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S1. Implementation Details

In this section, we present detailed network architecture
as well as implementation details, for reproducible research.
The network architecture for the reference network (RFNet)
and video domain-adapted network (VDNet) are equivalent,
as described in Table S1. The network architecture is mainly
motivated from [8], but we replace ReLU with maxout units
at every other convolution layer to further improve the per-
formance while maintaining the same number of neurons at
each layer.

The RFNet is pretrained on the CASIA webface
database [8], which includes 494414 images from 10575
identities from the Internet, using the same training setup [7].
The implementation is based on Torch [1] with N = 1080
(that is, number of examples per batch is set to 2160) for
N-pair loss. The N-pair loss, which pushes (N-1) negative
examples at the same time while pulling a single positive
example, is used on 8 GPUs for training. The VDNet is
initialized with the RFNet followed by a discriminator com-
posed of two fully connected layers (160, 3) followed by a
ReLU on top of 320-dimensional output feature of VDNet.
The VDNet is trained with the following objective function:

L = LFM + αLFR + βLIC + γLAdv (S1)

where the forms of the loss functions are described in the
main paper and we set α = β = γ = 1 for all our exper-
iments. The learning rate is set to 0.0003 with a default
setting of the Adam optimizer [5] (for example, β1 = 0.9,
β2 = 0.999). The network is trained for 1500 iterations with
batch size of 512, where we allocate 256 examples from the
image domain and remaining 256 examples from the video
domain for each mini batch.

S2. Ablation Study

In this section, we present further results for different
design choices of the proposed algorithm. In particular, we
consider the alternative of pixel-space image restoration and
study the effect of scale of unlabeled video training data.

Table S1. Network architecture for RFNet and VDNet. The network
is composed of 10 layers of 3×3 convolution layers followed by
either ReLU or maxout units [2]. The volumetric max pooling
(Vmax pooling) extends (spatial) max pooling to input channels
and can be used to model maxout units.

operation kernel output size
Conv1-1 + ReLU 3×3 100×100×32

Conv1-2 3×3 100×100×128
Vmax pooling 2×2×2 50×50×64

Conv2-1 + ReLU 3×3 50×50×64
Conv2-2 3×3 50×50×256

Vmax pooling 2×2×2 25×25×128
Conv3-1 + ReLU 3×3 25×25×96

Conv3-2 3×3 25×25×384
Vmax pooling 2×2×2 13×13×192

Conv4-1 + ReLU 3×3 13×13×128
Conv4-2 3×3 13×13×512

Vmax pooling 2×2×2 7×7×256
Conv5-1 + ReLU 3×3 7×7×160

Conv5-2 3×3 7×7×320
Average pooling 7×7 1×1×320

Table S2. Architecture for image or video pixel-space restoration
network. The network is composed of 8 residual blocks and few
more convolution layers before and after a series of residual blocks.
There also exists a shortcut connection where the output of C1 and
C2 are added before fed into C3.

name operation kernel output size
C1 Conv + ReLU 3×3 100×100×32

Res1–8
Conv + BN + ReLU

3×3 100×100×32
+ Conv + BN

C2 Conv + BN 3×3 100×100×32
C3 Conv + ReLU 3×3 100×100×32
C4 Conv + ReLU 3×3 100×100×32
C5 Conv + Tanh 3×3 100×100×1

S2.1. Pixel-space Restoration and Adaptation

The focus of our paper is feature-level domain adaptation.
In Section 3.3 of the main paper, lines 368–371, we state that
this is preferable over pixel-level alternatives. To illustrate
this further, we now compare the performance of our pro-
posed method to several baselines on pixel-space restoration
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Figure S1. Illustration of pixel-space restoration and adaptation framework. The restoration network is composed of 8 residual blocks and
a shortcut connection as described in Table S2. The network architectures of RFNet and discriminator are provided in Table S1 and S3,
respectively. The input for restoration network is either synthetically degraded images (for IRResNet or IRGAN) or video frames (for
VRGAN) and the output is fed into either RFNet for feature restoration loss with restored images or discriminator for adversarial loss with
both restored images and video frames.

Table S3. Network architecture for discriminator. The network is
composed of 8 layers of 3×3 convolution layers followed by by
Leaky ReLU (LReLU) and Batch Normalization (BN) layers and
2 fully-connected (FC) layers whose final output is either 2 for
IRGAN or 3 for VRGAN.

operation kernel, stride output size
Conv1-1 + LReLU 3×3, 1 100×100×64

Conv1-2 + LReLU + BN 3×3, 2 50×50×64
Conv2-1 + LReLU + BN 3×3, 1 50×50×128
Conv2-2 + LReLU + BN 3×3, 2 25×25×128
Conv3-1 + LReLU + BN 3×3, 1 25×25×256
Conv3-2 + LReLU + BN 3×3, 2 13×13×256
Conv4-1 + LReLU + BN 3×3, 1 13×13×512
Conv4-2 + LReLU + BN 3×3, 2 7×7×512

FC1 + LReLU – 1024

FC2 –
2 (IRGAN)
3 (VRGAN)

Table S4. Face verification accuracy on the degraded LFW dataset.
The baseline network (RFNet) is evaluated on both degraded and
original (†) test set. We run evaluation on degraded test images for
10 times with different random seeds and report the mean accuracy.

Model baseline IRResNet IRGAN VRGAN VDNet-F
VRF 88.68 92.69 92.38 92.41 93.72
VRF† 98.85

and domain adaptation.
The pixel-space restoration applies a similar combination

of loss strategies, but shifts the restored domain from feature
to image pixels. Instead of training VDNet, we use RFNet
for feature restoration loss and a discriminator for domain
adversarial loss on top of a “restored” input image, with
an additionally trained image restoration network. Based
on the single-image super-resolution generative adversarial
network (SRGAN) [6], we train several image restoration

networks for face images, which we call image-restoration
ResNet (IRResNet), image-restoration GAN (IRGAN) and
video-restoration GAN (VRGAN), as follows:

• IRResNet: An image restoration network based on very
deep residual network [3], trained with feature restoration
loss guided by pretrained face recognition engine (RFNet)
on synthetically degraded images.

• IRGAN: An image restoration network based on very
deep residual network trained with feature restoration loss
as well as discriminator loss on synthetically degraded
images.

• VRGAN: A video restoration network based on very deep
residual network trained with feature restoration loss as
well as discriminator loss on both synthetically degraded
images and video frames.

The pixel-space restoration models are illustrated in Fig-
ure S1. The network architectures for the pixel-space restora-
tion network and discriminator are summarized in Tables S2
and S3, respectively. We use grayscale images for restoration
networks as our RFNet accepts grayscaled images as input.1

We use Adam optimizer with a learning rate of 0.0003. Com-
pared to the training of VDNet, we reduce the batch size to
96, where we allocate 48 examples from the image domain
and another 48 examples from the video domain for each
mini batch. This is due to additional CNNs such as restora-
tion network and discriminator. We increase the number of
iterations to 30000 due to slower convergence.

For fair comparisons, we apply the same set of random
noise processes to generate synthetically degraded images

1Although we use grayscale images as input and output of the restoration
network, one can construct the restoration network for RGB images with
an additional differentiable layer that converts RGB images into grayscale
images before feeding into RFNet.



Table S5. Video face verification accuracy and standard error on the YTF database with different image- and video-restoration networks. The
verification accuracy averaged over 10 folds and corresponding standard error are reported. The best performer and those with overlapping
standard error are boldfaced.

Model fusion 1 (fr/vid) 5 (fr/vid) 20 (fr/vid) 50 (fr/vid) all
baseline – 91.12±0.318 93.17±0.371 93.62±0.430 93.74±0.443 93.78±0.498

IRResNet – 90.40±0.366 92.59±0.388 93.13±0.405 93.15±0.416 93.26±0.400
IRGAN – 90.67±0.314 92.88±0.369 93.25±0.389 93.24±0.368 93.22±0.383
VRGAN – 90.77±0.346 92.93±0.402 93.41±0.429 93.46±0.410 93.62±0.439

F (ours) – 92.17±0.353 94.44±0.343 94.90±0.345 94.98±0.354 95.00±0.415
X – 94.52±0.356 95.01±0.352 95.15±0.370 95.38±0.310

Table S6. Video face verification accuracy and standard error on the YTF database with different number of unlabeled videos for domain-
adversarial training. The verification accuracy averaged over 10 folds and corresponding standard error are reported. VDNet model F is used
for experiments, where all four losses including feature matching, feature restoration, image classification, as well as domain adversarial
losses, are used. The best performer and those with overlapping standard error are boldfaced.

# videos fusion 1 (fr/vid) 5 (fr/vid) 20 (fr/vid) 50 (fr/vid) all

10 – 91.54±0.339 93.62±0.338 94.05±0.350 94.17±0.390 94.16±0.369
X – 93.63±0.365 94.12±0.377 94.22±0.386 94.22±0.381

25 – 91.80±0.337 93.84±0.320 94.24±0.328 94.38±0.321 94.46±0.323
X – 93.90±0.331 94.29±0.338 94.40±0.334 94.56±0.333

100 – 92.34±0.289 94.42±0.348 94.78±0.379 94.82±0.385 94.78±0.363
X – 94.50±0.331 94.85±0.388 94.87±0.403 95.00±0.417

250 – 92.03±0.348 94.21±0.342 94.70±0.314 94.73±0.324 94.90±0.291
X – 94.23±0.348 94.70±0.322 94.81±0.313 94.98±0.323

all – 92.17±0.353 94.44±0.343 94.90±0.345 94.98±0.354 95.00±0.415
(∼2780) X – 94.52±0.356 95.01±0.352 95.15±0.370 95.38±0.310

for training, as described in Section 3.2. We note that other
approaches might be used for image restoration, including
ones that rely on further supervision through specification of
a restoration target within a video sequence. But our base-
lines based on synthetically degraded images are reasonable
in a setting comparable to VDNet that uses only unlabeled
videos and produce visually good results. In particular, we
visualize the image restoration results on synthetically de-
graded images of the LFW test set in Figure S2 and note that
each baseline produces qualitatively reasonable outputs.

For quantitative validation of IRResNet, IRGAN and VR-
GAN, we evaluate the face verification performance on syn-
thetically degraded Labeled Faces in the Wild (LFW) [4]
dataset, where we apply the same set of image degradation
kernels as used in the training with images of the LFW test
set. The results are summarized in Table S4. The image
restoration methods effectively improve the performance
from 88.68% to 92.69%, 92.38%, and 92.41% with IRRes-
Net, IRGAN, and VRGAN, respectively. On this test set,
adversarial training does not improve the verification perfor-
mance since it aims to perform global distribution adaptation,
thereby losing discriminative information that can be directly
learned from the feature restoration loss defined between cor-
responding synthetic and original images. However, none of
the image restoration models are as effective as the feature-
level restoration model (VDNet model F in the main paper),
which achieves 93.72%.

We further evaluate the verification performance on the
YouTube Face database (YTF) whose results are summarized

in Table S5. Different from the results on the synthetically
degraded LFW dataset, there is no performance gain when
evaluated on YTF dataset with image and video restoration
networks. In addition, we observe significant performance
drops when trained only on the synthetic image database.
Training VRGAN with an additional domain adversarial loss
for video data improves the performance on video face verifi-
cation over restoration models trained only with synthetically
degraded images, but the improvement is not as significant
as we have observed from the VDNet experiments.

In summary, it is evident that aligning distributions in
pixel space is more difficult and there is a clear advantage
of feature-level domain adaptation, especially when our ulti-
mate goal is to improve the performance of high-level tasks
such as classification.

S2.2. Number of Unlabeled Videos

We perform controlled experiments with different number
of unlabeled videos at training. Specifically, we utilize ran-
domly selected 10, 25, 100 and 250 videos of YTF database
for training. As shown in Table S6, we observe a general
trend that the more video data is used for training, the higher
verification accuracy we obtain. For example, if we use only
10 videos for training, we obtain 94.22% accuracy which is
far lower than the best accuracy of 95.38% achieved using
all videos for training, which is approximately 2780 unla-
beled videos for each training fold. It is also worth noting
that even using a very small number of unlabeled videos
for training already improves the performance over other



Figure S2. Image restoration on synthetically degraded LFW test set. From top to bottom, we visualize ground truth images, synthetically
degraded images, and restored images with IRResNet, IRGAN, and VRGAN, respectively.

models that do not use domain adversarial training, such as
model B (93.94%) or model C (93.82%). But at the same
time, the margin of improvement gets smaller as we include
more unlabeled videos for training.

Our paper demonstrates initial success with utilizing un-
labeled video data for video face recognition, but interesting
further problems remain. A promising direction of future is
to explore ways to better utilize the fact that unlabeled videos
are easier to acquire than labeled ones, translating to steady
improvements in recognition performance as progressively
larger scales of unlabeled data become available.

S3. Qualitative Visualization of Guided Fusion

We present further examples for the qualitative visualiza-
tion of three-way domain discriminator. Similar to Figure 3
in the paper, we sort and show ten additional video clips with
the confidence score of discriminator in Figure S3. As in
the main paper, we observe that the discriminator ranks the
video frames in a reasonable order, encompassing variations
along several meaningful factors.

References
[1] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

Matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011. 1

[2] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout networks. In ICML, 2013. 1

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 2

[4] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face recog-
nition in unconstrained environments. Technical report, Uni-
versity of Massachusetts, Amherst, 2007. 3

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 1

[6] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi.
Photo-realistic single image super-resolution using a generative
adversarial network. In CVPR, 2017. 2

[7] K. Sohn. Improved deep metric learning with multi-class N-
pair loss objective. In NIPS. 2016. 1

[8] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation
from scratch. CoRR, abs/1411.7923, 2014. 1



(a) top-5 (b) bottom-5
Figure S3. We sort the frames within a sequence in a descending order with respect to the confidence score of three-way discriminator
(D(y = 1|v)), and display them by showing the top-5 and bottom-5 instances, respectively. The weights are shown in the upper-left corner
of each frame.


