking is proposed using WiCa [16]
platform. Recently, Kamthe et al. [14] present a smart cam-
eras object position estimation system using Cyclops [22]
sensor network. Notwithstanding the demonstrated success
in these applications, none of these applications develop ef-
ficient and effective data association algorithm to model the
traffic pattern of moving objects.

What distinguishes our work from prior art is as follows.
First, it is not necessary for our algorithm to track objects
or to reconstruct their whole paths in sequences in order
to analyze traffic patterns. Instead, the proposed algorithm
entails only the local motion pattern of objects. Second,
our framework is able to model the traveling time of moving
objects. Furthermore, while our objective is not to track
objects in the network, we can actually estimate the object
paths probabilistically. We can also estimate the number of
objects in the region of interest. With each mote reporting
the number of objects entering/leaving the states (based on
the human detection result) at any duration, the server can
form a global view of the traffic flow.

3. PROBLEM FORMULATION
In this section, we present our framework for modeling

and predicting traffic patterns. Our framework is generic
and can be applied to numerous problems as we do not as-
sume the specific sensing region or topology of sensors. It
is also applicable to other sensor networks with different
sensing devices (e.g., infrared, motion, and image sensors).
For concreteness, we present the proposed framework with
an application where traffic patterns of humans are modeled
and predicted via images acquired from a camera sensor net-
work.

3.1 Sensor Placement
Assume there are N sensors in the network, we denote
R as the entire region of interest which covers the sensing
area of all the sensors, i.e., {R1, · · · , RN} ⊂ R, where Rn is
the sensing region of sensor n. They may be overlapped or
not. Note that there exist regions uncovered by the sensors,
so the union of R1, . . . , RN is a subset of R. These sensing
regions do not assume any particular structure in our for-
mulation. As shown in Fig. 1, there are five regions in this
sensor network where R3 and R4 are overlapped.

The possible entry/exit points within the whole sensing
region are represented by S states Z1, . . . , ZS , and usually
S ≥ N , as shown in Fig. 1, where the states are denoted by
purple circles. In this example, each sensing region covers
one or more states and one state may be covered by several
sensors, e.g., Z9. Assume a set of states, Sn, is covered
by sensor n, then

∑N
n=1 Sn = S + L, where L is the total

number of states that are covered by more than one sensor.
In Fig. 1, there are 10 (S = 10) states and one (L = 1) of
them is covered by more than one sensors.

With this formulation, the traffic pattern of interest refers
to how objects travel from one state to another. We only
consider the traffic pattern between Ri. The activity graph
describes how objects move in the region of interest R.
Fig. 1(b) shows an example where each vertex represents
a state and each edge in the activity graph describes the
possible path the objects can take between states. The ac-
tivity graph differentiates traffic patterns such as U-turn
(Z1 ↔ Z1) and through traffic (Z1 ↔ Z6).
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(a) (b)

Figure 1: Sensing regions and corresponding activity
graph. (a) The sensing region of each sensor may be
overlapped or not. They can have different shape.
(b) An activity graph. Z1, Z2 and Z6, Z7 are pos-
sible entrance/exit states in sensing region R2 and
R5 respectively. These two regions are connected by
a path (Z1 ↔ Z6). The graph representation distin-
guishes the U-turn and through traffic. The possible
paths within and between Ri are represented by dot-
ted and solid lines, respectively.

3.2 Mobility Model and Observation Model
We model the traffic pattern of moving objects using a

semi-Markov chain over the activity graph. Let Xk be the
state of an object at time tk. Then the state transition is
modeled as a Markov chain:

P (Xk = j|Xk−1 = i) = pij , (1)

where i and j denote states Zi and Zj , respectively. How-
ever, unlike the conventional Markov chain, where the state
transition happens instantaneously, we assume there is a de-
lay at each transition. Let Tk be the traveling time between
Xk−1 and Xk and it has the exponential distribution with
the following probability density function:

f(Tk = t|Xk−1 = i,Xk = j) = λij exp(−λijt). (2)

With our semi-Markov chain model, there is no restriction
on the amount of time an object stays in the same state.
While the instantaneous transition between states of the
conventional Markov chain is unrealistic, the traveling times
are accounted in this model. The initial state distribution
is defined similarly to the conventional Markov chain. The
semi-Markov chain describes the traffic pattern in the activ-
ity graph.

If an object is in Rn which covers Zi from time tk−1 to
tk, the observation is modeled by the following function:

Y nt = hn(χt) + vn, (3)

where Y nt is the observation at time t by sensor n, hn is the
observation function which maps the intrinsic state χ of the
object to observation Y for sensor n, and vn accounts for
noise.

In the activity graph, the traveling time on each edge can
be measured by the state entry and exit times. In our camera
sensor network system, both images and traveling times are
used as observations.

3.3 Learning With Known Identities
There are two sets of parameters we need to estimate in

order to use our semi-Markov chain. They are state tran-

sition probabilities {pij} and traveling time rates {λij}.1
In Section 3.2, we assume a single object and the parame-
ter estimation is trivial since there is no uncertainty about
object’s identity. However, in a general setup, we need to
consider the case with a large number of moving objects and
the parameters cannot be estimated unless their identities
are known. In the next two subsections, we describe how we
can resolve this identity uncertainty (i.e., data association)
problem and robustly estimate the parameters of the semi-
Markov chain. In this section, we first assume the identities
are known.

For ease of exposition, we show the method for estimating
parameters for the outgoing transition from a single state
Zi. The parameters associated with other states can be
estimated in a similar manner.

Now suppose that there are Ne objects that exited state
Zi. Then we can compute the likelihood of the outgoing
transitions from state Zi as:

Ne∏
k=1

S∏
j=1

p
γkj

ij , (4)

where γkj = 1 if the object k exited Zi at time tk is the same
object that arrived at Zj for the first time after tk and γkj =
0, otherwise. If no object arrived at Zj after time tk, we
also have γkj = 0. Once we know object identities, i.e., γ’s,
we can estimate the maximum likelihood of the transition
probabilities by solving a constrained optimization problem2

and obtain

p̂ij =

∑Ne
k=1 γkj∑Ne

k=1

∑S
j=1 γkj

. (5)

The traveling time rates can be solved similarly. The likeli-
hood of traveling times from state Zi is

Ne∏
k=1

S∏
j=1

(λij exp(−λijtij))γkj , (6)

where tij is the traveling time when γkj = 1. The maximum
likelihood estimate of the traveling time rate is

1

λ̂ij
=

∑Ne
k=1 γkjtij∑Ne
k=1 γkj

. (7)

However, in general, we do not have the identity informa-
tion and γkj are random variables. Hence, we cannot di-
rectly solve for the maximum likelihood estimates as stated
above. To address this problem, we need to first resolve the
identity uncertainty.

3.4 Object Association
Using the observations from each sensor as an input, the

object association process is to compute the matching proba-
bility of these observations. While it is impossible to achieve
an accurate hard decision about the identity of each object,
the matching probability serves as a good candidate to make
soft decisions. Let m be an object detected by sensor n cov-
ering state Zi and let Y n,mk = {Y n,mt : tk−1 ≤ t ≤ tk} be the
collection of measurements from the time the object m en-
tered Rn (at time tk−1) to the time the object exited (at time

1We also need to estimate the initial state distribution but
it is ignored in this paper since its estimation is trivial.
2The constraint is the normalization property of the transi-
tion probabilities.
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tk). Without loss of generality, we assume that Y n,mk are a
series of color histograms qn,mk = {qn,mt : tk−1 ≤ t ≤ tk}.
Each q is a vector of H-bin histogram, and

q = {qh}h=1...H ,
H∑
h=1

qh = 1, (8)

and the mean value of qn,mk is denoted by µk.
Assume there are L collections of measurements from other

sensors. They are listed as candidates to be compared with
the measurement Y n,mk . For ease of exposition, Y n,mk is sim-
ply denoted as Yk and other L collections of measurements
are denoted as {Yl}l=1...L. The corresponding object of Yk,
as mentioned above, entered Rn from state Zi. Measure-
ments Yl are selected as candidates since their correspond-
ing objects exited from those states {Zl} that are possible
previous-states of state Zi, i.e., there are paths in the activ-
ity graph that connect state {Zl} to Zi.

Color histograms, qn,mk are compared to those of other
candidate objects in order to determine its identity, i.e, how
likely the object m is the candidate objects based on the
measurements Yk and {Yl}l=1...L. Assume that the collec-
tion of measurements Yl corresponds to object l. We com-
pute sµl,q

n,m
t

, the similarity of each qn,mt to µl, the mean

value of ql, based on histogram intersection algorithm [26].
Intuitively, the output similarity between two color histograms
of the same object should be much larger than those of dif-
ferent objects. Let W be the set of similarities {sµl,q

n,m
t

:

tk−1 ≤ t ≤ tk}, and we compute dµl,q
n,m
t

, the distance be-

tween qn,mt and µl, as:

dµl,q
n,m
t

= 1−
sµl,q

n,m
t
−min(W )

max(W )−min(W )
. (9)

Similar to the softmax function, the probability of new
observation labeled as l given its tk − tk−1 + 1 samples of
color histograms is:

p(m = l|qn,mk ) =

∏tk
t=tk−1

exp(−dµl,q
n,m
t

)∑L
l′=1

∏tk
t=tk−1

exp(−dµl′ ,q
n,m
t

)
. (10)

The computed probabilities are the association probabil-
ities and we use them as approximations to E(γli), i.e., the
probability of an object leaving Zl entering state Zi.

3.5 Learning Under Identity Uncertainty
While we cannot directly solve for p̂ij and λ̂ij in (5) and

(7) since we do not know the identities of objects, we can
use the association probabilities computed above to resolve
this issue.

Instead of maximizing the log likelihood to estimate the
parameters, we maximize the expected complete log likeli-
hood. The expected complete log likelihood for the transi-
tion probabilities are

E[L(p)] = E

[
log

(
Ne∏
k=1

S∏
j=1

p
γkj

ij

)]

= E

[
Ne∑
k=1

S∑
j=1

γkj log(pij)

]

=

Ne∑
k=1

S∑
j=1

E(γkj) log(pij),

which we can solve using the estimates found in the previous
section. Then our estimates are

p̂ij =

∑Ne
k=1 E(γkj)∑Ne

k=1

∑S
j=1 E(γkj)

. (11)

Similarly, the traveling times can be estimated as

1

λ̂ij
=

∑Ne
k=1 E(γkj)tij∑Ne
k=1 E(γkj)

. (12)

Note that our approach resembles the EM algorithm where
the computation of the association probabilities E(γkj) is
the E-step and the parameter estimation is the M-step. But
no iteration is required in our formulation since the results
from the M-step does not affect the computation of asso-
ciation probabilities. However, it is possible to incorporate
traveling times into association probabilities, and then an
EM algorithm can be used to estimate the parameters.

4. EXPERIMENTS AND RESULTS

(a) (b)

Figure 2: CITRIC camera mote. (a) An assem-
bled camera daughter board with Tmote Sky board.
(b) A camera daughter board with major functional
units outlined.

Our experiments are carried out using a network of CIT-
RIC motes [2]. The CITRIC mote is a wireless camera sys-
tem, consisting of a camera daughter board and a Tmote
Sky board. The camera daughter board is equipped with
a CCD camera, a frequency-scalable (up to 624MHz) CPU,
16MB FLASH, and 64MB RAM (see Fig. 2). The CITRIC
mote uses the OmniVision OV9655 CMOS image sensor [20]
which offers the full functionality of a camera and an image
processor on a single chip supporting various capture modes
(e.g., SXGA, VGA, and CIF). It is able to capture images
up to 30 frames per second in VGA and CIF modes, and 15
frames per second in SXGA mode.

We carry out experiments in a smart building equipped
with a network of CITRIC camera motes for modeling and
predicting traffic patterns of dwellers. Fig. 3 shows the
building layout and the placements of CITRIC motes. Five
CITRIC motes are placed on two floors in a building at in-
tersections of hallways as well as stairways, with four on the
second floor of the building, and the other one on the first
floor. Over 2,500 images of humans are collected by these
motes. The training set consists of 1,442 images and the
test set contains 1,136 images. In our experiment, the im-
ages are captured at a resolution of 320 × 240 pixels, which
is sufficient for human detection. In the training phase, we
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(a) (b) (c)

Figure 3: Experimental setup and activity graph. (a) Four camera motes are placed on the second floor of a
building. The FOV (colored region) of each camera has different shape and Z1 to Z9 are possible entrance/exit
points (states) of each region (R2 and R3 are shown in a larger region on the lower left). Note that the sensing
region of cameras C2 and C3 are overlapped. (b) One camera is placed on the first floor. A person at state Z11

can either take the elevator or the stairways to the second floor, thereby reaching state Z3 (out of elevator
and turn right immediately), Z4 (out of elevator and walk straight), or Z5 (take stairway and reach Z5). (c)
Activity graph. Z11 is connected to Z3, Z4, and Z5 as explained in (b) via different paths. The sink state Z0

is not shown in the figure.

estimate the model parameters, i.e., {pij} and {λij} as de-
scribed in Section 3, using the images of dwellers detected
from the motes. The observations used for human matching
are the normalized RGB histograms of the upper-body part
of the detected subjects. Once a subject is detected, its next
state and expected arrival time can be predicted using the
learned traffic model.

4.1 Training Phase
The FOVs of five cameras are denoted by R1 to R5 and

their corresponding states are denoted by Z1 to Z12 as shown
in Fig. 3(a)-(b) (where R2 and R3 are shown with larger
images). Four cameras are placed on the second floor near
the stairways and the other one is placed on the first floor
near the entrance. As constrained by the physical structure
of the building, the sensing regions have different shapes,
and some states are covered by more than one region (e.g.,
Z5 is covered by R2 and R3). As the states represent the
entry and exit points of a region, it is easy to see that states
Z4 and Z′4 are actually connected seamlessly, i.e., subjects
walking through state Z4 will definitely arrive at state Z′4.3

Therefore, we consider them as one state (likewise for Z6

and Z′6) in the following discussions.
The activity graph for this experimental setting is shown

in Fig. 3(c) where most states are connected by paths through
corridors. Specifically, Z11 is connected to Z3 and Z4 via el-
evator. That is, a person detected by C5 in R5 is likely to
appear in R1 and detected by C1 if the person takes the el-
evator and walks directly toward R1 (note that the sensing
region of C2 does not cover the corridor region right in front
of the elevator), or R2 (and detected by C2) if the person
walks toward R2 after taking elevator or stairway. Likewise,
Z5 is connected to Z11 as a subject may take stairway from
the first floor and walk toward R2. These paths in the ac-

3That is, a subject entering state Z4 will almost always ar-
rive at state Z′4 (due to physical layout and sensing range),
with negligible exceptions.

tivity graph match real-world traffic patterns of dwellers in
this building.

At each camera, two image sequences are collected with
more than 20 people walking through this building. Each
sequence lasts about 10 minutes (where images are acquired
and saved at 4 frames per second), and all the raw images are
transmitted to a central server for off-line training. Humans
in these images are detected using a detector with Histogram
of Oriented Gradient (HOG) descriptors [4] where the out-
puts are their image coordinates in the scenes.

Overall, the HOG-based detector performs well with our
dataset with few false negatives and false positives. When
one subject appears in the FOV of a camera, multiple frames
of this subject will be captured by the camera. Conse-
quently, even if a subject is not detected in some frames
(i.e., false negatives), the negative effects on final results are
negligible. As the camera positions are fixed, we can exploit
prior spatial and temporal knowledge of human subjects to
eliminate most of the false positives. For example, we know
a priori that no person would appear in the air when walk-
ing, and thus any detected results violate this rule are false
positives and can be removed. Some other examples are
shown in Fig. 4.

Furthermore, we can also remove some false positives based
on temporal consistency. As we have continuous captured
frames, so if at some frames the detection result (i.e., the
coordinates of the bounding box) deviates from the results
of other frames significantly, we can remove this frame, as
either it is a false positive or there is another subject at that
position (see Fig. 5). In both cases, the result from such
frame can be removed without affecting learning the traffic
pattern in our model.

Assume the camera motes are time synchronized, and a
unique time stamp is assigned to each image frame from all
five cameras. The time stamps and image coordinates from
human detection provide strong cues for inferring which
frames are belonging to the same subject from all sequences
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(a) (b) (c)

Figure 4: Some false positives from our HOG-based
detector. Most of the false positives can be removed
using prior spatial knowledge. (a) One bounding
box is embedded in the other. (b) The y-coordinate
of the bounding box is too large (i.e., the detected
person is too small). (c) The y-coordinate of the
bounding box is too small (i.e., the detected person
is not on the floor).

(a) (b) (c)

Figure 5: Human detection results from three con-
tinuous frames. (a) and (c) are true positives, but
(b) is a false positive, which can be easily identified
and removed by maintaining temporal consistency
of their bounding box coordinates (i.e., a person
is very unlikely to impulsively jump to the ceiling
while walking).

acquired by one camera. For each detected subject, the
entering time t− and the leaving time t+ of a scene are
recorded. Image coordinates of the detected subject at the
entering/leaving time and the moving direction help in de-
termining the entering state and leaving state of one sub-
ject, as the placements of cameras are approximately known.
That is, the expected size and position of a detected human
with respect to a camera can be exploited for inference. For
example, at camera C1 in Fig. 3(a), if the subject is observed
to enter from left of the scene, then the entering state must
be Z1. If the subject is observed to leave from the far right
end (with smaller bounding box), the leaving state is Z3.
Otherwise, if the bounding box is large and locates on the
right side of the frame observed from C1 when the subject
leaves the scene, its leaving state is Z2.

It is worth mentioning that human detection technique
provides more useful information than methods using sim-
ple background subtraction with blob models. For example,
multiple humans can be detected in a scene, thereby facil-
itating flow analysis of groups. Once a person is detected,
the corresponding feature vector (i.e., Y of (3)) is extracted.
In this work, normalized RGB color histogram is used as it
is invariant to change in scale and viewpoint, thereby facil-
itating the matching process. In addition, we fit an ellipse
within the bounding box of a detected human to remove
background pixels. We have experimented with various rep-
resentations and parameters, and find that the combination

of normalized RGB histogram with 400 bins of a upper hu-
man torso performs best.

We exploit both spatial and temporal prior information
for matching between clusters. In our formulation, a clus-
ter is defined as the frames continuously captured by one
camera and belongs to one subject. First, with prior spatial
knowledge of camera placements and structure constraints,
we know all the possible state transitions. For example,
as seen in Fig. 3 (c), the possible next states for Z4 are
{Z0, Z3, Z4, Z11}. We define another state Z0 to account for
situations when ∀j, γkj = 0 (defined in (4)), i.e., the subject
k does not enter any state Zj after exiting Zi. Thus, Z0 is a
“sink” state which accounts for the areas not observed by all
other cameras (i.e., there are some blind spots not covered
by cameras). When a new subject is first detected in the
scene, it is considered to start from state Z0. Likewise, a
subject arrives at state Z0 when it is last detected by any
camera.

Assume at time t−, there is a detection by camera n. As
mentioned above, we can infer the entering state of a sub-
ject, say, Zi, from the coordinates of bounding box. Let the
list of possible previous-states of Zi be Ei : {Zi1, · · · , Zim},
where m is the total number of possible state transitions
end to Zi. It follows that only the image clusters, within
a time window, associated with those states in Ei are con-
sidered for matching. The threshold for the time window is
determined based on the prior knowledge of camera place-
ments (e.g., larger threshold values for two states with long
distance or connected via an elevator) and typical speed of
moving subjects. Let Ai denote the set of all possible clus-
ters satisfying the spatial and temporal constraints. If Ai
is not empty, we first compute the distances between the
image cluster at Zi and other clusters in Ai. The histogram
intersection method is used as it performs best in our experi-
ments when compared to other metrics, e.g., Bhattacharyya
distance, χ2-distance, and sum of squared difference. If all
the distances are relatively large, the subject is regarded as
a new person appearing from some blind spots, i.e., entering
the scene from Z0. Otherwise, the corresponding matching
probability is computed using (10). If Ai is empty, it means
there are no other suitable image clusters to compare with,
and the subject is also regarded as new. For each cluster, if
there exists no other clusters to choose it as matching candi-
date, the corresponding subject is considered as disappeared
in the scene, i.e., arriving at state Z0.

As the goal here is to model and predict the traffic pat-
terns of all dwellers in a building, we need to estimate the
transition probabilities of all states from all recorded se-
quences. The state transition probabilities and traveling
times can be estimated as described in Section 3.

Fig. 6(a) shows some example sequences used in the train-
ing phase where each trajectory describes one possible path.
Note that not all the states are shown in the figure, as some
of them do not contribute to the traffic model, e.g., Z2 and
Z9 (where subjects enter into regions not monitored by the
cameras). These paths indicate that subjects move freely in
various patterns. It is worth noting that these trajectories
can be identified and matched through the images acquired
at different cameras using our algorithm. Fig. 6(b) shows
detection results from images captured by different cameras
(where the detected results are normalized to a canonical
size). Note that images of subjects in various pose can be
detected by our method. Note also that appearances of the
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Figure 6: (a) Sample sequences used in our experiment. The x-axis and y-axis represent time and state
(entry/exit node), respectively. The trajectories of different subjects are shown in solid lines of different
colors, and the solid red dots stand for the states. Sample images acquired at five cameras are also shown
next to the states (best viewed on a high-resolution LCD display). (b) Some detection results from image
frames captured by CITRIC motes. The x-axis and y-axis represent the time and camera index.

same subject may change dramatically as viewed by different
cameras, due to variation of lighting and response of CCD
sensors.

Experimental results using the training set are shown in
the second column of Table 1 which lists the estimated prob-
ability (pi→j) with duration time (ti→j , i.e., 1

λi→j
, same as

in (12)) in parenthesis of training phase, while the third col-
umn presents the corresponding ground truth values. The
ground truth values are obtained by visually matching all
the frames, and counting the frequency of how the subjects
move between states. Overall, these estimated probabilities
and traveling time of our model match the ground truth
values well. Compared with the ground truth, the average
error of all state transition probabilities is 0.0556 and the
standard deviation is 0.08.

There are a few cases that our model does not estimate
state transition probabilities well. For example, from the
ground truth data we know there is no subject moving from
Z11 to Z11, but the estimated probability of moving from
Z11 to Z11 is 0.1181 with an average traveling time of 26.44
seconds. This error results from false matching results, and
this effect is expected to be negligible when a large dataset
is used. Furthermore, as shown in Fig. 3, two adjacent cam-
eras, C2 and C3, have overlapped FOVs, and thus most sub-
jects appearing in R2 and R3 are likely to be observed by
both cameras. Instead of using the images acquired from one
camera, it is likely to have fewer false matching by exploiting
such additional cues.

4.2 Test Phase
We compare our parameter estimation results with the

ground truth of test sequences which is obtained by visually
inspecting the trajectories of all the subjects. The results of
the test sequences are shown in the fourth column of Table 1.
As evident in the table, our model is able to learn the tran-
sition probabilities well. The ground truth that we gather
from the training set is assumed to be representative (which
is assumed by almost all statistical learning frameworks) as
long as the number of data points is sufficiently large. The

Table 1: Estimated parameters and ground truth
State transition Training Ground truth Test

p3→0 (t3→0) 0.3482 (–) 0.4 (–) 0.3333(–)

p3→3 (t3→3) 0.1170 (21.01) 0.1 (22) 0.1111 (28)

p3→4 (t3→4) 0.4023 (32.54) 0.4 (35) 0.4444 (32.75)

p3→11 (t3→11) 0.1325 (41.93) 0.1 (75) 0.1111 (91)

p4→0 (t4→0) 0.3241 (–) 0.4 (–) 0.4444 (–)

p4→3 (t4→3) 0.3681 (20.67) 0.3 (18) 0.3333 (31.33)

p4→4 (t4→4) 0.0013 (25.98) 0 (–) 0 (–)

p4→11 (t4→11) 0.3066 (54.13) 0.3 (51) 0.2222 (48)

p5→0 (t5→0) 0.2778 (–) 0.3 (–) 0.3 (–)

p5→5 (t5→5) 0.1397 (12.94) 0.1 (12) 0.2 (22.5)

p5→11 (t5→11) 0.5825 (24.62) 0.6 (29) 0.5 (26.8)

p6→0 (t6→0) 0.2760 (–) 0.5 (–) 0.5714 (–)

p6→6 (t6→6) 0.2683 (17.63) 0.1 (22) 0.1429 (20)

p6→7 (t6→7) 0.4557 (18.49) 0.4 (15.5) 0.2857 (21.5)

p7→0 (t7→0) 0.1860 (–) 0.1818 (–) 0.1429 (–)

p7→6 (t7→6) 0.4701 (13.89) 0.5455 (11.25) 0.5714 (28)

p7→7 (t7→7) 0.3439 (17.84) 0.2727 (20) 0.2857 (22.5)

p11→0 (t11→0) 0.2664 (–) 0.25 (–) 0.25 (–)

p11→3 (t11→3) 0.1812 (53.78) 0.1667 (57.5) 0.125 (83)

p11→4 (t11→4) 0.2348 (33.96) 0.25 (24) 0.25 (39.5)

p11→5 (t11→5) 0.1994 (24.33) 0.3333 (22.25) 0.375 (30.67)

p11→11 (t11→11) 0.1181 (26.44) 0 (–) 0 (–)

errors of estimated state transition probabilities and travel-
ing times using the training set are consistency smaller than
those using the test set. These results indicate that the
learned model parameters do not overfit the training data.
More results with discussions can be found on our web page
http://eng.ucmerced.edu/people/zshuai/icdsc10.html.

4.3 Discussion
As described earlier, multiple subjects can be detected

with the HOG-based human detection algorithm. This is in
contrast to prior work where tracking algorithms are used.
In our experiments, we assume that only a few subjects may
appear in the scene at any time, thereby facilitating the
matching process per frame. Our future work will consider
cases where a crowd of people moving together with more
advanced vision algorithms (to detect humans under occlu-
sion) and additional prior knowledge. In addition, we plan
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to carry out large-scale experiments (e.g., analyzing the traf-
fic patterns using the data collected throughout one week or
one month).

5. CONCLUSIONS
In this paper, we propose a general framework for traf-

fic modeling and prediction with Bayesian inference, where
the transition probabilities and the traveling time durations
between states are modeled by semi-Markov chain. Sub-
jects appearing in different pose are detected and matched
via images acquired at different cameras, thereby facilitat-
ing estimation of the parameters in our model. We derive
a maximum-likelihood estimator for the case with identity
uncertainty, making the proposed method more suitable for
realistic situations. The proposed framework is validated
with a camera sensor network in a smart building. With
five cameras placed at intersection of stairways, elevators,
and hallways, our experiments with more than 2,500 images
show that the traffic patterns of dwellers can be modeled
and predicted well with our model.
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