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Abstract

In this paper, we consider the problem of estimating the
gaze direction of a person from a low-resolution image. Un-
der this condition, reliably extracting facial features is very
difficult. We propose a novel head pose estimation algo-
rithm based on compressive sensing. Head image patches
are mapped to a large feature space using the proposed ex-
tensive, yet efficient filter bank. The filter bank is designed
to generate sparse responses of color and gradient infor-
mation, which can be compressed using random projection,
and classified by a random forest. Extensive experiments
on challenging datasets show that the proposed algorithm
performs favorably against the state-of-the-art methods on
head pose estimation in low-resolution images degraded by
noise, occlusion, and blurring.

1. Introduction
The gaze of a person is important for a number of appli-

cations such as surveillance, human-computer interaction,
and psychophysical studies, to name a few. In a surveillance
system, the gaze of a person can be used to study interaction
between people and characterize objects of interest [29].
Gaze information has been used in human-computer inter-
action for controlling smart devices and helping collabora-
tion between humans and robots [26].

In this paper, we consider the problem of estimating the
gaze of a moving person in a crowded scene, where head
images are assumed to be obtained from a tracking or de-
tection algorithm. As the image resolution is usually low,
e.g., 50×50 pixels, it is especially challenging to estimate a
person’s gaze using their head image. A wide range of vari-
ations in skin color, hair styles, and head shapes exacerbate
the problem [27]. The problem is further complicated since
useful facial features cannot be reliably extracted from low-
resolution images. An efficient gaze estimation algorithm
is of great interest for practical applications, e.g., surveil-
lance and human-computer interaction. However, it is diffi-
cult, if not impossible, to infer gaze estimation from a low-
resolution image. Therefore, this problem, in practice, is

Figure 1. The proposed random projection forest algorithm. The
responses of the designed filter bank are sparse and contains the
color and gradient information of an image. Each node of a ran-
dom forest compresses the responses by random projection. An
SVM is trained using the compressed responses to split the data.
The head pose is estimated by merging the distribution of leaf
nodes.

posed as a head pose estimation task due to the high corre-
lation of these visual cues. In this paper, we estimate the
head pose in the discrete and continuous domains with clas-
sification and regression schemes.

In this work, we address the aforementioned challenging
problems by exploiting expressive representation of com-
pressive features and effective classification and regression
of the proposed random projection forest as shown in Fig-
ure 1. To obtain compressive features, we first design an
efficient filter bank that generates sparse high dimensional
responses. The filter bank contains multi-channel, multi-
scale, and multi-orientation box filters that capture color
and gradient properties from an image. Then, the high-
dimensional responses are compressed using random pro-
jection, preserving essential information of an image.

The random projection forest algorithm is based on the
compressive features and a random forest [4]. The compres-
sive features alone are not discriminative descriptors due to
the generative framework of compressive sensing. When
a random forest is constructed with compressive features
where each node chooses the best random projection ma-
trix based on the impurity measure (e.g., information gain),
the whole classifier is likely to be more discriminative. In
addition, when the random projection matrix satisfies the
restricted isometry property (RIP) condition [8], the infor-
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mation used to split the data is preserved at each node.
Furthermore, the sparse form of a random projection ma-
trix induces small correlations between trees by decreasing
the probability of the same measurement being made twice.
Therefore, the random projection forest is likely to have low
generalization errors by strengthening the discriminability
of each tree while weakening the correlation between trees.
On the other hand, a random forest has been successfully
used in numerous problems, e.g., classification, regression
and clustering.

Extensive experiments on five challenging benchmark
datasets are carried out to evaluate the proposed algorithm
against the state-of-the-art methods for head pose estima-
tion. The proposed algorithm performs well with a classifi-
cation accuracy of 98% on the HIIT dataset and regression
accuracy of 1.1◦ on the CMU Multi-PIE dataset where each
frame is processed within a few milliseconds. The proposed
approach performs well against other algorithms on low res-
olution images, (where each head image size is smaller than
50× 50 pixels) and degraded images with noise, occlusion,
and blurring. We also demonstrate that the proposed algo-
rithm with a hierarchical structure using a random forest is
more accurate and robust than alternative approaches.

2. Related Work
We present an overview of head pose estimation ap-

proaches in seven categories: appearance template, detector
array, nonlinear regression, manifold embedding, flexible
model, geometric, and tracking methods [22].

Appearance template methods divide training head im-
ages into a finite number of poses and generate prototypes
for estimation with an SVM classifier [23]. Since two im-
ages of the same person in different poses are known to be
more similar than images of different people in the same
pose, such methods do not perform well [22].

Detector array methods [32] train multiple detectors for
different pose estimation. However, it is difficult to resolve
the situation in which two or more detectors identify the
same head image as different poses. In addition, such clas-
sifiers can be easily biased due to unbalanced positive and
negative training samples.

Head pose estimation can be posed as learning a regres-
sion function from the space of image features to 2D or 3D
parameters. In [9], a mapping from the space of depth fea-
tures to the corresponding head pose is learned using ran-
dom regression forests. However, regression methods are
less effective for low-resolution images as two images of
the same person with different poses may be mapped closer
than images of different people with the same pose [27].

Manifold embedding algorithms assume that head im-
ages form a low-dimensional manifold, on which similar-
ity is measured for pose estimation. Recently, Tosato et
al. [30] demonstrated state-of-the-art head pose estimation
results using manifold embeddings and a weighted array of

descriptors computed from overlapping patches, where each
is described by a covariance matrix of image features. How-
ever, this method is computationally expensive.

Other approaches, such as flexible models, geometric
methods, and tracking based algorithms are not closely re-
lated to this work (see references in [22]). Flexible models
and geometric methods are suitable for analyzing larger im-
ages, in which facial structures or features can be extracted
reliably. Tracking based algorithms determine head poses
from consecutive observations, and the proposed method
can be easily combined with such approaches.

Recently, Ho and Chellappa [15] presented a head pose
estimation algorithm based on randomly projected dense
SIFT descriptors and support vector regression. However,
this method operates on larger sized images (as SIFT fea-
tures need to be reliably extracted) with a random projection
method proposed in [1] which is denser than the random
projection approach presented in this work. Furthermore, it
is computationally expensive to extract dense SIFT features.

3. Proposed Algorithm
In compressive sensing, the original signal x is com-

pressed as follows:
y = Ax, (1)

where A is an m × n matrix with m � n and y is a com-
pressed signal. In order to preserve the essential informa-
tion of x using compressive sensing, x must be a sparse
signal and the matrix A has to satisfy the RIP condition [8].
It is well known that an image can be represented by sparse
coefficients in the wavelet domain [5] and the low dimen-
sional vector y contains essential information of an image.

We note that we do not use discriminative features (e.g.,
HOG or SIFT) as low resolution images are considered in
this work. In addition, it is computationally expensive to
extract such features. Instead, we use a high dimensional
feature space that encompasses all possible combinations
from the proposed filter bank, which is designed to gen-
erate sparse responses efficiently. The filter responses are
compressed via random projections and utilized for pose es-
timation using a random forest.

3.1. Efficient Filter Bank
We propose a multi-channel, multi-scale, and multi-

orientation box filter bank that captures the color and gradi-
ent information from an image. The channels consist of the
color C = {Ii|i ∈ C}, gradient magnitude Imag , and gra-
dient orientation Iori, where C consists of gray, RGB, HSV,
and YCbCr color spaces. The filter bank contains two types
of box filters, FC and FG, which are designed to collect
color and gradient responses, respectively, as illustrated in
Figure 2.

For the color filter response, FC is parameterized by its
width w, height h, and γ, which indicates the color channel.
For a w×h input image, the value at (x, y) of a w×h filter



Figure 2. Four responses of the proposed filter bank. The filter
bank is applied to each channel of the input image. The first two
blue boxes are the filters from the color channel and the others
extract gradient information. The filter bank contains all possible
sizes inside the input image. Different θ and φ are represented by
arrows and shaded regions in boxes, respectively.

is defined as

FCw,h,γ(x, y) =
1

wh
×

{
1, if 1 ≤ x ≤ w, 1 ≤ y ≤ h, Iγ ∈ C
0, otherwise,

(2)
where w and h represent all possible widths and heights of
a box, i.e., 1 ≤ w ≤ w and 1 ≤ h ≤ h. The convolved
image is sparse in the wavelet domain. By concatenating all
vectorized filter responses, we obtain a high dimensional
descriptor of an image. However, computing all possible
filter responses is computationally expensive since the num-
ber of possible boxes for a channel of 50×50 pixels already
exceeds 107. A compressed representation of the filter re-
sponses is described in the next section.

For the gradient filter response, FG considers the ori-
entation of a gradient θ and an angle φ that quantizes the
orientation. The value at (x, y) of a w × h filter is defined
as

FGw,h,θ,φ(x, y)=
1

Z
×


1, if 1 ≤ x ≤ w, 1 ≤ y ≤ h,

θ − φ ≤ Iori(x′, y′) < θ + φ,

0, otherwise,

(3)

where (x′, y′) is the location of (x, y) in the image and Z
is a normalization constant which is equal to the number
of nonzero elements in the filter response. The parameters
vary in all possible ranges, i.e., 0 < θ ≤ 2π and 0 < φ ≤ π,
and w and h are the same as in the case of FC . This fil-
ter is aimed to collect the averaged magnitudes of gradi-
ents within a certain orientation range. It resembles the Ga-
bor filter bank but is more effective. The Gabor filter bank
suffers from the curse of dimensionality due to dense filter
responses. Typically, this issue is resolved by downsam-
pling the magnitude responses of the Gabor filter bank us-
ing a grid or a feature selection scheme [28]. Nevertheless,

the concatenated vector of the downsampled magnitude re-
sponses is still high dimensional. Usually, their dimension
is further reduced by a subspace projection technique, such
as principal component analysis (PCA) or linear discrim-
inant analysis (LDA), with some loss of information. In
the next section, we describe an efficient way to reduce the
dimensionality of the filter responses while preserving the
essential information.

3.2. Compact Representation of Filter Responses
The filters FC and FG generate sparse responses as

shown in Figure 2. By concatenating all these responses
into a vector, we represent an image in a high dimensional,
sparse feature space. We apply compressive sensing to re-
duce the dimensionality of these filter responses using (1).
Specifically, we adopt an m × n sparse random projection
matrix [19] as follows:

aij =
√
s×

 1, with probability 1
2s ,

0, with probability 1− 1
s ,

−1, with probability 1
2s ,

(4)

where s ∈ o(n) and A = [aij ]. By setting s = n/ log(n) ∈
o(n), the expected number of nonzero elements per row of
the matrix A is log(n). Therefore, the actual number of
calculated filter responses is exponentially decreased. This
enables us to bypass computing all filter responses while
preserving the essential information. The random matrix A
needs to be computed only once off-line and is fixed while
testing a new image. As a result, an element of the com-
pressed vector is a weighted linear combination of random
box filter responses. Note that when only FC is used, the
process is similar to the generalized Haar-like features [31].

By representing images with compressed vectors, we are
able to carry out classification or regression tasks. However,
features projected by a single random projection may not be
discriminative or robust, as shown in Section 4. This is be-
cause a random projection matrix is designed with a random
basis that does not take the training data into account. We
address this issue with the proposed random projection for-
est algorithm that hierarchically selects random projection
matrices which maximize the impurity measure.

3.3. Random Projection Forest
A random forest is an ensemble of decision trees where

each node of a tree has its own split function. The split
function divides the input data into two or more partitions
which are delivered to each child node. During the training
stage, a training set is fed to each tree and the leaves store
the distribution of the samples. Each non-leaf node stores
a split function which optimizes the impurity measure. In
the test stage, an example traverses each random tree and
reaches a leaf node. The probability distribution over the
classes of poses is computed by taking the average of the
distribution for all reached leaf nodes in the random forest.



Figure 3. An example of a split function in a node. This node is
trained to split images ranging from−90◦ to 90◦ of the yaw angle
into two subsets: [−90◦, 0◦) and [0◦, 90◦]. The middle column
shows responses selected by row vectors ofA and the right column
shows the overall responses selected by A. The responses of color
and gradient filters are represented with painted rectangles and ar-
rows, respectively. Each red and blue response corresponds to +1
and -1 of the random projection matrix. Darker boxes and longer
arrows represent stronger responses. The gradient responses that
are larger than a threshold are shown for better visualization.

A random projection forest integrates a random forest
with random projection. We perform random projection
at each node and split the training data based on the com-
pressed vector. Each node selects a random projection ma-
trix given the input data that maximizes the impurity mea-
sure to make the tree more discriminative. It does not only
generate a better basis to describe the training data but also
makes the tree more robust to the bias in a single random
projection matrix. Note that a random projection is a gen-
eralized representation of the split functions that have been
widely used: each node splits the data using a small portion
of input variables, or using a linear combination of them,
which are special cases of the linear mapping in (1).

Figure 3 shows examples of selected filters by a node of
the trained random projection forest. In this case, the node
is trained to split head poses into left and right. Example
combinations of selected filters are shown in the left col-
umn. The red and blue boxes or arrows represent +

√
s and

−
√
s terms in the random projection matrix, respectively.

For each head pose, selected filters generate different re-
sponses around the face, hair, neck, and background region
as shown in the middle column. As a result, the combination
of color filters for the first image yields positive value (re-
sponses of red boxes are strong) while the last image yields
negative value (response of blue box is relatively strong).
Gradient filters also generate distinguishable responses for
each head pose. The responses from the first image are neg-
ative (blue arrows) while the last image yields positive re-

sponses (red arrows) from different box filters. The right
column shows all selected filters in the node. The color fil-
ters show symmetrical responses for the left and right head
pose images. The gradient filters generate responses along
the head shape and they are informative since the response
is different at the certain location of each head pose image.

Another important aspect of this work is that random
projections also help lower the generalization error of the
random forest. It has been shown that the generalization er-
ror bound of a random forest is ρ(1 − s2)/s2, where ρ is
the average correlation between trees and s is the strength
of the trees [4]. To minimize the maximum generalization
error, the correlation between trees needs to be minimized
and the strength of trees has to be maximized. However,
when we strengthen a tree, we also increase the correlation
between different trees. In order to strengthen a tree, we
need a large number or combination of input variables to
learn better split functions. Simultaneously, the correlation
between trees increases, as trees now have overlapped re-
dundant information. Therefore, the number of considered
variables or the number of linear combinations have been
empirically chosen. In contrast, we use the random projec-
tion matrix which satisfies the RIP condition as the linear
mapping, and analyze the proposed algorithm below.

Correlation Between Trees. As each node compresses the
input data and splits them, it is important to obtain diverse
representations of the compressed data to decrease the cor-
relation between trees without losing important details from
the input data. The random projection approach yields di-
verse representations of compressed data, which we can
credit to the use of a random basis. Since the linear projec-
tion matrix described in (4) has 3mn different representa-
tions and n is the number of filter responses, which is larger
than 107, the probability that a different node has the same
basis is negligible.
Strength of Trees. Trees with random projections that sat-
isfy the RIP condition are always stronger, as the relative
distance between samples, i.e., the information for the split,
is preserved in each node. In other words, once the RIP
condition is met, it is not necessary to measure an arbitrarily
large number of input variables to strengthen the tree. Thus,
for high dimensional sparse signals, the trade-off between
the strength and the correlation of trees can be resolved by
random projections. As demonstrated in experiments, this
property can increase the discriminative capability of a ran-
dom forest.
3.4. Random Projection Forest for Pose Estimation

Based on randomly projected compressive features at a
tree node, a split function is trained using an SVM. By
using an SVM, we can split the data with the maximum
margin while efficiently evaluating test samples using the
trained hyperplane. Three different types of SVMs (Fig-
ure 4) are considered for classification and regression. For
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Figure 4. Three split function candidates considered in this pa-
per. In this example, twelve training samples with three different
classes reach the node. To incorporate multi-class SVMs into a
forest, three options are considered. (a) Training multi-class SVM
and dividing data by all hyperplanes. (b) Training multi-class
SVM and dividing data by one of the hyperplanes. (c) Training
binary SVM and dividing data by the hyperplane.

the discrete head pose estimation, where a small number of
discrete head poses are considered, we use the multi-class
SVM in Figure 4(a). On the other hand, for the continuous
head pose estimation, a binary SVM is chosen, as multi-
class SVMs are often unable to stably divide many classes
at once. The benefit of the split is measured by the informa-
tion gain.

During the training phase, a tree is grown until one of the
following conditions is met: the tree reaches a pre-defined
maximum depth, the number of samples in the node that
comes from the same class exceeds 99%, or the number of
samples in the node gets too small. In this paper, we limit
tree depth to 10 levels, and each node is required to have a
minimum of 10 samples.

The same forest is used in the test phase. A test sam-
ple reaches to a single leaf node for each tree. A posterior
of the forest is calculated by averaging the stored posterior
at reached leaf nodes. For classification, the head pose is
classified as the class with the maximum probability. For
regression, the head pose is estimated by averaging the pos-
terior of the forest.

4. Experiments
We use the HIIT [30], QMUL [23], and QMUL with

background datasets [30] for head pose classification ex-
periments. In addition, we use the CMU-MultiPIE [12] and
FacePix [20] datasets for head pose regression evaluations.
HIIT Dataset. The HIIT dataset contains 24,000 images
with 6 head poses in a static background with no occlu-
sions. The dataset is challenging because it consists of im-
ages from different datasets (e.g., QMUL [23] and CMU
Multi-PIE [12]) with large variations in appearance.
QMUL Dataset. The QMUL dataset contains 15,660 im-
ages with 4 head poses at different illuminations with oc-
clusions. The QMUL dataset with 3,099 additional back-
ground images is referred as QMULB in this paper. Both
datasets are challenging as the images are acquired in air-
port terminals with heavy occlusions and large crowds.
CMU-MultiPIE Dataset. The images of the the CMU-
MultiPIE database are acquired from 337 subjects with dif-

Table 1. Classification accuracy using the corrected dataset:
Frobenius and CBH denote two algorithms from [30].

Original dataset Corrected dataset

Frobenius CBH Frobenius CBH
HIIT 95.3% 96.5% 95.3% 95.7%

QMUL 93.2% 94.3% 94.3% 94.9%
QMULB 90.6% 91.2% 92% 92.2%

ferent poses from −90◦ to 90◦ with 15◦ intervals and 13
yaw directions. For the experiments, we use all images of
6 expressions under the frontal light sources. We note these
high-resolution images have been used in the past for other
head pose estimation methods. The head region of each im-
age must be cropped and aligned using manually annotating
facial features. In this work, we consider more realistic sce-
narios. We crop 360× 360 center pixels of the head images
and downsample it to 50 × 50 pixels. Due to the varying
height and facial shape of each person, the cropped images
are not aligned, which is more suitable for real world appli-
cations. We use images from a randomly selected 50% of
the subjects for training and the others for tests. This dataset
is challenging as the images are acquired from a large num-
ber of different subjects with different expressions.

FacePix Dataset. This dataset contains 30 subjects and 181
images for each person (one image per yaw degree from
−90◦ to 90◦). There are total of 5,430 aligned head im-
ages with static backgrounds. We perform the leaving one
subject out evaluation on this dataset. The dataset is chal-
lenging due to fine intervals in the yaw orientation.

We identify misclassified images in the HIIT and QMUL
datasets and manually correct these labels (the corrected
ground truth data will be released). Table 1 shows classi-
fication accuracy using the original and corrected datasets.

4.1. Analysis of the Proposed Algorithm
We examine the properties of the proposed method using

different channels, random projection matrices, and random
projection forest settings.

Effect of Different Channels. The color channels we con-
sider are based on gray, RGB, HSV, and YCbCr. We have
tested all combinations and report the results of four com-
binations in Table 2. Among all color channels, the gray
color space plays the most important role. However, better
results can be attained when filters from all color channels
are utilized (which can be computed efficiently). Note that
the best accuracy is obtained by combining the color chan-
nel and the gradient channel. To demonstrate the discrim-
inability of the proposed filter bank, we use HOG features
to represent head images. The classification accuracy with
the HOG representation is 92% on the HIIT dataset at sig-
nificantly higher computational cost.

Effects of Random Projection Matrices. The random pro-
jection matrix in (4) projects each sample from Rn to Rm



Table 2. Effects of different channels. Color: Gray + RGB + HSV
+ YCbCr. All: Color + Gradient.

Channel Gray Color Gradient All

HIIT 94.1% 96.8% 94.6% 97.6%
QMUL 91.4% 92.1% 91.6% 94.3%

QMULB 84.7% 89.8% 82.9% 92.2%
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Figure 5. Estimation accuracy with respect to the dimension of
the compressed vector for each node (HIIT dataset).

with a small number of nonzero elements governed by the
parameter s. When the dimensionality of the projected do-
main is too small or the matrix is too sparse, the RIP con-
dition does not hold. We show how the proposed algorithm
performs with different values of m and s for the random
projection matrix.

The head pose estimation accuracy at different values of
m is shown in Figure 5. It shows that the proposed algo-
rithm performs well in the 250-dimensional feature space.
For comparisons, we apply PCA to reduce the dimensional-
ity of features. The estimation accuracy is only about 50%
on the HIIT dataset when PCA reduces the dimensionality
of 50× 50 pixels of head images to a 250 dimension.

We carry out experiments with denser random projection
matrices by varying s. As s increases, the random projec-
tion matrix gets denser, which measures a larger number
of rectangular filter responses. Figure 3(a) in the supple-
mentary materials shows classification accuracy at different
values of s when m is 250. We note that the proposed al-
gorithm performs well using feature vectors with only four
nonzero elements.

Effects of Random Projection Forest Parameters. We
consider four parameters of a forest: the number of trees,
the number of guesses to find the one that maximizes the
information gain at each node, the compression rate at each
node, and different ways to split the data at each node.

Figure 3(b) in the supplementary materials shows the ef-
fect of the number of trees and guesses where the average
accuracy and error bars are computed from ten independent
runs. High accuracy (and low variance in accuracy) is ob-
tained with 15 trees and 10 guesses. This is a result of each
node discovering a better split function when the number
of trees and guesses are sufficiently large. This is another
indication that the proposed forest outperforms a tree.

Table 3. Classification accuracy on the HIIT, QMUL, and
QMULB datasets at different image sizes. [30]-a and [30]-b are
methods proposed by [30] based on the Frobenius distance and
the CBH distance, respectively. The results of [23] and [29] are
from their paper.
Dataset Size [23] [29] [30]-a [30]-b Proposed

HIIT
15× 15 - - 82.4% 84.6% 97.6%
25× 25 - - 89.6% 90.4% 97.6%
50× 50 - - 95.3% 95.7% 97.6%

QMUL
15× 15 - - 59.5% 59.8% 94.1%
25× 25 - - 82.6% 83.2% 94.3%
50× 50 82.3% 93.5% 94.3% 94.9% 94.3%

QMULB
15× 15 - - 54.5% 57% 91.9%
25× 25 - - 76.5% 76.9% 92.1%
50× 50 64.2% 89% 92% 92.2% 92.2 %

Figure 5 shows the effect of the number of trees and com-
pression rate. The average accuracy and the variance are
obtained from ten independent runs. When the dimension
of the compressed vector is increased, the accuracy is im-
proved but saturated after 250 dimensions. The results show
that the forest achieves higher accuracy and lower variance
in accuracy compared to the case of a single tree.

For a classifier at each node, we use both a linear SVM
and a radial basis function (RBF) SVM. When using 50×50
pixel images, the RBF SVM outperforms the linear SVM by
about 5% for all datasets. The parameters of an SVM are
estimated by 5-fold cross validation to avoid overfittting.

The above experimental results show that the proposed
random projection forest algorithm is insensitive to param-
eter changes and sensible values can easily be determined
for accurate head pose estimation.
4.2. Evaluation of Head Pose Estimation Methods
Head Pose Classification. We evaluate the proposed algo-
rithm against state-of-the-art head pose classification meth-
ods [23,29,30] in regard to image scale variation, noise, oc-
clusion, blurring, and computational time. Table 3 summa-
rizes the performance of head pose estimation methods on
three datasets with different image sizes. Figure 6 shows the
overall accuracy with respect to image sizes. Some confu-
sion matrices for the HIIT and QMULB datasets are shown
in Figure 7 and Figure 8, respectively. Overall, the pro-
posed algorithm performs robustly with respect to size vari-
ation against the other methods. The proposed algorithm
achieves almost the same estimation accuracy, for example,
97.6% on the HIIT dataset until the image size is reduced to
10× 10 pixels. We note that it has been shown that estimat-
ing gaze direction from low-resolution images of 10 × 10
pixels can be achieved when provided feature vectors of
head motion in videos [25]. However, this requires video
inputs, and the method has not been quantitatively evalu-
ated in terms of precision and recall on benchmark datasets.
We note that accuracy from the method in [30] decreases
rapidly when the image size is reduced below 50 × 50 pix-
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Figure 6. Classification accuracy at different image size. Frobe-
nius: the Frobenius norm based method from [30]. CBH: the CBH
norm based method from [30].

Figure 7. Confusion matrices of head pose estimation results on
the images of 50 × 50 pixels from the HIIT dataset (frnt: front,
rght: right, frrg: front right, frlf: front left).

Figure 8. Confusion matrices of head pose estimation results on
QMULB dataset at different image sizes. (bg: background)

els, and does not operate when the image size is smaller
than 15× 15 pixels (using the provided code).

The confusion matrices of the QMULB dataset show that
the proposed algorithm is capable of estimating head poses
while filtering out 90% of background images. Based on
this observation, we estimate head poses (including back-
ground) on other datasets such as the Towncentre dataset
[3] and the PETS2009 dataset [10] while the proposed al-
gorithm is trained using the QMULB dataset. These dat-
sets are challenging to estimate head poses because cam-
era angles and lightning conditions are different from the
QMULB dataset. We train the sliding-window based state-
of-the-art detector [7] for the head detection. Finally, head
poses are estimated as shown in Figure 9. The results show
that false positives are effectively removed and head poses
are fairly well estimated by the proposed algorithm.

We report the computational time required for head es-
timation on an image of 50 × 50 pixels. For the methods
proposed in [30], the Frobenius norm based method and the
CBH norm based method take 550 ms and 1,689 ms per
image, respectively. In contrast, the proposed method takes

Figure 9. An example of head pose estimation result on the Town-
centre dataset. Red arrows indicate the estimated direction. Its
confidence score is written near the box. Dashed-line rectangles
are the detections that are estimated as the background (i.e., false
positive) by the proposed algorithm (see supplementary materials
for more results).
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Figure 10. Head pose estimation accuracy at different noise lev-
els. Since there are six classes, a random classifier can achieve an
accuracy of 16.7% on average. Hence, we do not plot the results
using methods from [30] when σ is larger than 50 (HIIT dataset).
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Figure 11. Head pose estimation accuracy at different occlusion
settings (HIIT dataset).

only 10 ms per image, using 15 trees with parallel process-
ing. All processing is done on a computer with a 3.3 GHz
CPU. Overall, the proposed algorithm is about 170 times
faster than the CBH norm based method [30].

We analyze the performance of each method when facing
noisy test images. We add Gaussian noise with kernel width
σ to each test image of 50 × 50 pixels and ensure that the
intensity of the corrupted pixel value is between 0 and 255.
Figure 10 shows that the proposed method performs better
than other methods against large image noise.

We evaluate head pose estimation methods and analyze
how they perform when the input images are occluded. The
occluded images are generated in five settings as depicted
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Figure 12. Head pose estimation accuracy with blurry images
(with 5× 5 Gaussian filter of different width on the HIIT dataset).

in Figure 2 of the supplementary materials: randomly gen-
erated (1) one 10 × 10 rectangle, (2) two 10 × 10 rectan-
gles, (3) three 10 × 10 rectangles, (4) one 15 × 15 rectan-
gle, and (5) two 15 × 15 rectangles. The intensity value of
each pixel in the occluded region ranges between 0 and 255.
Figure 11 shows that our method performs well against [30]
when faced with occluded images. This can be attributed to
the fact that, unlike the methods based on holistic represen-
tations, the proposed algorithm obtains information from
multiple local patches, thus allowing good performance on
images that are partially occluded.

We evaluate whether the proposed algorithm performs
well on blurry low-resolution images as shown in Figure
12, where the images are degraded with a 5 × 5 Gaussian
kernel with different width, σ. Overall, the proposed al-
gorithm performs well with different settings. In contrast,
the accuracy of the manifold method [30] decreases signif-
icantly. With a small Gaussian kernel width of one pixel,
the accuracy decreases by 65%. When the kernel width is
larger than one pixel, the manifold method works as a ran-
dom classifier, i.e., the accuracy is 16.7% for six classes.

Head Pose Regression. We compare the proposed algo-
rithm with the state-of-the-art head pose regression meth-
ods. Table 4 and 5 summarize the performance of head pose
regressors on the CMU Multi-PIE dataset and the FacePix
dataset, respectively. We use the same parameters as those
in the classification task. The mean absolute error (MAE)
between the estimated head pose and ground truth head pose
in degree is computed for each method. Overall, the pro-
posed algorithm performs favorably against the other meth-
ods for head pose regression.

We note that the CMU Multi-PIE and FacePix datasets
are not developed specifically for pose estimation, and ex-
isting methods in the literature use different numbers of sub-
jects and images for experiments. For comparison, we re-
port the number of subjects and images used for the eval-
uation on head pose regression in Table 4. The proposed
algorithm is evaluated on more subjects and images than
any other approaches. Overall, the proposed algorithm per-
forms favorably against other methods.

For the FacePix dataset, the methods [11, 21] use the

Table 4. Regression accuracy on the Multi-PIE dataset. # S: num-
ber of subjects used in the experiment. # I: number of images used
in the experiment. MAE: Mean absolute error in degrees.

[13] [16] [24] [18] [14] Proposed

# S 144 336 30 337 337 337
# I 2,700 5,648 540 8,762 32,682 32,682

MAE 5.31◦ 4.33◦ 4.12◦ 2.99◦ 1.25◦ 1.12◦

Table 5. Regression accuracy on the FacePix dataset. MAE: Mean
absolute error in degrees.

[17] [2] [11] [21] [6] Proposed

MAE 6.1◦ 3.96◦ 2.75◦ 2.74◦ 2.71◦ 2.38◦

same evaluation scheme; the leave-one-out cross validation
on the original dataset, that we report in this work. In [17],
the yaw interval of the dataset is set to 2 degrees (instead
of 1 degree) and 5 subjects are used for training, leaving
25 subjects for tests. The method [2] is trained with a
3D dataset and evaluated on the yaw degrees ranging from
−45◦ to 45◦. The approach [6] uses the yaw ranging from
−45◦ to 45◦ with 15◦ interval for experiments where 5 sub-
jects are used for training and 25 subjects for testing. In con-
trast, the proposed algorithm performs favorably against the
other methods, based on an evaluation of the entire dataset
(i.e., 5,430 images with yaw degree from −90◦ to 90◦ and
leave-one-out cross validation). As the source code of the
previously mentioned methods are not available to the pub-
lic, we are unable to carry out experiments using noisy or
occluded images.

5. Conclusions
In this paper, we propose a fast and accurate head pose

estimation algorithm by exploiting compressive features
and a random projection forest. Compressive features are
obtained by compressing the responses of a large filter
bank that captures the color and gradient information of
an image. The proposed random projection forest algo-
rithm effectively splits the compressive features for effec-
tive head pose estimation. In addition, the proposed algo-
rithm achieves high accuracy with a fraction of the running
time. Extensive experiments on challenging benchmark
datasets show that the proposed algorithm performs favor-
ably against the state-of-the-art methods on low-resolution
images degraded by noise, occlusion, and blurring.
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