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Figure 1. Low-resolution blurry images (a) are challenging for the state-of-the-art super-resolution and deblurring methods ((b) and (d)).
Sequentially applying super-resolution and deblurring methods further exacerbates the artifacts ((c) and (e)). Our method (f) learns to
reconstruct realistic results with clear structures and fine details. The low-resolution images ((a) and (d)) are resized for visualization.

Abstract

We present an algorithm to directly restore a clear high-
resolution image from a blurry low-resolution input. This
problem is highly ill-posed and the basic assumptions for
existing super-resolution methods (requiring clear input)
and deblurring methods (requiring high-resolution input)
no longer hold. We focus on face and text images and
adopt a generative adversarial network (GAN) to learn a
category-specific prior to solve this problem. However, the
basic GAN formulation does not generate realistic high-
resolution images. In this work, we introduce novel train-
ing losses that help recover fine details. We also present a
multi-class GAN that can process multi-class image restora-
tion tasks, i.e., face and text images, using a single gen-
erator network. Extensive experiments demonstrate that
our method performs favorably against the state-of-the-art
methods on both synthetic and real-world images at a lower
computational cost.

1. Introduction

We address the problem of jointly super-resolving and
deblurring low-resolution blurry images. Such images often
arise when the objects of interest are far away from cameras
and under fast motion, e.g. in surveillance and sports videos.
Reconstructing high-resolution clear images from the de-
graded input not only generates visually pleasing images
but also helps other vision tasks, such as recognition [51].

This problem is highly ill-posed and causes significant

challenges for state-of-the-art super-resolution and deblur-
ring methods by breaking the basic assumptions on the in-
put. On one hand, super-resolution methods usually assume
the blur kernel is known or of simple form, such as Gaus-
sian. When the low-resolution input undergoes complex
motion blur, existing super-resolution methods often gener-
ate results with large structural distortions, as shown in Fig-
ure 1(b). On the other hand, blind deblurring methods of-
ten assume that the input is of high resolution and contains
salient edges that can be extracted to recover the unknown
blur kernel. When the input lacks clear details, the recov-
ered blur kernel and image are not accurate (Figure 1(d)). If
we apply super-resolution and deblurring methods sequen-
tially, the artifacts are exacerbated, as shown in Figures 1(c)
and (e). A successful solution to this problem should simul-
taneously deblur and super-resolve the low-quality input.

Toward this end, we propose to focus on two impor-
tant classes of images, i.e., faces and text, and learn strong
category-specific priors to solve this problem. Specifically,
we adopt a generative adversarial network (GAN) [13],
which consists of generator and discriminator sub-networks
that compete with each other. We find that the discrimina-
tive network is trained to distinguish fake and real images,
thereby learning a semantic prior. This is in sharp contrast
to empirical priors [9, 20, 23, 32, 33, 45] that are developed
using the statistics of natural images. These statistical pri-

https://sites.google.com/view/xiangyuxu/deblursr_iccv17


ors become less discriminative when the structures of the
degraded images are similar to those of the clear images.

Although the basic GAN formulation is effective at cap-
turing semantic information, the recovered images usually
contain content and structure errors. To address this issue,
we introduce a novel feature matching loss that enforces
the output of the generative network to have similar inter-
mediate feature representations with the ground truth train-
ing data. Our feature matching loss helps recover realistic
details. Furthermore, we develop a multi-class GAN for-
mulation that can learn to super-resolve blurry face and text
images using one single generator network.

In this paper, we make the following contributions.
First, we propose a new method to simultaneously recon-
struct a clear high-resolution image from a blurry low-
resolution input. Second, we develop a discriminative im-
age prior based on GAN that semantically favors clear high-
resolution images over blurry low-resolution ones. Further-
more, we present a new feature matching method to further
retain both the fidelity and sharpness of the reconstructed
high-resolution images. Finally, we design a multi-class
GAN method that handles both text and face images us-
ing one single generator network. We demonstrate that
our method performs favorably against the state-of-the-art
super-resolution and deblurring methods on both synthetic
and real face and text images.

2. Related Work

Image deblurring. Most existing deblurring methods rely
heavily on prior models to solve the ill-posed problem.
A widely-used prior assumes that gradients of natural im-
ages have a heavy-tailed distribution [9, 23, 38]. However,
Levin et al. [24] show that these priors tend to favor blurry
images over the original ones when the blur kernel and
clear image are jointly solved using the maximum a poste-
rior (MAP) framework. Therefore, heuristic edge selection
steps are often adopted [5, 44] for MAP estimation.

Several recent methods introduce new image priors that
favor clear images over blurred ones in the MAP frame-
work [20, 45, 30, 33, 46]. These methods either explicitly or
implicitly recover salient edges to estimate the blur kernel,
which is complex and time-consuming. More importantly,
existing methods do not perform well when low-resolution
blurry images do not contain salient edges.

Deep learning achieves promising performance on many
applications [21, 52, 1, 14]. Recently, neural networks have
also been used for blind image deblurring [39, 3, 37]. How-
ever, these deblurring methods still involve explicit ker-
nel estimation. If the estimated kernels are inaccurate, the
deblurred images often have significant ringing artifacts.
Hradiš et al. [15] develop a deep convolutional neural net-
work (CNN) model for text image reconstruction, which

does not involve blur kernel estimation. However, their net-
work has been designed for deblurring and cannot be easily
extended for joint super-resolution and deblurring.

Super-resolution. Existing super-resolution methods can
be broadly categorized as exemplar-based [10, 4, 49, 41,
47] or regression-based [48, 40]. One typical exemplar-
based method uses sparse coding [49], which tends to
introduce unrealistic details in the reconstructed images.
Regression-based methods typically learn the priors from
patches [48, 40]. However, the reconstructed results may be
over-smoothed. Recently, CNNs have also been applied to
super-resolution [7, 43, 8, 18] and obtain promising results
when the downsampling kernel is known.

Joint super-resolution and deblurring. This problem
has received considerably less attention in the literature
although real-world images are often low-resolution with
significant blur. Michaeli and Irani [29] propose a blind
super-resolution framework that can simultaneously esti-
mate the downsampling blur kernels. Liu and Sun [25]
develop a video super-resolution method that jointly esti-
mates the high-resolution image, blur kernel, noise level,
and motion. However, these methods do not perform well
on low-resolution images with complex motion blurs. Blur
kernel estimation becomes extremely challenging and small
errors in the estimated kernels are exacerbated by super-
resolution. By focusing on images of a certain class (i.e.,
faces and text) and learning category-specific priors, we can
bypass the kernel estimation and obtain superior results.

Generative adversarial networks. Goodfellow et al. [13]
introduce the GAN framework for training generative mod-
els that can generate realistic-looking images from random
noise. GANs simultaneously train generator and discrim-
inator sub-networks that compete with each other, making
the training process quite challenging. Radford et al. [34]
use CNNs for both the generator and discriminator to facil-
itate training. Because strong image priors can be learned,
GANs have been applied to image enhancement tasks such
as face hallucination [50] and super-resolution [22]. In this
work, we extend GANs to the more challenging task of
super-resolving low-resolution, severely blurred face and
text images.

3. Proposed Algorithm
We first review the basic formulation of GAN, and then

introduce the proposed algorithm.

3.1. Overview of GAN

The GAN learns a generative model via an adversarial
process. It simultaneously trains a generator network, G,
and a discriminator network, D. The training process al-
ternates optimizing the generator and discriminator, which
compete with each other. Given D, the generator learns to



Table 1. Architecture of the generator and discriminator. “conv” denotes a convolutional layer, “fc” denotes a fully connected layer,
“uconv” denotes a fractionally-strided convolutional layer, and 2× denotes upsampling by a factor of 2.

Generator Discriminator
Layer uconv conv uconv conv conv conv conv conv conv conv conv conv conv conv conv conv fc

Kernel Number 64 64 64 64 64 64 64 64 64 64 64 3 64 64 64 64 1
Kernel Size 6 5 6 5 5 5 5 5 5 5 5 5 4 4 4 4 -

Stride 2× 1 2× 1 1 1 1 1 1 1 1 1 2 2 2 2 -

generate samples that can fool the discriminator; given G,
the discriminator learns to distinguish real data and samples
from the generator. Mathematically, the loss function is:

max
θ

min
ω

Ex∼pdata(x)
[logDθ(x)]+Ez∼pz(z)[log(1−Dθ(Gω(z)))], (1)

where z is random noise; x denotes the real data; ω and θ
are parameters of G and D respectively. The discriminator
is trained to assign a large probability to real data (first term)
but a small one to generated samples by the generator.

The discriminator can be regarded as a semantic prior
that can classify clear images (data) from blurry images
(samples). Note that the priors used in the MAP-based
image deblurring methods, such as dark channel [33],
text image [32], and normalized sparsity [20], all exploit
some hand-crafted features to distinguish clear images from
blurry ones. This observation motivates us to use GAN to
learn the discriminator and the features using the following
model.

3.2. Network Architecture

Our generator takes low-resolution blurry images as in-
puts, instead of random noise, and generates high-resolution
clear images. The discriminator distinguishes images syn-
thesized by the generator from ground truth clear images.

Generator network. As shown in Table 1, we use a deep
CNN architecture that has been shown effective for image
deblurring by Hradiš et al. [15]. In contrast to their network,
our generator contains upsampling layers, i.e., uconv in Ta-
ble 1. These two upsampling layers are fractionally-strided
convolutional layers [34], which are also called deconvolu-
tion layers. Each deconvolution layer consists of learned
kernels that perform jointly to upsample images better than
a single bicubic kernel [8]. Our generator first upsamples
low-resolution blurry images by the deconvolution layers
and then performs convolutions to generate clear images.
Similar to the method by Radford et al. [34], we use batch
normalization [16] and Rectified Linear Unit (ReLU) ac-
tivations after each layer. The exception is the last layer,
which is followed by a hyper-tangent function.

Discriminator network. Our discriminator is a 5-layer
CNN network, as shown in Table 1. The input is an image
and the output is the probability of the input being a clear
image. We use LeakyReLU [27] as the activation function,
except for the last layer which uses a sigmoid function [34].
We also use batch normalization [16] after each convolution
layer except for the first one.

3.3. Loss Function

A straightforward way for training is to use the original
GAN formulation in (1). Let {xi, i = 1, 2, ..., N} denote
the high-resolution clear images, and {yi, i = 1, 2, ..., N}
represent the corresponding low-resolution blurry images.
The training loss for the generator is

min
ω

1

N

N∑
i=1

log(1−Dθ(Gω(y
i))). (2)

The generated images based on this training loss appear
realistic at first glance, e.g., the face image in Figure 2(b).
However, upon close inspection the generated images are of
low quality, especially around the face contours and eyes.
As these details are not important features for the discrim-
inator, the generator can still fool the discriminator when
making mistakes in these regions. To encourage the genera-
tor to construct high-quality results, we propose adding the
following terms to the loss function.

Pixel-wise loss. A natural solution is to enforce the output
of the generator to be close to the ground truth,

Lc(ω) =
1

N

N∑
i=1

‖Gω(yi)− xi‖2, (3)

which penalizes the difference in pixel values between the
generated output and ground truth. The loss function in (3)
leads to visually more pleasing images, as shown in Fig-
ure 2(c). However, the restored images are less sharp.

We can combine semantic (2) and pixel-wise (3) losses

min
ω

1

N

N∑
i=1

‖Gω(yi)−xi‖2+λ log(1−Dθ(Gω(y
i))), (4)

where the scalar λ is a trade-off weight. The restored im-
ages look more realistic but still contain some artifacts in
smooth regions (Figure 2(d)). In addition, the restored im-
ages have lower PSNR values than those using only the
pixel-wise loss (3).

Feature matching. To achieve more realistic results, we
adopt a feature matching loss term [35], defined as

1

N

N∑
i=1

‖φlθ(Gω(yi))− φlθ(xi)‖2, (5)

where φlθ(x) represents the feature response to input x at
the l-th layer of the discriminator. This term forces the re-



stored images and the real images to have similar feature re-
sponses at the intermediate layers of the discriminator net-
work. These features tend to capture the structural infor-
mation of the images. Different from the perceptual loss
in [17] which uses the features of a fixed VGG network, our
features are dynamically extracted from the discriminator
network, which are most discriminative of real data versus
generated data of specific class. Thus, with the help of the
feature matching term, the reconstructed results will have
more realistic features.

Based on above considerations, we incorporate the pixel-
wise loss (3) and feature matching loss (5) into the original
GAN formulation (1). The generator and discriminator can
be trained by

max
θ

min
ω

1

N

N∑
i=1

‖Gω(yi)− xi‖2 + λ1‖φlθ(Gω(yi)) (6)

− φlθ(xi)‖2 + λ2(logDθ(x
i) + log(1−Dθ(Gω(y

i)))),

where λ1 and λ2 are trade-off weights.
Directly optimizing (6) with respect to θ for updating

D makes θ diverge to infinity rapidly, as a large θ always
makes the second term ‖φlθ(Gω(yi))−φlθ(xi)‖2 larger than
a small θ. Instead of updating D to increase the abso-
lute distance between a generated pair (real, generated), we
want to make sure the distance between a generated pair
is relatively larger than that between a real pair (real, real).
Therefore, we modify the loss function of D and optimize
G and D by

min
ω

1

N

N∑
i=1

‖Gω(yi)− xi‖2 + λ1‖φlθ(Gω(yi))− φlθ(xi)‖2

+ λ2 log(1−Dθ(Gω(y
i))), (7)

and

min
θ

1

N

N∑
i=1

−(logDθ(x
i) + log(1−Dθ(Gω(y

i))))+ (8)

λ3[‖φlθ(x̂i)− φlθ(xi)‖2 − ‖φlθ(Gω(yi))− φlθ(xi)‖2 + α]+,

where α is a margin that is enforced between real and gener-
ated pairs and [·]+ is the ReLU function. The loss function
for G in (7) is composed of (3), (5) and (2), which enforce
the output of the generator to be similar to the real data on
pixel, structure, and semantic levels, respectively. The loss
function for D in (8) introduces the triplet loss [36] into the
standard formulation of GAN to ensure that a real sample
x is closer to another real sample x̂ than the generated one
Gω(y). By introducing the triplet loss, the trivial solution of
θ in (6) is naturally avoided since increasing θ will enlarge
both the distances between real and generated pairs. Note
that the layer l for updatingG in (7) andD in (8) can be dif-
ferent. By default, we use the second convolutional layer of
D in (7) which maintains the main structure features of the

(a) Input (b) Loss (2) (c) Loss (3) (d) Loss (4) (e) Loss (7) (f) GT

Figure 2. Effect of different loss functions. The low-resolution in-
put is resized for visualization. The feature matching loss leads to
more realistic images with competitive PSNR. PSNR (dB) values
are respectively (b)18.68, (c) 24.31, (d)22.65 and (e) 24.16.

input while using the third layer in (8) which better repre-
sents higher level semantic embeddings. As shown in Fig-
ure 2(e), this new loss function leads to visually sharp re-
sults with higher image quality. Further detailed analysis of
the different loss functions is presented in Section 5.

3.4. Multi-Class GAN

The original GAN formulation is designed for images
of a single class (SCGAN). Each application or image cat-
egory requires a new network. It is therefore desirable to
train a single network model for multiple categories. To
this end, we develop a multi-class GAN (MCGAN) using a
single model. Our MCGAN has one generator but K dis-
criminators {Dθj , j = 1, 2, ...,K}. These discriminators
are trained to classify real and generated images for each of
the K different classes, e.g., text and face images.

Let Dθj (x) denotes the probability of x being classified
as a real image in the j-th class. The loss functions in equa-
tions (2) and (5) respectively become

Lp,M (ω)=
1

N

N∑
i=1

log(1−
K∑
j=1

Dθj (Gω(y
i))1(yi∈Cj)), (9)

Llf,M (ω)=
1

N

N∑
i=1

K∑
j=1

‖φlθj (Gω(y
i))−φlθj (x

i)‖21(yi∈Cj), (10)

where φlθj (x) denotes the feature map at the l-th layer of
the discriminator Dθj , and Cj denotes the j-th image class.
The indicator function 1(x) is 1 if the expression x is true,
and 0 otherwise.

The training process for MCGAN alternates between up-
dating the generator and the discriminator, where the train-
ing loss for the generator is

min
ω
Lc(ω) + λ1L

l
f,M (ω) + λ2Lp,M (ω). (11)

Given a fixed generator, the discriminators {DθK} are up-
dated simultaneously by (8). After training, the learned gen-
erator can be used to restore images in any of theK classes.

4. Experimental Results
We evaluate the proposed method on both text and face

images. Since there is no prior work designed for such
input data, we compare our method with the state-of-the-
art super-resolution and deblurring methods. We show the
main results in this section and present more evaluations in
the supplementary material.



(a) Input (b) [45]+[43] (c) [33]+[18] (d) [43]+[32] (e) [18]+[33] (f) [29] (g) Fine-tune (h) MCGAN (i) SCGAN (j) GT

Figure 3. Results on text images. (a) The low-resolution input images are resized for visualization. (b)-(f) sequentially applying super-
resolution and deblurring methods. (g) obtained by combining [18] and [15] and fine-tuning on the text image training dataset. MCGAN
(h) and SCGAN (i) generate text images with much clearer characters.

(a) Input (b) [32]+[43] (c) [33]+[18] (d) [43]+[45] (e) [18]+[33] (f) [43]+[15] (g) Fine-tune (h) MCGAN (i) SCGAN (j) GT

Figure 4. Results on face images. (a) The low-resolution input images are resized for visualization. (b)-(f) sequentially applying super-
resolution and deblurring methods. (g) obtained by combining [18] and [15] and fine-tuning on the face image training dataset. MCGAN
(h) and SCGAN (i) generate face images with fewer artifacts.

Datasets. For text images, we use the training dataset of
Hradiš et al. [15], which consists of images with both de-
focus blur generated by anti-aliased disc and motion blur
generated by random walk. We randomly crop one million
64 × 64 blurred image patches from the dataset and down-
sample the patches using bicubic interpolation by a factor
of 4. For face images, we randomly collect clear face im-
ages from the CelebA training dataset [26]. We obtain one
million degraded face images by convolving the clear faces
with the blur kernels from Hradiš et al. [15] and downsam-
pling them by a factor of 4. We also add Gaussian noise to
the blurred patches, with the standard deviation uniformly
sampled from [0, 7/255]. We train the SCGAN models
on the text and face datasets separately, and the MCGAN
model using both datasets.

To evaluate text image restoration, we use the test set of
Hradiš et al. [15], which has 100 blurry images. To eval-
uate face image restoration, we randomly sample 100 im-
ages from the CelebA test dataset and convolve them with
blur kernels generated by Hradiš et al. [15]. Both test sets
are downsampled using bicubic interpolation. In addition
to these synthetic data, we also capture real text and face
images obtained by camera shake or downloaded from the
Internet.

Parameter settings. We set the trade-off weights in equa-
tion (7) and (8) to be λ1 = 1, λ2 = 10−3, and λ3 = 0.1,

and set the margin α = 1. Similar to Radford et al. [34]
we train the models using the Adam optimizer [19] with
momentum terms β1 = 0.5, β2 = 0.999, and a learning
rate lr = 0.0002. The batch size is 16. Similar to Glorot
and Bengio [12], the weights of filters in each layer are ini-
tialized using a Gaussian distribution with zero mean and
variance of 2/nin, where nin is the size of the respective
convolutional filter. The slope of the LeakyReLU is 0.2.
Similar to Goodfellow et al. [13], in practice we train G to
maximize log(Dθ(Gω(y))) which provides more sufficient
gradients and leads to more stable solution than minimizing
log(1 − Dθ(Gω(y))) in (2). To evaluate real text images,
we pre-process the input by gamma correction and contrast
transformation to decrease the effect of illumination.

Splitting batches in training the discriminator. Wang and
Gupta [42] observe that batch normalization in D causes
convergence issues in training GAN. We find that this issue
can be resolved by splitting the batches into real and gen-
erated ones when training D, as shown in Figure 5. Due to
the page limit, we present our analysis and the details of our
proposed solution in the supplemental material.

Baseline methods.
We compare our method with all possible combinations

of state-of-the-art deblurring [45, 15, 32, 33] and super-
resolution [8, 43, 18] methods. Since [15] is specifically
designed for text images, we fine-tune the model on face



Table 2. Quantitative comparison with state-of-the-art methods on the text dataset. ”fine-tune” represents the model obtained by combining
[18] and [15] and fine-tuning on the text training data.

Methods [45]+[43] [45]+[8] [45]+[18] [32]+[43] [32]+[8] [32]+[18] [33]+[43] [33]+[8] [33]+[18]
PSNR (dB) 14.58 14.41 14.21 14.13 13.90 13.56 14.46 14.22 13.87

SSIM 0.5775 0.5774 0.6002 0.5534 0.5504 0.5603 0.5742 0.5700 0.5783
Methods [15]+[43] [15]+[8] [15]+[18] [43]+[45] [8]+[45] [18]+[45] [43]+[32] [8]+[32] [18]+[32]

PSNR (dB) 13.85 13.66 13.64 15.49 15.49 15.57 15.39 15.35 15.27
SSIM 0.4895 0.4737 0.4766 0.6341 0.6205 0.6584 0.6408 0.6499 0.6512

Methods [43]+[33] [8]+[33] [18]+[33] [43]+[15] [8]+[15] [29] Fine-tune MCGAN SCGAN
PSNR (dB) 15.44 15.54 15.54 16.40 16.45 14.43 17.84 20.12 20.65

SSIM 0.6396 0.6545 0.6651 0.7171 0.7233 0.5367 0.8142 0.8970 0.9069

Table 3. Quantitative comparison with state-of-the-art methods on the face dataset. ”fine-tune” represents the model obtained by combining
[18] and [15] and fine-tuning on the face training data. The results of [29] are omitted (-) since it is problematic to run this algorithm on
the face dataset with small image sizes.

Methods [45]+[43] [45]+[8] [45]+[18] [32]+[43] [32]+[8] [32]+[18] [33]+[43] [33]+[8] [33]+[18]
PSNR (dB) 14.97 14.29 13.62 16.43 15.75 15.22 17.19 16.58 16.16

SSIM 0.3488 0.3240 0.3046 0.4168 0.3870 0.3723 0.4487 0.4218 0.4140
Methods [15]+[43] [15]+[8] [15]+[18] [43]+[45] [8]+[45] [18]+[45] [43]+[32] [8]+[32] [18]+[32]

PSNR (dB) 18.01 17.97 17.91 18.38 18.02 18.12 17.24 16.66 16.79
SSIM 0.4399 0.4375 0.4348 0.5060 0.4708 0.5216 0.4677 0.4314 0.4592

Methods [43]+[33] [8]+[33] [18]+[33] [43]+[15] [8]+[15] [29] Fine-tune MCGAN SCGAN
PSNR (dB) 21.00 20.77 20.61 22.17 22.04 - 22.60 23.95 24.57

SSIM 0.6201 0.6138 0.6214 0.6453 0.6453 - 0.7137 0.7479 0.7656

(a) Input (b) w/o (c) w (d) GT

Figure 5. Effect of splitting batches. (b) batch normalization with-
out splitting has convergence issues and does not perform prop-
erly; (c) splitting batches leads to more clear results.

images. In addition, we combine and fine-tune the models
in [18] and [15] with both the face and text images in an
end-to-end manner. We also compare our method with the
blind super-resolution algorithm [29]1.

Results on synthetic datasets. We quantitatively evalu-
ate our method using the text and face image datasets de-
scribed above. Tables 2 and 3 show that the proposed al-
gorithm performs well in terms of PSNR and structural
similarity (SSIM). Note that the MCGAN algorithm per-
forms only slightly worse than the SCGAN method, sug-
gesting the feasibility of using a single network for dif-
ferent image categories. Figures 3 and 4 show some re-
stored images on the text and face datasets. Baseline meth-
ods based on straightforward combination of state-of-the-
art super-resolution and deblurring schemes do not generate
clear images from low-resolution blurry inputs. To analyze
the reasons, we show intermediate results in Figure 1. As
no salient edges can be extracted from the low-resolution
blurry input, it is difficult to estimate blur kernels accu-
rately. The deblurred images contain artifacts (Figure 1(d)),
which are exacerbated by the following super-resolution
method (Figure 1(e)). Directly applying super-resolution

1The results have been kindly provided by the authors using [29] for
kernel estimation and [11] for super-resolution.

methods to the blurred low-resolution images does not gen-
erate reliable results either (Figure 1(b)), as most super-
resolution algorithms are developed based on parametric
kernels that cannot account for complex motion blurs. Sim-
ilarly, the artifacts caused by super-resolution are exacer-
bated by the deblurring methods, as shown in Figure 1(c).

Figure 3(f) shows that the blind super-resolution
method [29] does not generate text images well. This
method cannot accurately estimate complex motion kernels,
and small errors in the estimated kernels are exacerbated by
super-resolution. In contrast, our method obtains plausible
results without the kernel estimation step. Moreover, differ-
ent from most methods based on GAN [13, 34, 6] that gen-
erate images from random noise, the input of our network is
degraded images which contain substantial information for
reconstruction. Thus the proposed GAN can restore image
details of specific object classes from low-resolution blurry
inputs. Note that the fine-tuned model of [18] and [15] is a
deep CNN model with 35 layers that has been trained with
a mean squared error (MSE) loss function. Since super-
resolution based on MSE usually generates over-smoothed
results and training a deep network is likely to result in a lo-
cal minimal solution, this method with the fine-tuned model
does not perform well as shown in Figure 3(g) and 4(g).

Subjective study. We conduct subjective user study on im-
age quality, which uses 20 images randomly selected from
the text and face test datasets. Each low-quality input is
restored by 4 different methods: bicubic, [18]+[15] (fine-
tuned), MCGAN, and SCGAN. 21 subjects are asked to as-
sign an integer score from 1 (poor) to 5 (excellent) to the re-
constructed images by each method, with the original high-
resolution image as a reference. The average scores for the
4 methods are respectively 1.14, 2.16, 3.49, and 4.04 on



Input [18] +[15] (fine-tuned) MCGAN SCGAN Input SR[18]+Deblur[33] MCGAN SCGAN

Figure 6. Results on real text images. Our method generates images with much clearer characters.

Input [18] +[15] (fine-tuned) MCGAN SCGAN Input SR[18]+Deblur[33] MCGAN SCGAN

Figure 7. Results on real face images. Our method generates more realistic-looking faces, especially around the eye and mouth regions.

face images, and 1.10, 2.31, 3.49, and 3.68 on text ones,
suggesting that the proposed methods can produce results
with high perceptual image quality. Due to the page limit,
more study on face and text recognition is presented in the
supplemental material.

Results on real images. Our method generates visually bet-
ter results with clearer characters and more realistic faces
than other methods, as shown in Figure 6 and 7.

5. Analysis and Discussion

Priors learned by the proposed method. The success of a
blind image deblurring method usually depends on a good
image prior that favors clear images over blurred ones. In-
stead of using hand-crafted features, our method learns a
discriminator that can distinguish clear and blurred images.
To analyze this property, we apply horizontal blurs with size
2 to 10 pixels to clear images from the CelebA dataset [26]
and compute the average energies of the blurred images.
Figure 8 shows that the learned prior achieves similar ef-
fects as the empirical dark channel prior [33], where both
priors give higher energies to blurred images.

In addition, the discriminator network also learns to dis-
tinguish clear images from generally degraded ones, e.g.,
images with severe ringing artifacts. As a result, the gener-
ator network needs to generate more realistic images with
fewer ringing artifacts to fool the discriminator. We com-
pute the values of the learned prior, the normalized sparsity
prior [20], and the dark channel prior [33] on clear images
and images with severe non-blur artifacts. We use the re-
constructed results by the combinations of existing meth-
ods [32, 33, 43, 18] as the images with artifacts (examples
shown in Figure 4). Table 4 shows the learned prior favors
clear images over images with artifacts, while the normal-
ized sparsity prior and the dark channel prior do not.

Effectiveness of the feature matching loss. To understand
the effect of each loss term proposed in Section 3.3, we de-
fine a dark channel ratio (DCR) to measure sharpness,
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Figure 8. The learned discriminator favors clear images over
blurred ones, similar to the empirical dark channel prior. We blur
clear images from CelebA [26] using horizontal motion blur ker-
nels ranging from 2 to 10 pixels and evaluate the learned discrim-
inator −

∑
logD(Ii). The left y-axis represents the energy of the

learned prior. The right y-axis shows the energy of the dark chan-
nel prior on blurry images relative to that on clear images.

Table 4. The learned prior favors clear images over images
with artifacts and gives lower energy values to clear images (the
first row), while the empirical priors give higher energy values
to clear images (the second and third rows). Artifact1 and Arti-
fact2 represent the images with artifacts generated by [33]+[18]
and [32]+[43], respectively. The energies of the empirical priors
on images with artifacts are relative to those on clear images.

Priors Clear Artifact1 Artifact2
Learned Prior 0.0832 4.3659 10.0623

Normalized Sparsity Prior [20] 1 0.7277 0.8513
Dark Channel Prior [33] 1 0.3947 0.3759

DCR(x, xgt) =
fL(ϕ(x))

fL(ϕ(xgt)) + ε
, (12)

where x is the input image, xgt is its corresponding
ground truth image, ϕ(x) represents the dark channel of
x, ε = 10−8 is used to avoid division by zero. fL(z) =∑
i,j 1(zij < th) approximates the `0 norm, where zij de-

notes the pixel in image z, and th is the threshold, which we
set to be 0.1. As demonstrated in [33], the dark channel of
a clear image is sparser than that of a blurred image. Thus,
smaller DCR values indicate sharper results.

As shown in Table 5, the result with (3) has the highest
PSNR value but is over-smoothed (Figure 2(c)). The result
with (4) has the lowest DCR value but has corrupted struc-
tures (Figure 2(b)). Results using the feature matching loss



(a) Input (b) 1st (c) 2nd (d) 3rd

Figure 9. Visualization of the features from different layers of dis-
criminator D using [28]. (a) is the original image. (b), (c), and
(d) are the reconstructed results from the first, second, and third
convolution layer of D, respectively.

Table 5. Effect of loss terms. “pixel” and “basic” denote mod-
els trained using the pixel-wise (3) and the basic GAN (4) losses.
“GnDm” denotes the model trained using the feature loss (5) with
l=n to update G by (7) and l=m to update D by (8) respectively.

Methods pixel basic G2D3 G3D3 G2D2
PSNR (dB) 25.12 22.82 24.57 23.17 22.95

DCR 1.1331 0.9606 1.0687 1.0477 0.9962

Table 6. Average running time (in seconds) of different methods.
Image resolution [18]+[33] [33]+[18] [18]+[15] Ours

16 × 16 20.1621 1.7717 0.2596 0.0080
50 × 50 116.5380 4.8499 0.4396 0.1278

(GnDm) have competitive PSNR and DCR values, suggest-
ing that the feature matching term is effective at achieving
a compromise between fidelity and sharpness. Note that
G2D2 leads to worse results than G2D3. This is because the
triplet loss introduced in (8) is more effective with higher
level features which represent semantic embeddings of real
and generated samples.

To better understand features at different layers, we vi-
sualize the feature maps of the discriminator network us-
ing [28]. Figure 9 shows that shallow layers retain most of
the original information while deep layers only retain the
basic structures. Therefore, the features from deeper layers
tend to guide the generator to generate more semantically
realistic results, while the features from shallower layers put
emphasis on the pixel-wise similarity with the real images.
All features help improve the results as shown in Table 5.

Running time. Our method restores images by a feed-
forward network and is therefore more efficient than other
state-of-the-art methods. Table 6 summarizes the running
time of representative methods on the same PC with an Intel
i7 CPU, GTX Titan GPU, and 32GB memory. Our method
is 30+ times faster than methods based on empirical priors
and 3+ times faster than the deep network ([18]+[15]).

Limitations. Although visually realistic, the reconstructed
faces may contain checkerboard artifacts [31]. To analyze
their cause, we initialize the generator with random weights,
as shown in Figure 10(a) and (b). Using the deconvolutional
layer already results in some artifacts for a randomly initial-
ized generator and is likely to be the cause. However, us-
ing bicubic interpolation decreases the average PSNR from
24.57 dB to 23.45 dB on the synthetic face dataset. Fig-
ure 10(c) and (d) show one example. Future work will ad-

(a) Bicubic (b) Deconv (c) Bicubic/22.00 (d) Deconv/22.78

Figure 10. Analyzing the checkerboard artifacts. (a) and (b) are
the output of randomly initialized generators with bicubic and de-
convolution layers respectively. Using bicubic interpolation for
upsampling (c) reduces the artifacts but has lower PSNR than de-
convolutional (d). See Figure 1 for the input and ground truth.

(a) Input (b) Our result

Figure 11. A failure example. The model is trained by using the
aforementioned method on the BSDS500 dataset [2].

dress this issue using techniques proposed in [31].
Furthermore, we note that the generator of GAN learns

to model the distribution of real images with guidance from
the discriminator. When trained on multi-class images, the
proposed model is designed to approximate the mixture dis-
tribution of the multi-class images. When this mixture dis-
tribution becomes too complex, it is difficult to learn a uni-
fied model for the diversity of all image classes. Thus our
method is less effective for generic images (Figure 11). Our
observation is consistent with the findings for generative
models that it is more difficult to generate realistic samples
for generic images [35].

6. Conclusions
Our algorithm reconstructs high-resolution clear images

from low-resolution blurry inputs. This problem is highly
ill-posed and breaks the underlying assumptions of exist-
ing super-resolution and deblurring methods. By focusing
on images of certain categories (i.e. face and text), we learn
strong priors using the GAN framework with new loss func-
tions and obtain promising results. Our method performs
favorably against state-of-the-art methods on both synthetic
and real-world datasets. In addition, our approach is more
efficient since the image restoration process involves only a
feedforward network.
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