
A. Supplementary Materials
A.1. Overview

In this supplementary document, we first present additional experimental results, including run-time analysis. Second, we
provide the implementation details of the proposed framework. Third, we compare our method (i.e. explicit representations)
and the current approaches based on implicit representations. Finally, we discuss the limitations of the proposed scheme
and the future research directions. More qualitative comparisons are available at https://hhsinping.github.io/3d_
scene_stylization.

A.2. Additional Experimental Results
A.2.1 LLFF and Shiny datasets

To demonstrate the generalization ability of the proposed method, we use the model trained on the Tanks and Temples
dataset [14] to produce the stylization results on two additional datasets: LLFF [26] and Shiny [55].
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Figure 1. Additional results. We show additional results on LLFF and Shiny datasets using the model trained on the Tanks an Temples
dataset.

A.2.2 LST→NeRF++

As shown in Figure 5 in the paper, applying image stylization schemes before the SVS [43] framework produces blurry
results. In this experiment, we show that replacing the SVS [43] with NeRF++ [61] approaches suffers from the similar issue.
In Figure 2, we present the results LST [17]→ NeRF++ [61]. Since the input images are not consistent due to the per-image
stylization by the LST approach, the NeRF++ model tends to blend such inconsistency, which leads to blurry results.

Figure 2. LST→NeRF++. The NeRF++ approach produces blurry results if the input images are not consistent due to the per-image
stylization by the LST approach.

A.2.3 Ablation Study on Stylization Level

We use the pre-trained VGG-19 model [45] to extract the feature of the input images for the point cloud construction. By
extracting the features from different layers of the VGG-19 network, our point cloud representation encodes different levels
of the style information. Figure 3 demonstrates that our framework is capable of transferring the different style levels.
Specifically, building the point cloud representation using the deeper (e.g. relu4 1) features produces more distortion, while
using the shallower (e.g. relu3 1) features generates more photo-realistic (i.e. preserve more content information) effects.

https://hhsinping.github.io/3d_scene_stylization
https://hhsinping.github.io/3d_scene_stylization
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Figure 3. Ablation study on stylization level. We show that our framework is able to transfer styles of different levels. Extracting the
image features from the deeper layers (relu4 1) of the pre-trained VGG-19 network produces more distortion, while using features from
the shallower layers (relu3 1) generates more photo-realistic stylization effects.

A.2.4 Ablation Study on Point Cloud Aggregation

To gather the style information of the constructed point cloud {f cp}Pp=1, we sample a subset of P ′ points {f cp}P
′

p=1 and then
use a radius parameter r to find k nearby points to form a point group. Each point group is aggregated to a vector by MLP
layers and the max pooling operator to form the aggregated point cloud {f c′p }P

′

p=1. We conduct the following ablation studies
to analyze the hyper-parameters r and k.

Radius r. Figure 4 shows the results of using different sets of radius parameters r for our point cloud aggregation modules.
We empirically choose to use r={0.05,0.1,0.2} for better visual quality.

r={0.025, 0.05, 0.1} r={0.05, 0.1, 0.2} (ours) r={0.1, 0.2, 0.4}

Figure 4. Ablation study on hyper-parameter r in the point cloud aggregation. We compare the visual results of setting r =
{0.025, 0.05, 0.1}, r = {0.05, 0.1, 0.2}, r = {0.1, 0.2, 0.4}. We empirically determine to use r = {0.05, 0.1, 0.2} for better visual
quality.

Number of sampled points k. We conduct an ablation study to decide the parameter k. Figure 5 shows the results of setting
k = 32/64/128. We found that increasing the value of k produces results with higher contrast. We set k=64 since the results
better match the style of the reference image.

Quantitative analysis of applying point cloud aggregation modules. In Table 1, we provide the quantitative analysis to
understand the impact of applying the point cloud aggregation modules on the consistency issue. The results validate that
using point aggregation modules improves both short-range and long-range consistency.
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Figure 5. Ablation study on hyper-parameter k in the point cloud aggregation. We compare the visual results of using k = 32/64/128,
and empirically choose to use k = 64 for better visual quality.

Table 1. Ablation study on point cloud aggregation. We compute the short-range and long-range warping errors of the results generated
by models with and without the point aggregation modules. We validate that applying the point aggregation modules achieves better
consistency across various novel views.

(a) Short-range consistency

Method Truck Playground Train M60 Average

w/ aggregation 0.182 0.150 0.166 0.164 0.165
w/o aggregation 0.187 0.159 0.167 0.164 0.168

(b) Long-range consistency

Method Truck Playground Train M60 Average

w/ aggregation 0.590 0.332 0.409 0.434 0.428
w/o aggregation 0.595 0.374 0.417 0.409 0.434

A.2.5 PSNet for 3D Scene Stylization

The PSNet [3] model aims to transfer the style of the point cloud. However, it is not applicable to our problem for two
reasons. First, PSNet requires per scene optimization on the “RGB” point cloud. It fails to handle large-scale scenes in the
real-world with more than 60M points, such as those in the Tanks and Temples dataset [14]. To make the PSNet framework
applicable to our problem, we first use uniform sampling to reduce the number of RGB points in the point cloud to 1M,
then run PSNet framework to stylize the point cloud. We conduct the optimization process for the M60 and Truck scenes
with 5000 iterations, which takes around 30 minutes for one specific combination of a scene and a reference image with
desired style. Compared to the runtime of the proposed method shown in Table 2, the PSNet approach is time-consuming,
thus limited for real-world applications. After the construction of the RGB point cloud, we project the points to the 2D
image plane to synthesize images at novel views. As shown in Figure 6, we observe that PSNet does not generate desired
stylization effect that matches the input reference image. In addition, the PSNet produces projection artifacts that require
post-processing schemes (e.g. in-painting, smoothing) to refine the novel view synthesis results.

Figure 6. 3D scene stylization results of PSNet. The PSNet [3] generates projection artifacts and fails to produce desired stylization effect
that matches the input reference image.



A.2.6 Runtime Analysis

In Table 2, we show the training and inference time of the proposed method. All the processes are conducted on a desktop
machine equipped with a Nvidia Titan Xp GPU. We note that after the point cloud transformation (3rd row) is completed, we
can synthesize novel view images in near-real-time (i.e. 17 fps).

Table 2. Run-time analysis. We present the training and inference time of each stage in the proposed method.

Training time: decoder (seconds / per iteration) 0.31
Training time: point cloud transformation module (seconds / per iteration) 1.78

Inference time: constructing point cloud (seconds / per input image) 0.21
Inference time: stylizing point cloud (seconds / per scene) 0.74
Inference time: rendering novel view (seconds / per view) 0.06

A.3. Implementation Details

Network architecture. In Figure 7, we present the detailed architecture of each component in Figure 4 in the paper. We
present the decoder architecture in Figure 8.

Conv2d(256,128)

Conv2d(128,64)

Conv2d(64,32)

Convs Point Aggregation

Conv2d(256+3,128)

Conv2d(128+3,64)

Conv2d(64+3,32)

BatchNorm2D(128)

BatchNorm2D(64)

BatchNorm2D(32)

FC

Linear(1024,1024)

Compress

Conv2d(256,32)

Uncompress

Conv2d(32,256)

Figure 7. Network architecture. We present the network architecture of our point cloud transformation module illustrated in Figure 4 in
the paper.
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Figure 8. Decoder. We present the network architecture of our decoder module.

Point cloud transformation. To reduce the computation cost in our point cloud transformation step, we employ the compress
and uncompress operations in practice, described as follows. The key is to reduce the feature dimension to accelerate the
computation of the transformation matrix T. Specifically, we reduce (i.e. compress) the feature dimension (256 → 32) in
the constructed point cloud {f cp}Pp=1 through a MLP layer. We then transform the constructed point cloud {f cp}Pp=1 using the
transformation matrix T of size 32 × 32. Finally, we use a MLP layer to recover (i.e. uncompress) the feature dimension
(32 → 256) to produce the transformed point cloud {fdp }Pp=1 for the following novel view synthesis stage. The process can
be formulated as

fdp = uncompress(T(compress(f cp − f̄ c))) + f̄s ∀p ∈ [1, · · · , P ], (1)

where f̄ c is the mean of the features in the point cloud {f cp}Pp=1, and f̄s is the mean of the style feature map Fs.
Point cloud aggregation. The number of points P and feature dimension c in each point cloud aggregation module is
{P, c} : {≈ 2M, 256} → {4096, 128} → {2048, 64} → {1024, 32}.
Novel view synthesis. Given a novel view v with the camera pose {Rv, tv} and intrinsic Kv , we first project the features
in our point cloud to the 2D image plane. Specifically, we use the Pytorch3D [39] point cloud renderer for the projection of



features. We set the size of the z-buffer as 128 and the points are splatted to a region with radius of 2 pixels. We then use a
decoder presented in Figure 8 to synthesize the final image from the projected 2D feature map.
Training. We implement our system in PyTorch, and use the Adam optimizer [13] with β1 = 0.9, β2 = 0.9999 for all
network training. We first train the decoder module for 50K iterations with a batch size of 1 and learning rate of 0.0001.
Following the WCT approach [18], the `1 reconstruction loss illustrated in Line 417 in the paper is the combination of the
pixel reconstruction loss and feature loss. Particularly, the feature loss is computed using the features of a pre-trained VGG-
19 network, including {conv1 2, conv2 2, conv3 2, conv4 2, conv5 2}. We then train the transformation module for 50K
iterations with a batch size of 1 and learning rate of 0.0001. The content loss described in Eq. (2) in the paper is computed
by the features of layer relu4 1, while the style loss is computed by {relu1 1, relu2 1, relu3 1, relu4 1}. The weight λ for the
style loss is set to 0.02. To improve the training efficiency, we uniformly down-sample the constructed point cloud to 600K
features for each scene, and use all the features in the point cloud during the testing time.

A.4. Explicit vs. Implicit Representations
While implicit representation-based approaches [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 22, 23, 24, 25, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
produce high-quality (non-stylized) novel view synthesis results, we choose to leverage explicit representations due to the
practical considerations that support real-world VR/AR applications: efficiency and scalability. Specifically, the NeRF++
method [61] is designed for complex unbounded 3D scenes. Nevertheless, it takes 24 hours to reconstruct a particular scene,
and 30 seconds to render a 546×980 image. Moreover, the NeRF++-based framework produces blurry stylization results due
to the inconsistency issue, as shown in Figure 2. Although there are recent efforts [11, 20, 21, 23, 28, 40, 41, 59] to accelerate
the rendering process, these schemes are limited to single 3D objects or bounded 3D scenes. In contrast, the proposed method
is efficient, and renders the stylized novel views in near-real-time, as presented in Table 2. Furthermore, the proposed method
is more scalable than the NeRF++-based approaches since it handles arbitrary unbounded scenes and styles with a single
trained model.

A.5. Limitations and Future Direction
We discuss the limitation of our method, which we plan to explore in the future work as follows. First, as shown in

Figure 9, our 3D scene stylization approach is not aware of the objects in the scene. As a result, we cannot transfer the style
of the particular part of the style image to the specific object/region of the 3D scene. Second, the proposed approach cannot
significantly modify the geometry of the scene during the stylization process since 1) our point cloud is built according to the
3D proxy of the original scene and 2) we only transform the features in our point cloud, but not adjust the location of each
point. In the future, we plan to explore the solution that is 1) 3D object-aware and 2) capable of modulating the geometry of
the 3D scene to match the desired style.

Figure 9. Limitations. Our model is not aware of individual objects in the scene during the stylization process, thus fail to transfer the
style of a particular part of the reference image to the specific object/region in the scene.
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