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Abstract

Most video super-resolution methods focus on restor-
ing high-resolution video frames from low-resolution videos
without taking into account compression. However, most
videos on the web or mobile devices are compressed, and
the compression can be severe when the bandwidth is
limited. In this paper, we propose a new compression-
informed video super-resolution model to restore high-
resolution content without introducing artifacts caused by
compression. The proposed model consists of three mod-
ules for video super-resolution: bi-directional recurrent
warping, detail-preserving flow estimation, and Lapla-
cian enhancement. All these three modules are used
to deal with compression properties such as the loca-
tion of the intra-frames in the input and smoothness in
the output frames. For thorough performance evaluation,
we conducted extensive experiments on standard datasets
with a wide range of compression rates, covering many
real video use cases. We showed that our method not
only recovers high-resolution content on uncompressed
frames from the widely-used benchmark datasets, but also
achieves state-of-the-art performance in super-resolving
compressed videos based on numerous quantitative met-
rics. We also evaluated the proposed method by simulat-
ing streaming from YouTube to demonstrate its effective-
ness and robustness. The source codes and trained models
are available at https://github.com/google-research/google-
research/tree/master/comisr.

1. Introduction

Super-resolution is a fundamental research problem in
computer vision with numerous applications. It aims to re-
construct detailed high-resolution (HR) image(s) from low-
resolution (LR) input(s). When the input is one single im-
age, the reconstruction process usually uses learned image
priors to recover high-resolution details of the given image,
which is called single-image super-resolution (SISR) [56].
When numerous frames in a video are available, the re-
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Figure 1. Video super-resolution results (4×, RGB-channels) on
compressed Vid4 and REDS datasets. Here we show the results
using the most widely adopted compression rate (CRF 23 [10]).

construction process uses both image priors and inter-frame
information to generate temporally smooth high-resolution
results, which is known as video super-resolution (VSR).

Although great progress has been made, existing SISR
and VSR methods rarely take compressed images as input.
We note that the uncompressed videos used in prior work
in fact are high-quality image sequences with low compres-
sion rate. As such, these SR methods tend to generate sig-
nificant artifacts when operating on heavily compressed im-
ages or videos. However, most videos on the web or mobile
devices are stored and streamed with images compressed at
different levels. For example, a wide-used compression rate
(Constant Rate Factor (CRF)) for H.264 encoding is 23 as
a trade-off between visual quality and file size. We note the
state-of-the-art VSR algorithms do not perform well when
the input videos are compressed.

To handle compressed videos, one potential solution is
to first denoise images and remove compression artifacts in
images [35, 36, 58] before applying one of the state-of-the-
art VSR models. At first glance, this is appealing since a
VSR model is fed with high-quality frames, similar to di-
rectly using the evaluation data, such as Vid4 [32]. How-
ever, our experiments in Section 4.3 show that this approach
would not improve SR results and instead negatively affect
the visual quality. With pre-processing, it is likely that the
denoising model in the first step will be significantly differ-
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ent from the degradation kernel used implicitly during the
VSR training process. After the denoising process, the VSR
models effectively need to handle more challenging images.

Another possible solution is to train the existing state-of-
the-art VSR models on the compressed images. This will
enforce the VSR models to account for compression arti-
facts during the training process. However, our experiments
described in Section 4.5 show that simply using compressed
frames in model training brings only modest improvement.
In fact, without specific changes to the designs of network
modules, such training data may even negatively affect the
overall performance.

To address the above-mentioned issues, we propose
a compression-informed (i.e., compression-aware) super-
resolution model that can perform well on real-world videos
with different levels of compression. Specifically, we de-
sign three modules to robustly restore the missing informa-
tion caused by video compression. First, a bi-directional
recurrent module is developed to reduce the accumulated
warping errors from the random locations of the intra-frame
from compressed video frames [46]. Second, a detail-aware
flow estimation module is introduced to recover HR flow
from compressed LR frames. Finally, a Laplacian enhance-
ment module is adopted to add high-frequency information
to the warped HR frames washed out by video encoding.
We refer to this proposed model as COMpression-Informed
video Super-Resolution (COMISR).

With the proposed COMISR model, we demonstrate the
effectiveness of these modules with ablation studies. We
conduct extensive experiments on several VSR benchmark
datasets, including Vid4 [32] and REDS4 [41], using videos
compressed with different CRF values. We show that the
COMISR model achieves significant performance gain on
compressed videos (e.g., CRF23), as shown in Figure 1,
and meanwhile maintains competitive performance on un-
compressed videos. In addition, we present evaluation re-
sults based on different combinations of a state-of-the-art
VSR model and an off-the-shelf video denoiser. Finally, we
validate the robustness of the COMISR model on YouTube
videos, which are compressed with proprietary encoders.

The contributions of this paper can be summarized as:
• We introduce a compression-informed model for

super-resolving real-world compressed videos and
achieve state-of-the-art performance.
• We incorporate three modules that are novel to VSR

to effectively improve critical components for video
super-resolution on compressed frames.
• We conduct extensive experiments of state-of-the-art

VSR models on compressed benchmark datasets. We
also present a new setting for evaluating VSR models
on YouTube transcoded videos, which is a real-world
application scenario that existing evaluation methods
do not consider.

2. Related Work

A plethora of super-resolution methods have been devel-
oped in the literature based on variational formulations [61]
or deep neural networks [1, 56, 62]. In this section, we
discuss recent deep models closely related to our work for
super-resolution.

2.1. Single-image Super-resolution

Dong et al. [8] propose the SRCNN model based on
convolutional neural networks for single image super-
resolution. Based on the residual learning framework [18],
Kim et al. propose the VDSR [24] and DRCN [25] models
for more effective image super-resolution. To learn more ef-
ficient SR models, Dong et al. [9] use a deconvolution layer
at the end of the network to directly learn the mapping from
low-resolution to high-resolution images. Similarly, Shi et
al. introduce the ESPCN [47] model with an efficient sub-
pixel convolution layer at the end of the network. In the
LatticeNet method [38], a light-weighted model is devel-
oped by using a lattice block, which reduces half amount
of the parameters while maintaining similar SR perfor-
mance. To learn SR models at multiple scales efficiently,
Lai et al. [27] develop the LapSRN model which progres-
sively recovers the sub-band residuals of high-resolution
images. Instead of relying on deeper models, the Mem-
Net [48] introduce memory block to exploit long-term de-
pendency for effective SR models. On the other hand, the
SRDenseNet [50] and RDN [68] are proposed for SISR
based on the DenseNet [19] model with dense connections.
Haris et al. [15] design a deep back-projection network
for super-resolution by exploiting iterative up-sampling and
down-sampling layers. In [14], the DSRN introduces a
dual-state recurrent network model to reduce memory con-
sumption for SISR. The MSRN [29] and RFA [33] mod-
els use different blocks to efficiently exploit image features.
Recently, attention mechanisms have also been used to im-
prove the super-resolution image quality [5, 40, 42, 67].

Aside from deep neural network models, generative ad-
versarial networks (GANs) have been adopted for SISR,
including SRGAN [28], EnhanceNet [44], ESRGAN [55],
SPSR [39] and SRFlow [37]. These methods typically gen-
erate visual pleasing results by using adversarial losses [12]
or normalizing flows [43]. In addition, several models have
been developed for SISR based on degrated closer to the
real-world scenarios [13, 20, 57, 59, 65].

2.2. Video Super-resolution

Video super-resolution is a more challenging problem
than SISR as both content and motion need to be effec-
tively predicted. The motion information provides addi-
tional cues in restoring high-resolution frames from mul-
tiple low-resolution images.
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Figure 2. Overview of the COMISR model. The forward and backward recurrent modules are symmetric and share the weights. In the
figure, red rectangles represent the LR input frames and green dash-lined rectangles represent the HR predicted frames.

Sliding-window methods. Multi-frame super-resolution
methods potentially can restore more high-resolution de-
tails of target frames as more visual information is avail-
able. On the other hand, these methods need to account
for motion content between frames for high quality SR
results. A number of models compute optical flows be-
tween multi-frames to aggregate visual information. Xue
et al. [60] introduce a task-oriented flow estimation method
together with a video processing network for denoising
and super-resolution. Haris et al. [16] use multiple back-
projected features for iterative refinement rather than ex-
plicitly aligning frames. Recently, deformable convolution
networks [4] have been developed to tackle feature mis-
alignment in dense prediction tasks. Both EDVR [53, 54]
and TDAN [49] use deformable convolution models to
align features from video frames for video super-resolution.
Haris et al. [17] design a model that leverages mutually in-
formative relationships between time and space to increase
spatial resolution of video frames and interpolate frames to
increase the frame rate. In [63], Yi et al. propose a model
that use non-local blocks to fuse spatial-temporal informa-
tion from multiple frames. Recenlty, Li et al. [30] present a
mutli-correspondence network model to exploit spatial and
temporal correlation between frames to fuse intra-frame as
well as iner-frame information for video SR.

Recurrent models. Recurrent neural networks have been
widely used for numerous vision tasks, such as classifica-
tion [7, 31], detection [34, 51], and segmentation [52]. Such

network models can process inputs of any length by sharing
model weights across time. In addition, recurrent models
can account for long-range dependence among pixels. A
number of VSR models have been developed based on re-
current neural networks in recent years. The FRVSR [45]
model stores the previous information in a HR frame for
restoring the current frame in a sequence. Fuoli [11] use a
recurrent latent space to encode and propagate temporal in-
formation among frames for video super-resolution. Most
recently, the RSDN model [22] incorporates a structure-
preserving module into a recurrent network and achieves
state-of-the-art performance for restoring details from LR
frames without relying on motion compensation.

3. Proposed Method
The COMISR model is designed based on a recurrent

formulation. Similar to the state-of-the-art video SR meth-
ods [22, 45], it feeds visual information from the previous
frames to the current one. The recurrent models usually
entail low memory consumption, and can be applied to nu-
merous inference tasks in videos.

Figure 2 shows an overview of the COMISR model. We
develop three modules, i.e., bi-directional recurrent warp-
ing, detail-aware flow estimation, and Laplacian enhance-
ment modules, to effectively super-resolve compressed
videos. Given the LR ground truth frames, we use the for-
ward and backward recurrent modules to generate the HR
frame predictions, and compute content losses against HR



ground truth frames in both directions. In the recurrent
module, we predict flows and generate warped frames in
both LR and HR, and train the network end to end using the
LR and HR ground truth frames.

3.1. Bi-directional Recurrent Module

One common approach for video compression is to ap-
ply different algorithms to compress and encode frames at
different positions in the video stream. Typically, a codec
randomly selects several reference frames, known as the
intra-frames, and compresses them independently without
using information from other frames. It then compresses
the other frames by exploiting consistency and encoding
differences from the intra-frames. As a result, the intra-
frames usually require more bits to encode and have less
compression artifacts than the other frames. Since the loca-
tions of intra-frames is not known in advance, to effectively
reduce the accumulated errors from the unknown locations
of intra-frames for video super-resolution, we propose a
bi-directional recurrent network to enforce the forward and
backward consistency of the LR warped inputs and HR pre-
dicted frames.

Specifically, the bi-directional recurrent network con-
sists of symmetric modules for forward and backward di-
rections. In the forward direction, we first estimate both the
LR flow FLR

t−1→t and HR one FHR
t−1→t using the LR frames

ILR
t−1 and ILR

t (described in Section 3.2). We then apply dif-
ferent operations separately in LR and HR streams. In the
LR stream, we warp the previous LR frame ILR

t−1 to time t
using FLR

t−1→t to obtain the warped LR frame ĨLR
t , which

will be used at later stages:

ĨLR
t =Warp(ILR

t−1, F
LR
t−1→t). (1)

In the HR stream, we warp the previous predicted frames
ÎHR
t−1 to time t using FHR

t−1→t to obtain the warped HR frame
ĨHR
t , followed by a Laplacian Enhancement Module to gen-

erate accurate HR warped frame:

ĨHR,Warp
t =Warp(ÎHR

t−1 , F
HR
t−1→t), (2)

ĨHR
t = Laplacian(ĨHR,Warp

t ) + ĨHR,Warp
t . (3)

We then apply a space-to-depth operation on ĨHR
t to shrink

back its resolution while expanding its channel, fuse it with
the LR input ILR

t and pass the concatenated frame to the
HR frame generator to predict the final HR image ÎHR

t . We
compare ÎHR

t with the ground truth HR IHR
t to measure the

loss.
Similarly, we apply the symmetric operations in the

backward direction to obtain the warped LR frame and the
predicted HR frame. In this case, the detail-aware flow es-
timation module generates the backward flow from time t
to t − 1, and images are warped by applying the backward
flow to the frame at time t for estimating the frame at time
t− 1.

3.2. Detail-aware Flow Estimation

In our recurrent module, we explicitly estimate both the
LR and HR flows between neighboring frames and pass this
information in forward and backward directions.

Here we take the forward direction for illustration. The
operations in the backward direction are similarly applied.
We first concatenate two neighboring LR frames ILR

t−1 and
ILR
t and pass it through the LR flow estimation network to

estimate the LR flow FLR
t−1→t. Instead of directly upsam-

pling the LR flow FLR
t−1→t, we add a few additional decon-

volution layers on top of the bilinearly upsampled LR flow.
Thus, a detailed residual map is learned during the end-to-
end training, and we can better preserve high-frequency de-
tails in the predicted HR flow.

3.3. Laplacian Enhancement Module

The Laplacian residual has been widely used in nu-
merous vision tasks, including image blending, super-
resolution, and restoration. It is particularly useful at find-
ing fine details from a video frame, where such details could
be smoothed out during video compression. In our recurrent
VSR model, the warped predicted HR frame retains detailed
texture information learned from the previous frames. Such
details can be easily missing from the up-scaling network,
as shown in Figure 2. As such, we add a Laplacian residual
to a predicted HR frame to enhance details.

An image is enhanced by Laplacian residuals using a
Gaussian kernel blur G(·, ·) with the width of σ:

ĨHR
t = ĨHR

t + α(ĨHR
t −G(ĨHR

t , σ = 1.5)), (4)

where ĨHR
t is an intermediate results of the predicted HR

frame and α is weighted factor for the residuals. We present
more ablation studies in Section 4 to demonstrate the effec-
tiveness of Laplacian residuals for enhancing image details.

By exploiting the Laplacian, we add details back to the
warped HR frame. This is followed by a space-to-depth
operation, which rearranges blocks of spatial data into depth
dimension, and then concatenation with the LR input frame.
We pass it through the HR frame generator to obtain the
final HR prediction.

3.4. Loss Function

During training, the losses are computed from two
streams for HR and LR frames. For loss on HR frames, the
L2 distance is computed between the final outputs and the
HR frames. In Section 3.1, we describe our bi-directional
recurrent module for improving the model quality. Here,
It denotes the ground truth frame and Ĩt denotes the gen-
erated frame at time t. For each of the recurrent steps, the
predicted HR frames are used to compute losses. The L2

losses are combined as:



LHR
content =

1

2N
(

N∑
t=1

||IHR
t − ÎHR

t ||2︸ ︷︷ ︸
forward

+

1∑
t=N

||IHR
t − ÎHR

t ||2︸ ︷︷ ︸
backward

).

(5)
Each of the warped LR frames from t−1 to t is penalized

by the L2 distance with respect to the current LR frame,

LLR
warp =

1

2N
(

N∑
t=1

||ILR
t − ĨWarp

t−1 ||2︸ ︷︷ ︸
forward

+
1∑

t=N

||ILR
t − ĨWarp

t−1 ||2︸ ︷︷ ︸
backward

).

(6)
The total loss is the sum of the HR and LR losses,

Ltotal = βLHR
content + γLLR

warp, (7)

where β and γ are weights for each loss.

4. Experiments and Analysis
In this section, we first introduce our implementation

details and evaluation metrics. We then evaluate our
method against the state-of-the-art VSR models on bench-
mark datasets. In addition, we demonstrate that our method
performs better than a baseline method based on a denoiser
and a VSR model. We also evaluate the COMISR model on
real-world compressed YouTube videos. Finally, we show
ablation on the three novel modules with analysis, and user
study results.

4.1. Implementation Details

Datasets. We use the REDS [41] and Vimeo [60] datasets
for training. The REDS dataset contains more than 200
video sequences for training, each of which has 100 frames
with 1280 × 720 resolution. The Vimeo-90K dataset con-
tains about 65k video sequences for training, each of which
has 7 frames with 448 × 256 resolution. One main differ-
ence between these two datasets is the REDS dataset con-
tains images with much larger motion captured from a hand-
held device. To train and evaluate the COMISR model, the
frames are first smoothed by a Gaussian kernel with the
width of 1.5 and downsampled by a factor of 4.

We evaluate the COMISR model on the Vid4 [32] and
REDS4 [41] datasets (clip# 000, 011, 015, 020). All the
testing sequences contain more than 30 frames. In the fol-
lowing experiments, the COMISR model evaluated on the
REDS4 dataset is trained with the REDS dataset using the
same setting described in [53]. The COMISR model in all
the other experiments is trained using the Viemo-90K.
Compression methods. We use the most common setting
for the H.264 codec at different compression rates (i.e., dif-
ferent CRF values). The recommended CRF value is be-
tween 18 and 28, and the default is 23 (although the CRF
value ranges between 0 and 51). In our experiments, we use
CRF of 15, 25, and 35 to evaluate video super-resolution
with a wide range of compression rates. For fair compar-
isons, when evaluating other methods, we use the same

degradation method to generate the LR sequences before
compression. Finally, these compressed LR sequences are
fed into the VSR models for inference.

Training process. For each video frame, we randomly
crop 128 × 128 patches from a mini-batch as input. Each
mini-batch consists of 16 samples. The α, β, and γ param-
eters described in Section 3 are set to 1, 20, 1, respectively.
The model trained with the loss functions described in the
Section 3.4. We use the Adam optimizer [26] with β1 = 0.9
and β2 = 0.999. The learning rate is set to 5×10−5. While
we aim to train the COMISR model for VSR with com-
pressed videos as input, we first feed uncompressed images
to the model, and during the last 20% of the training epochs,
we randomly add compressed images in the training process
with a probability of 50%. The FFmpeg codec is employed
for compression with a CRF value randomly selected be-
tween 15 and 25. All the models were trained on 8 NVidia
Tesla V100 GPUs. More details can be found on the project
website.

Evaluation metrics. We use PSNR, SSIM, and
LPIPS [66] for quantitative evaluation of video super-
resolution results. For the experiments on YouTube videos,
we only present video SR results for evaluation since the
ground-truth frames are not available.

4.2. Evaluation against the State-of-the-Arts

We evaluate the COMISR model against state-of-the-
art VSR methods, including FRVSR [45], DUF [23],
EDVR [53], TecoGan [3], MuCAN [30], and RSDN [22].
Three of the evaluated methods are based on recurrent mod-
els, whereas the other three use temporal sliding windows
(between 5 and 7 frames). When available, we use the
original code and trained models, and otherwise implement
these methods. For fair comparisons, the LR frames have
been generated the same as described in the published work.
These LR frames are then compressed and fed into the
super-resolution networks for performance evaluation.

For the Vid4 dataset [32], the PSNR and SSIM metrics
are measured on both the Y-channel and RGB-channels, as
shown in Table 1. We present the averaged performance on
uncompressed videos (original sequences), and videos com-
pressed at different levels (CRF15, 25, 35). We also report
the individual sequence performance under CRF25. More
results on other CRF factors are presented in the supplemen-
tary material. Overall, the COMISR method outperforms
all the other methods on videos with medium to high com-
pression rates by 0.5-1.0db in terms of PSNR. Meanwhile,
our method performs well (2nd or 3rd place) in less com-
pressed videos. Figure 3 shows some results by the eval-
uated methods from two sequences. The COMISR model
can recover more details from the LR frames with fewer
compression artifacts. Both quantitative and visual results
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Figure 3. Qualitative evaluation on the Vid4 dataset for 4× VSR. The COMISR model can recover more structure details such as faces and
boundaries, with much fewer artifacts. Zoom in for best view.

Figure 4. Qualitative results on videos from the REDS4 dataset 4× VSR. The COMISR model achieves much better quality on detailed
textures, with much fewer artifacts. The brightness of the images is adjusted for viewing purposes. Zoom in for best view.

show that the COMISR method achieves the state-of-the-art
results on compressed videos.

We also evaluate the COMISR model against the state-
of-the-art methods on the REDS4 dataset [41]. Unlike
the Vid4 dataset, the sequences in this set are longer (100
frames) and more challenging with larger movements be-
tween frames. Table 2 shows the COMISR model achieves
the best performance on the compressed videos from the
REDS4 dataset. Figure 4 shows that our method is able to
recover more details such as textures from the bricks on the
sidewalk and windows on the buildings.

It is known that low-level structure accuracy (e.g., PSNR
or SSIM) does not necessarily correlate well with high-level

perceptual quality. In other words, perceptual distortion
cannot be well characterized by such low-level structure ac-
curacy [2]. We also use the LPIPS [66] for performance
evaluation. Table 3 shows the evaluation results using the
LPIPS metric on both Vid4 and REDS4 datasets. Overall,
the COMISR model performs well against the state-of-the-
art methods on both datasets using the LPIPS metric.

We show video super-resolution results on the project
website. Although the compression artifacts are not eas-
ily observable in the LR frames, such artifacts are ampli-
fied and easily observed after super-resolution. For the
compressed videos, the COMISR model effectively recov-
ers more details from the input videos with fewer artifacts.



FLOPs CRF 25 No compression Compressed Results
Model #Param. calendar city foliage walk - CRF15 CRF25 CRF35

FRVSR [45]
0.05T
2.53M

21.55 / 0.631
19.75 / 0.606

25.40 / 0.575
23.79 / 0.572

24.11 / 0.625
24.49 / 0.751

26.21 / 0.764
25.22 / 0.815

26.71 / 0.820
25.22 / 0.815

26.01 / 0.766
24.38 / 0.753

24.33 / 0.655
22.59 / 0.640

22.05 / 0.482
20.35 / 0.469

DUF [23]
0.62T
5.82M

21.16 / 0.634
19.40 / 0.588

23.78 / 0.632
22.25 / 0.594

22.97 / 0.603
21.30 / 0.567

24.33 / 0.771
22.66 / 0.737

27.33 / 0.832
25.79 / 0.814

24.40 / 0.773
22.81 / 0.744

23.06 / 0.660
21.41 / 0.621

21.27 / 0.515
19.61 / 0.468

EDVR [53]
0.93T
20.6M

21.69 / 0.648
19.87 / 0.599

25.51 / 0.626
23.90 / 0.586

24.01 / 0.606
22.27 / 0.570

26.72 / 0.786
24.89 / 0.754

27.35 / 0.826
25.85 / 0.808

26.34 / 0.771
24.67 / 0.740

24.45 / 0.667
22.73 / 0.627

22.31 / 0.534
20.62 / 0.487

TecoGan [3]
0.14T
5.05M

21.34 / 0.624
19.55 / 0.601

25.26 / 0.561
23.65 / 0.559

23.50 / 0.592
21.73 / 0.573

25.73 / 0.756
24.40 / 0.743

25.88 / 0.794
24.34 / 0.788

25.25 / 0.741
23.61 / 0.728

23.94 / 0.639
22.22 / 0.624

21.99 / 0.479
20.28 / 0.466

MuCAN [30] -
21.60 / 0.643
19.81 / 0.597

25.38 / 0.620
23.78 / 0.581

23.93 / 0.599
22.20 / 0.564

26.43 / 0.782
24.72 / 0.750

27.26 / 0.822
25.56 / 0.801

25.85 / 0.753
24.22 / 0.725

24.34 / 0.661
22.63 / 0.623

22.26 / 0.531
20.57 / 0.485

RSDN [22]
0.13T
6.19M

21.72 / 0.650
19.89 / 0.599

25.28 / 0.615
23.68 / 0.575

23.69 / 0.591
21.94 / 0.554

25.57 / 0.747
23.91 / 0.711

27.92 / 0.851
26.43 / 0.835

26.58 / 0.781
24.88 / 0.750

24.06 / 0.650
22.36 / 0.610

21.29 / 0.483
19.67 / 0.437

COMISR
0.06T
2.63M

22.81 / 0.695
20.39 / 0.667

25.94 / 0.640
24.30 / 0.633

24.66 / 0.656
22.88 / 0.638

26.95 / 0.799
25.21 / 0.788

27.31 / 0.840
25.79 / 0.835

26.43 / 0.791
24.76 / 0.778

24.97 / 0.701
23.21 / 0.686

22.35 / 0.509
20.66 / 0.494

Table 1. Performance evaluation on compressed Vid4 videos. For each entry, the first row is PSNR/SSIM on Y channel, and the second
row is PSNR/SSIM on RGB channels. The best method on the Y channel for each column is highlighted in bold and shade. The FLOPs
are reported based on the Vid4 4× VSR. The FLOPs and #Param of FRVSR is based on our implementation.

CRF 25 No compression Compressed Results
Model #Frame clip 000 clip 011 clip 015 clip 020 - CRF15 CRF25 CRF35

FRVSR [45] recur(2) 24.25 / 0.631 25.65 / 0.687 28.17 / 0.770 24.79 / 0.694 28.55 / 0.838 27.61 / 0.784 25.72 / 0.696 23.22 / 0.579
DUF [23] 7 23.46 / 0.622 24.02 / 0.686 25.76 / 0.773 23.54 / 0.689 28.63 / 0.825 25.61 / 0.775 24.19 / 0.692 22.17 / 0.588
EDVR [53] 7 24.38 / 0.629 26.01 / 0.702 28.30 / 0.783 25.21 / 0.708 31.08 / 0.880 28.72 / 0.805 25.98 / 0.706 23.36 / 0.600
TecoGan [3] recur(2) 24.01 / 0.624 25.39 / 0.682 27.95 / 0.768 24.48 / 0.686 27.63 / 0.815 26.93 / 0.768 25.46 / 0.690 22.95 / 0.589
MuCAN [30] 5 24.39 / 0.628 26.02 / 0.702 28.25 / 0.781 25.17 / 0.707 30.88 / 0.875 28.67 / 0.804 25.96 / 0.705 23.55 / 0.600
RSDN [22] recur(2) 24.04 / 0.602 25.40 / 0.673 27.93 / 0.766 24.54 / 0.676 29.11 / 0.837 27.66 / 0.768 25.48 / 0.679 23.03 / 0.579

COMISR recur(2) 24.76 / 0.660 26.54 / 0.722 29.14 / 0.805 25.44 / 0.724 29.68 / 0.868 28.40 / 0.809 26.47 / 0.728 23.56 / 0.599

Table 2. Performance evaluation on compressed the REDS4 dataset. Each entry shows the PSNR/SSIM on RGB channels. The best method
for each column is highlighted in bold and shade, and recur(2) indicates a recurrent network using 2 frames.

FRVSR TecoGan DUF EDVR MuCAN RSDN COMISR

Vid4 4.105 3.245 4.010 4.396 3.985 4.292 3.689
REDS4 4.188 3.643 4.223 4.075 4.085 4.423 3.384

Table 3. Performance evaluation using the LPIPS [66] metric
(lower is better). Our method performs well, especially on the
more challenging REDS4 dataset.

The COMISR model does not perform well on highly com-
pressed (e.g., CRF35) videos. Some failure cases are due to
heavy compression so that necessary details are missing for
super-resolving frames. Other failure cases are caused by
extremely large movements in the videos.

4.3. VSR on Denoised Videos

As shown in Figure 3 and Figure 4, the COMISR model
generates high-quality frames with fewer artifacts from
compressed videos. An interesting question is whether
the state-of-the-art methods can achieve better results if
the compressed videos are first denoised. As such, we
use the state-of-the-art compressed video quality method,
STDF [6], for evaluation.

Using the settings described in Section 4.2, we com-
press video frames with CRF25. The STDF method is
then used to remove the compression artifacts and gener-
ate enhanced LR frames as inputs for the state-of-the-art
VSR methods. Table 4 shows the quantitative results by

VSR only Video Denoiser + VSR
Model Y-Channel RGB-Channels Y-Channel RGB-Channels

EDVR 24.45 / 0.667 22.73 / 0.627 22.56 / 0.581 20.94 / 0.541
TecoGan 23.94 / 0.639 22.22 / 0.624 22.25 / 0.541 20.63 / 0.530
MuCan 24.34 / 0.661 22.63 / 0.623 22.47 / 0.577 20.87 / 0.538
RSDN 24.06 / 0.650 22.36 / 0.610 22.19 / 0.560 20.59 / 0.520

COMISR 24.97 / 0.701 23.21 / 0.686 - -

Table 4. Ablation study on applying a video denoiser to the com-
pressed frames before the VSR models using the Vid4 dataset.
Each entry shows the PSNR/SSIM results on the Y or RGB chan-
nel. The COMISR model outperforms the state-of-the-art VSR
methods with the STDF [6] denoiser.

the COMISR model and the state-of-the-art VSR methods
on videos denosied by the STDF scheme. We note that the
performance of all of the evaluated method drops on the de-
noised LR frames. This can be attributed to that a separate
denoising step is not compatible with the learned degrada-
tion kernel from the VSR methods. In addition, as discussed
in Section 4.5, simply using compressed images for model
training does not lead to good VSR performance. These
results show that the COMISR model is able to efficiently
recover more details from compressed videos, and outper-
forms state-of-the-art models on denoised videos.

4.4. Evaluation on Real-World Compressed Videos

Most videos on the web are compressed where frames
can be preprocessed by a combination of proprietary meth-



      GT                                    MuCan                                RSDN                              TecoGan                             COMISR                   

Figure 5. 4× VSR results on REDS4 videos downloaded from YouTube with resolution of 360 pixels. Zoom in for best view.

ods. We use the videos from the REDS4 testing dataset for
experiments as the image resolution is higher.

We first generate uncompressed videos out of the raw
frames, and then upload them to YouTube. These videos
are encoded and compressed at different resolutions for
downloading. In our setting, the uploaded videos are of
1280 × 720 pixels. The resolutions that are available for
downloading on YouTube are 480p, 360p, 240p, and 144p.
In the following experiments, we download the videos at
360p using the YouTube-dl [64]. We evaluate three state-of-
the-art methods, including MuCAN [30], RSDN [22], and
TecoGan [3] on these videos that are compressed by propri-
etary methods by YouTube. Figure 5 shows the VSR results
by the evaluated methods, where the COMISR model pro-
duces better visual results with less artifacts.

4.5. Ablation Study

We analyze the contribution of each module in the
COMISR model. We start with the recurrent module de-
scribed in Section 3 as the baseline model. Similar to
FRVSR [45], the recurrent model computes the flow be-
tween consecutive frames, warps the previous frame to the
current, and upscales the frames. We carry out two sets of
ablation studies, with or without using compressed images,
to show the effectiveness of each module (see Section 4.1).

Table 5 shows the ablation studies where we incremen-
tally add each module to the basic recurrent model. For
each setting, the model is trained with and without com-
pressed images, and then evaluated on original and com-
pressed frames. The results show that each module helps
achieve additional performance gain, in both training pro-
cess with only compressed images or a combination of com-
pressed and uncompressed images. We note it is impor-
tant to add some uncompressed images in the training pro-
cess to achieve best results on compressed videos. The full
COMISR model performs best among all settings. For ex-
ample, the fourth row in Table 5, the uncompressed PSNR
on Vid4 drops 0.17 dB.

4.6. User Study

To better evaluate the visual quality of the generated HR
videos, we conduct a user study using Amazon MTurk [21]

No compression Aug Aug CRF15-25
Components Uncompressed CRF25 Uncompressed CRF25

Recur 26.61 / 0.808 23.97 / 0.634 26.53 / 0.815 24.23 / 0.648
Recur + a 27.16 / 0.837 24.24 / 0.650 26.64 / 0.818 24.74 / 0.686

Recur + ab 27.45 / 0.844 24.27 / 0.649 27.27 / 0.838 24.92 / 0.696
Recur + abc 27.48 / 0.845 24.31 / 0.650 27.31 / 0.840 24.97 / 0.701

Table 5. Ablations on three modules of the COMISR model on
Vid4: (a) bi-directional recurrent module, (b) detail-aware flow
estimation, and (c) Laplacian enhancement module. Each entry
shows the PSNR/SSIM values on the Y-channel.

on the Vid4 [32] and REDS4 [41] datasets. We evaluate
the COMISR model against all other methods using videos
compressed with CRF25. In each experiment, two videos
generated by the COMISR model and other methods are
presented side by side and each user is asked “which video
looks better?” For the Vid4 and REDS4 datasets, all the test
videos are used for the user study. For each of the video
pairs, we assign to 20 different raters. The aggregated re-
sults are shown in Figure 6.

0%

25%

50%

75%

100%

FRVSR DUF TecoGan EDVR MuCAN RSDN

Figure 6. Aggregated user study results on Vid4 and Reds4. Re-
sults show that users favored COMISR against all other compared
methods.

5. Conclusion
In this work, we propose a compression-informed video

super-resolution model which is robust and effective on
compressed videos. Within an efficient recurrent network
framework, we design three modules to effectively recover
more details from the compressed frames. We conduct ex-
tensive experiments on challenging video with a wide range
of compression factors. The proposed COMISR model
achieves the state-of-the-art performance on compressed
videos qualitatively and quantitatively, while performing
well on uncompressed videos.
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