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Abstract

Solving blind image deblurring usually requires defin-
ing a data fitting function and image priors. While exist-
ing algorithms mainly focus on developing image priors for
blur kernel estimation and non-blind deconvolution, only
a few methods consider the effect of data fitting functions.
In contrast to the state-of-the-art methods that use a single
or a fixed data fitting term, we propose a data-driven ap-
proach to learn effective data fitting functions from a large
set of motion blurred images with the associated ground
truth blur kernels. The learned data fitting function facil-
itates estimating accurate blur kernels for generic scenes
and domain-specific problems with corresponding image
priors. In addition, we extend the learning approach for
data fitting function to latent image restoration and non-
uniform deblurring. Extensive experiments on challenging
motion blurred images demonstrate the proposed algorithm
performs favorably against the state-of-the-art methods.

1. Introduction

The goal of blind image deblurring is to recover a blur
kernel and a sharp latent image from a blurred input. It is a
classical vision problem, and significant progress has been
made in recent years [10, 11, 14]. When the blur is spatially
invariant, the blur process can be modeled by a convolution
operation:

B = I ∗ k + n, (1)

where B, I , k, and n denote the blur image, latent image,
blur kernel, and noise, respectively; and ∗ is the convolution
operator. Blind image deblurring is an ill-posed problem
because there are infinite pairs of I and k which satisfy (1),
and a trivial solution exists, i.e., original blurred image and
delta blur kernel.

Although the number of solutions is infinite, the solu-
tion space of natural images can be constrained. Numerous
methods [2, 4, 15, 16] have been developed based on spar-
sity of image gradients for kernel estimation. On the other
hand, recent algorithms exploit various image priors to re-
cover sharp images, e.g., normalized sparsity prior [13], re-

(a) (b) (c) (d)
Figure 1. Effect of data fitting functions on kernel estimation. (a)
Blurred image. (b) Results of [16] by a data fitting function based
on intensity. (c) Results of [16] by a data fitting function based
on image gradient. (d) Our results. All the results are generated
with the same settings for fair comparisons. The parts enclosed in
the red boxes in (b) and (c) contain significant blur residual and
artifacts (Best viewed on high-resolution displays with zoom-in).

current internal patch recurrence [18], text image prior [20],
and dark channel prior [23]. These image priors are based
on statistical assumptions of clear images and have been
shown to be effective in deblurring. Discriminative meth-
ods [32, 37] have been developed to learn effective image
priors [25] for blur kernel estimation. In contrast to statis-
tical priors, several methods use exemplars for kernel esti-
mation [1, 6, 19, 28].

In addition to image priors, another group of methods
focus on sharp edge predictions for blur kernel estimation.
However, these methods usually involve heuristic edge se-
lection steps [3, 33] to estimate blur kernels.

We note that the aforementioned methods focus on de-
veloping effective image priors for deblurring. Among the
methods in the literature, intensity information is common-
ly used to define the data fitting term. Levin et al. [16] show
that proper use of image gradients in a data fitting function
helps improve blur kernel estimation. Some recent algo-
rithms [3, 20, 22, 23, 33, 35] use intensity in latent image
restoration (e.g., minimizing `2 reconstruction errors) and
gradient in the kernel estimation (e.g., minimizing `2 er-
rors). However, the effect of intensity and gradient informa-
tion in blind image deblurring has not been well analyzed.

In this paper, instead of proposing image priors, we study
the effect of data fitting functions for kernel estimation. We
show that the data fitting function also plays a crucial role
in blind image deblurring as it measures the goodness-of-fit
to the motion blur model in (1). Figure 1 demonstrates the
importance of different data fitting functions on blur kernel
estimation.
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To address this issue, we propose a two-stage approach
for blind image deblurring. In the first stage, an effective
data fitting function is learned for blur kernel estimation. In
the second stage, the data fitting function is optimized for
latent image restoration. We present an efficient numerical
algorithm to learn the data fitting functions for both blur
kernel estimation and latent image restoration. In addition,
we show that the proposed algorithm can be applied to other
domain-specific deblurring tasks with different priors and
non-uniform deblurring.

2. Proposed Algorithm
In this section, we present an algorithm to learn effective

data fitting functions for blind image deblurring. We first
consider the blur kernel estimation problem, and extend it
to the latent image restoration task. In this work, the blind
deblurring problem is formulated as

E(I, k) =
∑
i

ωi‖fi ∗ I ∗k−fi ∗B‖22 +ϕ(I)+φ(k), (2)

where ωi denotes the i-th weight, fi denotes a linear filter
operator which can be learned by fields of experts [24], and
ϕ(I) as well as φ(k) are the priors of latent image and blur
kernel. As the weights control the importance of each term
for blur kernel estimation, the main goal is to estimate these
values effectively.

2.1. Learning Discriminative Data Functions
To estimate ω = {ωi} , we collect a set of ground truth

blur kernels {kj} as well as a set of clear images {Ij}, and
propose the following objective function,

min
ωi

1

2

∑
j

‖kj(ω)− kgtj ‖
2
2

s.t. ωi ≥ 0,
∑
i

ωi = 1,
(3)

where kgtj denotes the j-th ground truth blur kernel, and
kj(ω) is the j-th estimated blur kernel, which can be ob-
tained by

arg min
kj ,Ij

∑
j

∑
i

ωi‖fi∗Ij ∗kj−fi∗Bj‖22+ϕ(Ij)+φ(kj).

(4)
To derive the relationship between blur kernel kj and weight
ωi in (2), we propose an efficient algorithm to solve (4).

2.2. Optimizing (4)

Similar to the existing methods [20, 22, 35, 30], we adopt
ϕ(Ij) = λ‖∇Ij‖0 and φ(kj) = γ‖kj‖22 as the regulariza-
tion for the latent image and blur kernel of (4), where λ and
γ are weight parameters. We use the half-quadratic split-
ting L0 minimization method [34] and introduce an aux-
iliary variable gj = (gvj , g

h
j ) corresponding to the image

gradient ∇Ij . Thus, (4) can be rewritten as

min
kj ,Ij ,gj

∑
j

∑
i

ωi‖fi ∗ Ij ∗ kj − fi ∗Bj‖22

+β‖gj −∇Ij‖22 + λ‖gj‖0 + γ‖kj‖22.
(5)

2.2.1 Intermediate Blur Kernel Estimation

Given Ij , the optimization with respect to kj is

min
kj

∑
j

∑
i

ωi‖fi ∗ Ij ∗ kj − fi ∗Bj‖22 + γ‖kj‖22. (6)

For simplicity, we use the matrix-vector form to express (6)

min
kj

∑
j

∑
i

ωi‖Aijkj − bij‖22 + γ‖kj‖22, (7)

where Aij is the matrix form of fi ∗ Ij with respect to blur
kernel kj , bij is the vector form of fi ∗ Bj with respect to
blur kernel kj , and kj is the vector form of kj . Based on (7),
the solution of kj is

kj =

(∑
i

ωiA
>
ijAij + γ

)−1(∑
i

ωiA
>
ijbij

)
. (8)

2.2.2 Intermediate Latent Image Estimation

The optimization problem (5) with respect to intermediate
latent image Ij is

min
Ij ,gj

∑
j

∑
i

ωi‖fi ∗ Ij ∗ kj − fi ∗Bj‖22 + β‖gj −∇Ij‖22

+ λ‖gj‖0.
(9)

Note that this problem involves variables Ij and gj . It can be
efficiently solved through alternatively minimizing Ij and
gj .

In each iteration, the solution of gj is obtained by solving

gj =

{
∇Ij , |∇Ij |2 > λ

β ,

0, otherwise.
(10)

Given gj , the intermediate latent image Ij can be obtained
by solving

min
Ij

∑
j

∑
i

ωi‖fi ∗ Ij ∗ kj − fi ∗Bj‖22 + β‖gj −∇Ij‖22,

(11)
and the closed-form solution for this problem is

Ij = F−1
(∑

i ωiF(fi)F(kj)F(fi ∗Bj) + βFg

Fk + β(
∑
i∈{h,v} F(∇i)F(∇i))

)
,

(12)



Algorithm 1 Solving (9)
Input: Blurred image Bj and blur kernel kj .
Ij ← Bj , β ← 2λ.
repeat

solve gj using (10).
solve Ij using (12).
β ← 2β.

until β > βmax

Output: Intermediate latent image Ij .

Algorithm 2 Learning discriminative features
Input: Blurred images {Bj}, ground truth blur kernels
{kgtj }.
ωi ← 0.
initialize kj with results from the coarser level.
while l ≤ max iter1 do

while t ≤ max iter2 do
solve Ij using Algorithm 1.
solve kj using (8).

end while
ωi = ωi − α

∑
j
∂Lj

∂ωi
.

end while
Output: The weight ωi.

where F(·) and F−1(·) denote the Fourier transform and
its inverse transform, respectively, F(·) is the complex
conjugate operator, Fk =

∑
i ωiF(fi)F(kj)F(kj)F(fi),

and Fg = F(∇h)F(ghj ) + F(∇v)F(gvj ), where ∇h and
∇v denote the horizontal and vertical differential opera-
tors. In case all the values of ωi are zeros in (12) (which
will lead to unstable kernel estimation), we set the terms
ω0F(kj)F(f0 ∗ Bj) and ω0F(kj)F(f0 ∗ Bj) to be (ω0 +

1)F(kj)F(f0 ∗Bj) and (ω0 + 1)F(f0)F(kj)F(kj)F(f0).
The main steps for intermediate latent image estimation

are summarized in Algorithm 1.

2.3. Optimizing (3)

After obtaining kj with respect to ωi, we can solve (3)
by a gradient descent method. The gradient with respect to
ωi is

∂Lj
∂ωi

=
∂Lj
∂kj

∂kj

∂ωi
= −(kj − kgt

j )>

(∑
i

ωiA
>
ijAij + γ

)−1

A>ijAijkj

+ (kj − kgt
j )>

(∑
i

ωiA
>
ijAij + γ

)−1 (
A>ijbij

)
,

(13)
where Lj = 1

2‖kj(ω)−kgtj ‖22. The detailed derivations are
presented in the supplemental material.

The main steps for learning discriminative data fitting
functions are summarized in Algorithm 2. In this work, the
step of gradient decent α is set to be 0.01.

Training Data. We construct a training dataset to learn

Figure 2. Some generated blur kernels that are used for training.

the weights in (2) by using 200 images from the BSDS
dataset [17]. To generate blurred images {Bj} and blur ker-
nels {kj}, we synthesize realistic blur kernels by sampling
random 3D trajectories used in [25]. These trajectories are
then projected and rasterized to random square kernel sizes
in the range from 11 × 11 up to 27 × 27 pixels. Some ex-
amples of the generated blur kernels are shown in Figure 2.

With the blur kernels, we synthetically generate blurred
images by convolving each clean image with 100 generated
blur kernels. A set of 200,000 blurred images is constructed
for learning the weights of (3).

2.4. Kernel Estimation
After learning the weights, we solve (2) to obtain the

blur kernels. That is, we alternatively solve the intermediate
latent image and blur kernel. The optimization algorithms
with respect to the blur kernel and latent image are the same
to those described in Section 2.2.1 and 2.2.2.

For the linear filters {fi}, we choose the commonly used
zero-order operator corresponding to the intensity informa-
tion, and gradient operators including the first (two direc-
tions) and second order (three directions) operators. The
concrete forms of 6 linear operators are presented in Ta-
ble 1.

2.5. Discriminative Non-Blind Deconvolution
Once blur kernels are obtained, we can use a variety of

non-blind deconvolution methods to recover latent images.
However, we note that the proposed method used in the k-
ernel estimation process can also be applied to non-blind
deconvolution. We formulate the non-blind deconvolution
problem as

min
I

∑
i

ωi‖fi ∗ I ∗ k − fi ∗B‖22 + φ(I), (14)

where φ(I) is the regularization on the image I , e.g., hyper-
Laplacian priors [12]. In this work, we use the commonly
used total variation regularization, i.e., φ(I) = µ‖∇I‖1, for
non-blind deconvolution.

The weight ωi can be obtained by solving

min
ωi

1

2

∑
j

‖Ij(ω)− Igtj ‖
2
2

s.t. ωi ≥ 0,
∑
i

ωi = 1,
(15)



Table 1. Concrete forms of the linear filters used in the learning process.
Filters f1 f2 f3 f4 f5 f6
Type zero-order first order first order second order second order second order
Forms I ∗ k − B ∇hI ∗ k −∇hB ∇vI ∗ k −∇vB ∇h∇hI ∗ k −∇h∇hB ∇v∇vI ∗ k −∇v∇vB ∇h∇vI ∗ k −∇h∇vB

(a) (b) (c)
Figure 3. Non-blind deconvolution examples. (a) Blurred image
and blur kernel. (b) Result with only intensity information in
the data fitting function. (c) Our result. The part in the red box
in (b) contains significant ringing artifacts (Best viewed on high-
resolution display with zoom-in).

where Ij(ω) is the solution of (14) and Igtj is the clear im-
age.

To determine the relationship between Ij(ω) and ω, we
use the same alternative minimization method described in
Section 2.2.2 to obtain Ij(ω). The weight ωi can be ob-
tained by

ωi = ωi − αI
∑
j

(Ij − Igtj )>Wi, (16)

where αI is the gradient descent step. In the above equation,
Ij , I

gt
j , as well as Wi denote the vectorization of Ij , I

gt
j and

Wi, respectively. Each Wi is defined by

Wi = F−1
(

∆b

∆d
− ∆f∆n

∆2
d

)
, (17)

where ∆d = Fk + β(
∑
i∈{h,v} F(∇i)F(∇i)), ∆f =

F(fi)F(kj)F(kj)F(fi), ∆b = F(fi)F(kj)F(fi∗B), and
∆n =

∑
i ωiF(kj)F(fi ∗Bj) + βFg .

We use the same training data as discussed in Section 2.3
to learn ωi. The details regarding the gradient of (15) with
respect to ωi and the optimization method with respect to I
in (14) are included in the supplemental material.

Figure 3 shows an example of the non-blind deconvolu-
tion result using (14). We note that the recovered image by
the conventional data fitting function contains some ringing
artifacts (Figure 3(b)) while the one by the proposed method
is sharper (Figure 3(c)).

3. Extension to Non-Uniform Deblurring
Our method can be directly extended to handle non-

uniform deblurring where the blurred images are acquired
from moving cameras (e.g., with rotational and translational
movements) [5, 7, 26, 29, 31]. Based on the geometric mod-
el of camera motion [29, 31], the non-uniform blur process

can be formulated as:

B = KI + n = Ak + n, (18)

where I, k, and n denote vector forms of I , k, n in (1). In
this model, A as well as K denote the image matrix and
blur kernel matrix with respect to the latent image I and
blur kernel k. Based on (18), the non-uniform deblurring
problem is solved by alternatively minimizing:

min
I

∑
i

ωi‖KFiI− FiB‖22 + λ‖∇I‖0, (19)

and
min
k

∑
i

ωi‖Aik−Bi‖22 + γ‖k‖22, (20)

where Fi is the matrix of the filter operator fi. We use
the fast forward approximation methods [7, 21] to estimate
latent images and blur kernels.

4. Analysis of Proposed Algorithm

In this section, we analyze how the proposed algorithm
performs on image deblurring. We also demonstrate the im-
portance of the proposed learned data fitting functions and
discuss the connections to other methods.

4.1. Effect of Discriminative Data Fitting Functions

The proposed method is able to automatically learn the
most relevant data fitting functions for both blur kernel es-
timation and latent image restoration. We analyze its effect
on blur kernel estimation and latent image restoration with
comparisons to the commonly used data fitting functions.

Effect on Blur Kernel Estimation. The data fitting func-
tions used in existing methods are based on intensity or gra-
dient for both latent image restoration and kernel estima-
tion [3, 20, 33, 35]. Figure 4 shows one example where
the deblurred results by the methods with only intensity or
gradient contain significant ringing artifacts. The method-
s using intensity for the intermediate latent image estima-
tion and gradient for the kernel estimation perform better.
However, the deblurred results still contain blur residual and
blurry characters. In contrast, the deblurred results gen-
erated by the proposed method contain clearer characters,
which indicate that the learned data fitting functions facili-
tate blur kernel estimation.

We quantitatively evaluate the proposed method and
present the results in Table 2. The proposed method with
learned data fitting functions performs well against other
alternatives based on intensity, gradient, or combination.



Table 2. Quantitative comparisons with the commonly used data fitting functions for the image deblurring.
With only intensity With intensity and gradient With only gradient Ours

Average PSNRs 23.08 30.52 26.78 31.88

(a) (b) (c)

(d) (e) (h)

Figure 4. Effectiveness of the proposed learned data fitting func-
tion for blur kernel estimation. (a) Blurred image. (b) Results by
only intensity in the data fitting function. (c) Results by only gra-
dient in the data fitting function. (d) Results by intensity in the
intermediate latent image estimation and gradients in the kernel
estimation. (e) Deblurred results by [35]. (f) Our results.

Table 3. Learned weights for blur kernel estimation.
ω1 ω2 ω3 ω4 ω5 ω6

0 0.1954 0.1850 0.2463 0.2625 0.1108

Learned Weights for Data Fitting Terms. To illustrate
the importance of each data fitting term in blur kernel esti-
mation process, we show the learned weights in Table 3.
We note that the learned weight of the data fitting term
for intensity is 0, which demonstrates that intensity does
not help the blur kernel estimation. The results are similar
to the experimental analysis of the state-of-the-art method-
s [16, 3, 33, 35, 20]. In addition, we note that the weights,
i.e., ω4 and ω5, for the data fitting terms with the second
order information are much larger than those of the data fit-
ting terms with the first order intensity, which indicate that
higher order information plays more important roles for blur
kernel estimation.

Effect on Non-Blind Deconvolution. The learned weights
of data fitting terms for latent image restoration are shown in
Table 4. We note that the weight of the data fitting term with
the zero-order filter is much higher than the others. This
indicates that intensity information plays an important role
in non-blind deconvolution. The learned weights in Table 3
and 4 demonstrate that different data fitting terms should be
used as kernel estimation and non-blind deconvolution are
different processes.

Table 4. Learned weights for latent image estimation.
ω1 ω2 ω3 ω4 ω5 ω6

0.2095 0.1581 0.1581 0.1581 0.1581 0.1581
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Figure 5. Fast convergence property of the proposed algorithm.

4.2. Fast Convergence Property
Compared to the existing methods with fixed data fit-

ting functions based on only intensity, gradient or combi-
nation [20, 35], the proposed algorithm involves additional
data fitting terms with different weights. However, this does
not significantly increase the computational load. We eval-
uate the convergence rate of the proposed method on the
dataset [15] and show the kernel similarity [9] with respect
to iterations in Figure 5. The results demonstrate that the
proposed method exhibits fast convergence. Table 5 shows
that the run time of our method compares favorably against
the competing methods.

Table 5. Run time (seconds) on the same computer with an Intel
Core i7-4800MQ processor and 16 GB RAM. The run time of
Xu et al. [35] is based on our implementation.

Method 255 × 255 600 × 600 800 × 800
Xu et al. [35] 3.10 19.10 36.53
Krishnan et al. [13] 34.01 196.09 315.41
Levin et al. [16] 144.61 501.67 862.81
Pan et al. [23] 17.07 115.86 195.80
Ours 4.93 23.11 41.52

5. Experimental Results

We present experimental evaluations of the proposed al-
gorithm against the state-of-the-art deblurring methods. All
the experiments are carried out on a machine with an Intel
Core i7-4800MQ processor and 16 GB RAM. The run time
for a 255× 255 image is 5 seconds on MATLAB. In all the
experiments, we set λ = 0.002 and γ = 2. We empirical-
ly set βmax = 105 in Algorithm 1. We use the deblurring
datasets by Sun et al. [27] and Levin et al. [15] as the main
test datasets. Thus, the training and test datasets are not
overlapped. For fair comparisons, we use the executable



Figure 6. Quantitative evaluations on the benchmark dataset by
Sun et al. [27]. Our method performs favorably against the state-
of-the-art methods.

code provided by the authors and tune the parameters to
generate the best possible results of other methods. The
MATLAB code and datasets are publicly available on the
authors’ websites. More experimental results can be found
in the supplemental material.

5.1. Quantitative Evaluation

We evaluate the proposed method on the synthetic
dataset by Sun et al. [27] and compare it with several
state-of-the-art deblurring methods [3, 13, 16, 18, 21, 27,
35]. This dataset contains 80 images and 8 blur kernels
from [15]. We use the original codes of the state-of-the-
art methods [3, 13, 16, 18, 21, 27, 35] to estimate blur ker-
nels and use the non-blind deblurring method [36] to gen-
erate the final deblurring results for fair comparisons. The
error ratio [15] is used for performance evaluation. Fig-
ure 6 shows the quantitative results on the dataset [27].
Overall, the proposed algorithm performs favorably against
the state-of-the-art deblurring methods. We note that the
method [35] uses intensity in intermediate latent image es-
timation and gradient in the kernel estimation. Compared
with this method, the proposed algorithm achieves high-
er success rates, which indicates the effectiveness of the
learned data fitting functions.

5.2. Real Images

Figure 7 shows the deblurred results on a real image
by the proposed algorithm and the state-of-the-art meth-
ods. We use the original source or binary codes and tune
the parameters to generate the best possible results for fair
comparisons. The deblurred images by [3, 13] contain sig-
nificant ringing artifacts. While the state-of-the-art meth-
ods [16, 20, 23] generate better kernel estimates than other
methods, the deblurred images contain significant ringing
artifacts. We note that the main difference between the pro-
posed algorithm and the method by Xu et al. [35] is that
[35] uses intensity for latent image restoration and gradient
for kernel estimation. However, the results demonstrate that

this manually designed data fitting function is not effective
for blur kernel estimation on the real image. In contrast, the
deblurred image by the proposed algorithm contains fewer
artifacts, which shows that the learned function with differ-
ent weighted combination of data fitting terms is effective
for kernel estimation.

Figure 8 shows the deblurred results by the proposed al-
gorithm and the state-of-the-art methods [3, 13, 16, 20, 23,
35] on a real blurred document image. The state-of-the-
art deblurring methods designed for natural images [3, 13]
do not generate clear images. Although the method by
Pan et al. [20] mainly focuses on the text image deblurring,
the deblurred results still contain significant blur residual
and ringing artifacts. The recent method based on sparsity
of dark channel prior for blur kernel estimation [23] does
not perform well on this image as the assumption on zero-
intensity values of an image does not hold. In contrast, the
deblurred image by the proposed algorithm is clearer with
significantly fewer artifacts. Furthermore, the deblurred re-
sults shown in Figure 8(e) and (h) demonstrate the effective-
ness of the proposed algorithm that learns different weight-
ed functions of data fitting terms for latent image restoration
and blur kernel estimation.

5.3. Non-uniform Deblurring

As discussed in Section 3, the proposed algorithm can be
extended to handle non-uniform blur. We present results on
an image degraded by spatially variant motion blur provid-
ed by [5] in Figure 9. We compare the proposed algorith-
m with the state-of-the-art non-uniform deblurring method-
s [5, 7, 8, 21, 31, 35]. Figure 9 shows the letters of (b)-(f)
contain ringing artifacts. Compared to the deblurred result-
s by the state-of-the-art non-uniform methods, the restored
image by the proposed algorithm contains sharper contents
with fewer artifacts.

5.4. Extensions of Proposed Method

In this work, we focus on learning effective data fitting
functions for blur kernel estimation and use the L0 norm
of image gradient [35] as the image prior. However, our
method can be applied to other deblurring tasks with spe-
cific image priors, e.g., normalized sparsity prior [13], L0-
regularized intensity and gradient prior [20], and dark chan-
nel prior [23], to name a few. To demonstrate the flexibility
of the proposed method, we use the L0-regularized intensi-
ty and gradient prior [20] as an example and show the de-
blurred results in Figure 10. We note that the original text
deblurring method uses intensity for latent image and gradi-
ent for kernel estimation. However, this combination does
not always help blur kernel estimation (see Figure 10(b)).
In contrast, the method with the learned data fitting func-
tion generates deblurred images with clearer characters as
shown in Figure 10(c).



(a) Blurred image (b) Cho and Lee [3] (c) Krishnan et al. [13] (d) Levin et al. [16]

(e) Xu et al. [35] (f) Pan et al. [20] (g) Pan et al. [23] (h) Ours

Figure 7. Comparisons on a real image. The proposed method generates a better kernel estimate and deblurred result with fewer ringing
artifacts. The comparison results shown in (e) and (h) indicate the importance of the proposed automatically learned data fitting functions.

(a) Blurred image (b) Cho and Lee [3] (c) Krishnan et al. [13] (d) Levin et al. [16]

(e) Xu et al. [35] (f) Pan et al. [20] (g) Pan et al. [23] (h) Ours

Figure 8. Comparisons on a real image with lots of characters. The proposed method generates an image with clearer characters. The
comparison results shown in (e) and (h) indicate the importance of the proposed learned data fitting functions.

Comparisons with [32]. The recent method [32] aims to
learn high-order filters for image deblurring. The image pri-
or based on the learned high-order filters is especially effec-
tive for text images. However, our method focuses on learn-
ing good data fitting functions instead of image priors for
image deblurring. Figure 11 shows a real blurred text image
from [20]. The proposed method with the L0-regularized
intensity and gradient prior performs competitively against
the state-of-the-art text deblurring methods [20, 32].

6. Concluding Remarks
In this paper, we propose an effective algorithm which

learns effective data fitting functions for both blur kernel es-
timation and latent image restoration. We discuss the effect
of the proposed data fitting functions and show that intensity

has less effect on blur kernel estimation and has more effect
on latent image restoration. We show that the performance
of deblurring algorithms using the learned data fitting func-
tions can be signifcantly improved. The proposed algorith-
m is also extended for non-uniform deblurring. In addition,
we show that the proposed method can be extended to other
specific deblurring tasks with corresponding image priors.
Extensive experimental evaluations on benchmark dataset-
s and real images demonstrate that the proposed algorithm
performs favorably against the state-of-the-art methods for
uniform as well as non-uniform deblurring.

While we focus on learning effective data fitting func-
tions for blind image deblurring, the choice of linear filters
is fixed. In addition, the optimization method may also play
an important role [4, 16] and some models may accmmo-



(a) Blurred image (b) Gupta et al. [5] (c) Hirsch et al. [7] (d) Hu and Yang [8]

(e) Whyte et al. [31] (f) Xu et al. [35] (g) Pan et al. [21] (h) Ours

Figure 9. The proposed method directly applies to images with non-uniform blur. The images shown in (b)-(g) are directly obtained from
the reported results in [21] (Best viewed on high-resolution display with zoom-in).

(a) Blurred images (b) Pan et al. [20] (c) Ours

Figure 10. Extension of text image deblurring algorithm [20]. The results generated by the proposed method contain clearer characters and
fewer ringing artifacts (Best viewed on high-resolution display with zoom-in).

(a)Blurred image (b) Pan et al. [20] (c) Xiao et al. [32] (d) Ours

Figure 11. Comparisons with [32] on a real text image from [20]. The images shown in (b)-(c) are directly obtained from the reported
results (Best viewed on high-resolution display with zoom-in).

date better optimization strategies than others. Our future
work will focus on learning effective linear filters and opti-
mization methods for image deblurring.
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