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Abstract

The goal of single-image super-resolution is to gener-
ate a high-quality high-resolution image based on a given
low-resolution input. It is an ill-posed problem which re-
quires exemplars or priors to better reconstruct the miss-
ing high-resolution image details. In this paper, we pro-
pose to split feature space into numerous subspaces and
collect exemplars to learn priors for each subspace, thereby
creating effective mapping functions. The use of split in-
put space facilitates both feasibility of using simple func-
tions for super-resolution, and efficiency of generating high-
resolution results. High-quality high-resolution images are
reconstructed based on the effective learned priors. Ex-
perimental results demonstrate that the proposed algorithm
generates high-quality super-resolution images efficiently
and effectively against state-of-the-art methods.

1. Introduction
Single-image super-resolution (SISR) aims to generate a

visually pleasing high-resolution (HR) image from a given
low-resolution (LR) input. It is a challenging and ill-posed
problem because numerous pixel intensities need to be pre-
dicted from limited input data. To alleviate this ill-posed
problem, it is imperative for most SISR algorithms to ex-
ploit additional information such as exemplar images or sta-
tistical priors. Exemplar images contain abundant visual
information which can be exploited to enrich the super-
resolution (SR) image details [4, 1, 5, 19, 6, 17, 3, 18].
However, numerous challenging factors make it difficult to
generate SR images efficiently and robustly. First, there ex-
ist fundamental ambiguities between the LR and HR data
as significantly different HR image patches may generate
very similar LR data as a result of downsampling process.
That is, the mapping between HR and LR data is many to
one and the reverse process from one single LR image patch
alone is inherently ambiguous. Second, the success of this
approach hinges on the assumption that a high-fidelity HR
patch can be found from the LR one (aside from ambiguity
which can be alleviated with statistical priors), thereby en-
tailing a large and adequate dataset at our disposal. Third,

the ensuing problem with a large dataset is how to determine
similar patches efficiently.

In contrast, the performance stability and low computa-
tional cost are the marked advantages of statistical SISR ap-
proaches [2, 16, 15, 9, 24, 20]. Since the priors are learned
from numerous examples, they are statistically effective to
represent the majority of the training data. The compu-
tational load of these algorithms is relatively low, as it is
not necessary to search exemplars. Although the process of
learning statistical priors is time consuming, it can be com-
puted offline and only once for SR applications. However,
statistical SISR algorithms are limited by specific image
structures modeled by their priors (e.g., edges) and ineffec-
tive to reconstruct other details (e.g., textures). In addition,
it is not clear what statistical models or features best suit
this learning task from a large number of training examples.

In this paper, we propose a divide-and-conquer ap-
proach [25, 23] to learn statistical priors directly from ex-
emplar patches using a large number of simple functions.
We show that when sufficient amount of data is collected,
the ambiguity problem of the source HR patches is allevi-
ated. When the input space of LR source images is divided,
the mapping between LR and HR patches of each subspace
can be effectively modeled by a linear function. The use
of simple functions also facilitates the process to generate
high-quality HR images efficiently.

The contributions of this work are summarized as fol-
lows. First, we demonstrate a direct single-image super-
resolution algorithm can be simple and fast when effective
exemplars are available in the training phase. Second, we
effectively split the input domain of low-resolution patches
based on exemplar images, thereby facilitating learning
simple functions for effective mapping. Third, the proposed
algorithm generates favorable results with low computa-
tional load against existing methods. We demonstrate the
merits of the proposed algorithm in terms of image quality
and computational load by numerous qualitative and quan-
titative comparisons with the state-of-the-art methods.

2. Related Work and Problem Context
The SISR problem has been intensively studied in

computer vision, image processing, and computer graph-
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ics. Classic methods render HR images from LR images
through certain mathematical formulations [13, 11] such as
bicubic interpolation and back-projection [8]. While these
algorithms can be executed efficiently, they are less effec-
tive in generating high-quality edges and textures because
no information of image structure is used.

Recent methods exploit rich visual information con-
tained in a set of training images or from the input frame.
Markov random fields are used in [4, 19] to reduce the am-
biguity problem between LR and HR patches by minimiz-
ing the difference of overlapping HR patches. To alleviate
the dataset problem in terms of texture diversity and rich-
ness, user guidance is exploited [19, 6] to prepare precise
exemplar images for super resolution. The locally linear
embedding algorithm is incorporated to address both ambi-
guity and dataset adequateness problems by integrating HR
exemplar patches with weights computed from their LR ex-
emplar patches [1]. Instead of searching for exemplars from
an external dataset, self exemplars are exploited from the in-
put image [5, 3] to find patches difficult found from external
training set. In addition to images patches, segment exem-
plars are proposed [17, 6] for upsampling textures because
the consistency of HR textures is better enforced by match-
ing large segments than small independent patches.

Statistical SISR algorithms learn priors from numerous
feature vectors to generate a function mapping features
from LR images to HR images. A significant advantage
of this approach is the low computational complexity as the
load of searching exemplars is alleviated. Global distribu-
tions of gradients are used [15] to regularize a deconvolu-
tion process for generating HR images. Edge-specific priors
are developed to model the mapping of edges from LR to
HR to reconstruct sharp HR edges [2, 16]. In addition, pri-
ors of patch mapping from LR to HR are developed based
on dictionaries via sparse representation [24, 21] , support
vector regression [12], or kernel ridge regression [9].

Notwithstanding much demonstrated success of the al-
gorithms in the literature, existing methods require com-
putationally expensive processes in either searching exem-
plars [4, 1, 5] or extracting complex features [12, 16, 17, 6].
In contrast, we present a fast algorithm based on intensity
values mapped through simple functions for efficient and
effective SISR. Instead of using one or a few mapping func-
tions, we learn a large number of simple functions. We
show this divide-and-conquer algorithm is effective and ef-
ficient for SISR when the right components are properly in-
tegrated.

3. Proposed Algorithm
One motivation of this work is to handle the ambigu-

ity problem efficiently in the test phase. In order to gen-
erate HR images efficiently, we do not search for a large
set for similar patches at the test phase as the computa-
tional load is high [5, 3]. Furthermore, we do not use com-

Figure 1. Training LR and HR pairs (four corner pixels are dis-
carded). A set of functions is learned to map a LR patch to a set
of pixels at the central (shaded) region of the corresponding HR
patch (instead of the entire HR patch).

plicated features which require intensive operations to ex-
tract [16, 24, 21]. To handle the ambiguity problem using
simple features, we collect a large set of LR patches and
their corresponding HR source patches. We divide the in-
put space into a large set of subspaces from which simple
functions can be used to model the mapping between LR
and HR patches effectively and efficiently. Although the
proposed algorithm entails processing a large set of training
images, it is only carried out offline in batch mode.

Given a HR training image Ih, we generate the LR image
Il by

Il = (Ih ⊗G) ↓s, (1)

where ⊗ is a convolution operator, G is a Gaussian kernel,
↓ is a downsampling operator and s is the scaling factor.
From each Ih and the corresponding Il image, a large set
of corresponding HR and LR patch pairs are generated. Let
Ph and Pl be two paired patches. We compute the patch
mean of Pl as µ, and extract the features of Ph and Pl as the
intensities subtracting µ to present the high-frequency sig-
nals. For patch Ph, we only extract the features of a central
region of Ph (e.g., the shaded region of HR patch in Fig-
ure 1) and discard four boundary pixels. We do not learn
mapping functions to predict the HR boundary pixels as the
LR patch Pl does not carry sufficient information and is less
likely to predict the HR boundary pixels correctly.

We collect a large set of LR patches from natural im-
ages to learn K cluster centers of their extracted features.
Figure 2 shows 4096 cluster centers learned from 2.2 mil-
lion natural patches. Similar to gradients of natural images
which can be modeled by a heavy-tail distribution [7], more
populous cluster centers correspond to smoother patches as
shown in Figure 3. These K cluster centers can be viewed
as a set of anchor points to represent the feature space of
natural image patches for super resolution.

For some regions in the feature space where natural
patches appear fairly rarely, it is unnecessary to learn map-
ping functions to predict patches of HR from LR. Since each
cluster represents a subspace, we collect a certain number of
exemplar patches in the segmented space to training a map-
ping function. Since natural images are abundant and easily
acquired, we can assume that there are sufficient exemplar



Figure 2. A set of 4096 cluster centers learned from 2.2 million natural patches. As the features for clustering are the intensities subtracting
patch means, we show the intensities by adding their mean values for visualization purpose. The order of cluster centers is sorted by the
amounts of clustered patches, as shown in Figure 3. Patches with more high-frequency details appear less frequently in natural images.

Figure 3. Histogram of clustered patches from a set of 2.2 mil-
lion natural patches with cluster centers shown in Figure 2. While
the most populous cluster center consists of 18489 patches, the 40
least popular clusters only have one patch. A cluster center has
537 patches on average.

patches available for each cluster center.
Suppose there are l LR exemplar patches belonging to

the same cluster center. Let vi and wi (i = 1, . . . , l) be
vectorized features of the LR patches and of the central re-
gion of HR patches, and suppose their dimensions are m
and n. We propose to learn a set of n linear regression func-
tions to individually predict the n feature values in HR. Let
V ∈ Rm×l and W ∈ Rn×l be the matrices of vi and wi. We
compute the regression coefficients C∗ ∈ Rn×(m+1) by

C∗ = argmin
C

∥∥∥∥ W− C
(

V
1

) ∥∥∥∥2 , (2)

where 1 is a 1× l vector with all values as 1, and this linear
least-squares problem is easily solved.

Given a LR test image, we crop each LR patch to com-
pute the LR features and search for the closest cluster cen-
ter. According to the cluster center, we apply the learned
coefficients to compute the HR features by

w = C∗
(

v
1

)
. (3)

The predicted HR patch intensity is then reconstructed by
adding the LR patch mean to the HR features.

The proposed method generates effective HR patches be-
cause each test LR patch and its exemplar LR patches are
highly similar as they belong to the same compact feature
subspace. The computational load for generating a HR im-
age is low as each HR patch can be generated by a LR patch
through a few additions and multiplications. The algorithm
can be easily implemented with GPU parallel processors be-
cause all LR patches are upsampled individually. In addi-
tion, the proposed method is suitable for hardware imple-
mentations as only few lines of code are required.

4. Experimental Results
Implementation: For color images, we apply the proposed
algorithm only on grayscale channel and upsample frames
in the color channels by bicubic interpolation as human vi-
sion is more sensitive to brightness change. For a scaling
factor 4, we set the Gaussian kernel width in Eq. 1 to 1.6
as commonly used in the literature [16]. The LR patch size
is set as 7× 7 pixels, but the four pixels at the four corners
are discarded and thus the LR feature dimension is 45. The
central region of a HR patch is set as the 12×12 pixels (See
Figure 1). Since the scaling factor is 4, a pixel in HR is cov-
ered by 9 LR patches and the output intensity is generated
by averaging 9 predicted values. We collect a set of 6000
HR natural images from the Berkeley segmentation [10] and
LabelMe [14] datasets to generate the LR training image set
containing 679 million patches.

Number of clusters: Due to the memory limitation on a
machine (24 GB), we randomly select 2.2 million patches
to learn a set of 4096 cluster centers, and use the learned



Figure 4. Number of training patches used to train regression co-
efficients in our experiments. Since some patches are rarely ob-
served in natural images, there are fewer than 1000 patches in
some clusters.

(a) 512 clusters (b) 4096 clusters (c) Difference map
Figure 5. Super resolution results with different numbers of cluster
centers. Images best viewed on high-resolution display where each
image is shown with at least 512 × 512 pixels (full resolution).

cluster centers to label all LR patches in training image set.
As the proposed function regresses features from 45 dimen-
sions to one dimension only (each row of C∗ in Eq. 2 is
assumed to be independent) and most training features are
highly similar, a huge set of training instances is unneces-
sary. We empirically choose a large value, e.g., 1000, as
the size of training instances for each cluster center and col-
lect training instances randomly from the labeled patches.
Figure 4 shows the actual numbers of training patches.
Since some patches are rarely observed in natural images,
there are fewer than 1000 patches in a few clusters. For
such cases we still compute the regression coefficients if
there is no rank deficiency in Eq. 2, i.e., at least 46 linear in-
dependent training vectors are available. Otherwise, we use
bilinear interpolation to map LR patches for such clusters.

The number of cluster centers is a trade-off between im-
age quality and computational load. Figure 5 shows the
results generated by 512 and 4096 clusters with the same
settings. While the low-frequency regions are almost the
same, the high-frequency regions of the image generated by
more clusters are better in terms of less jaggy artifacts along
the face contour. With more clusters, the input feature space
can be divided into more compact subspaces from which the
linear mapping functions can be more effectively learned.

In addition, we also evaluate the use of a support vector
regressor (SVR) as the mapping function, with a Radial Ba-
sis Function kernel and a linear kernel. With the same setup,
the images generated by SVRs and linear regressor are vi-
sually almost the same (See the supplementary material for
examples). However, the computational load of using SVRs
are much higher due to the load to compute the similarity of
each support vector to the test vector. While an image can
be generated by the proposed method in 14 seconds, it take

Table 1. Average evaluated values of 200 images from the Berke-
ley segmentation dataset [10]. While the generated SR images by
the proposed method are comparable to those by the self-exemplar
SR algorithm [5], the required computational load is much lower
(14 seconds vs. 10 minutes).

Algorithm PSNR SSIM [22]
Bicubic Interpolation 24.27 0.6555
Back Projection [8] 25.01 0.7036

Sun [16] 24.54 0.6695
Shan [15] 23.47 0.6367
Yang [24] 24.31 0.6205
Kim [9] 25.12 0.6970

Wang [21] 24.32 0.6505
Freedman [3] 22.22 0.6173
Glasner [5] 25.20 0.7064
Proposed 25.18 0.7081

1.5 hours by using SVRs.

Evaluation and analysis: We implement the proposed al-
gorithm in MATLAB, which takes 14 seconds to upsample
an image of 128× 128 pixels with scaling factor 4 on a 2.7
GHz Quad Core machine. The execution time can be fur-
ther reduced with other implementations and GPU. We use
the released code [15, 24, 21] to generate HR images, and
implement other state-of-the-art algorithms [8, 16, 5, 3] as
the source codes are not available. Using the same setup, it
takes 10 minutes for the exemplar-based method [5] to pro-
cess a 128×128 image. All the source codes and datasets
will be made available to the public.

Figure 6-11 show SR results of the proposed algorithm
and the state-of-the-art methods. More results are available
in the supplementary material. Numerical evaluations in
terms of PSNR and SSIM index [22] are computed when the
ground truth images are available. Table 1 shows averaged
indexes for a set of 200 natural images. The evaluations
are presented from the four perspectives with comparisons
to SR methods using statistical priors [9, 16], fast SR algo-
rithms [8, 15], self-exemplar SR algorithms [5, 3], and SR
approaches with dictionary learning [24, 21].

SR methods based on statistical priors: As shown in Fig-
ure 6(b)(c), Figure 8(a), Figure 10(c), and Figure 11(b)(c),
the proposed algorithm generates textures with better con-
trast than existing methods using statistical priors [9, 16].
While a kernel ridge regression function is learned in [9]
and a gradient profile prior is trained in [16] to restore the
edge sharpness based on an intermediate bicubic interpo-
lated images, the high-frequency texture details are not gen-
erated due to the use of the bicubic interpolated interme-
diate image. Furthermore, a post-processing filter is used
in [9] to suppress median gradients in order to reduce im-
age noise generated by the regression function along edges.
However, mid-frequency details at textures may be wrongly
reduced and the filtered textures appear unrealistic. There
are four differences between the proposed method and the



(a) Bicubic Interpolation. (b) Kim [9] (c) Sun [16] (d) Proposed
PSNR / SSIM: 29.8 / 0.9043 31.3 / 0.9321 30.4 / 0.9142 31.6 / 0.9422

(e) Back Projection [8] (f) Shan [15] (g) Yang [24] (h) Wang [3]
PSNR / SSIM: 31.1 / 0.9391 27.8 / 0.8554 30.1 / 0.9152 29.5 / 0.8859

Figure 6. Child. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least
512 × 512 pixels (full resolution).

existing methods based on statistical priors. First, the pro-
posed method upsamples the LR patches directly rather than
using an intermediate image generated by bicubic interpola-
tion, and thus there is no loss of texture details. Second, the
proposed regressed features can be applied to any types of
patches, while existing methods focus only on edges. Third,
no post-processing filter is required in the proposed method
to refine the generated HR images. Fourth, existing methods
learn a single regressor for the whole feature space, but the
proposed method learns a large number of regressors (one
for each subspace), thereby making the predicting results
more effective.

Fast SR methods: Compared with existing fast SR meth-
ods [8, 15] and bicubic interpolation, Figure 6(a)(e)(f), Fig-
ure 7, and Figure 11(a)(b) show that the proposed method
generates better edges and textures. Although the bicu-

bic interpolation is the fastest method, the generated edges
and textures are always over-smoothed. While the back-
projection approach [8] enforces the HR image constrained
by the LR image through Eq. 1, contrast along edges is en-
hanced but the contours are not. These results are caused
by the fixed back-projection kernel, which is assumed to
be a Gaussian kernel to isotropically back-project the dif-
ference from a LR pixel to its source HR pixels in Eq. 1.
However, the image structures along sharp edges are highly
anisotropic, and thus an isotropic Gaussian kernel is less ef-
fective in such patches. Thus, the back-projected edges are
jaggy and displeasing. A global gradient distribution is ex-
ploited as constraints in [15] to achieve fast SR. However,
although the global gradient distribution is reconstructed
by [15] in Figure 6(f) and Figure 7(c), the local gradients
are not constrained. Thus, over-smoothed textures as well
as jaggy edges are generated by this method. The pro-



(a) Bicubic Interpolation (b) Back Projection [8] (c) Shan [5] (d) Proposed
Figure 7. IC. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least 974× 800
pixels (full resolution). Because the ground truth image does not exist, the PSNR and SSIM indexes can not be computed.

(a) Sun [16] (b) Glasner [5] (c) Wang [21] (d) Proposed
PSNR / SSIM: 28.7 / 0.8827 29.1 / 0.9002 28.5 / 0.8642 29.6 / 0.9071

Figure 8. Lena. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least
512 × 512 pixels (full resolution).

posed method generates better edges and textures as each
LR patch is upsampled by a specific prior learned from a
compact subspace of similar patches. Thus, the contrast
and local structures are preserved and less artifacts are gen-
erated.

SR methods based on self exemplars: Figure 8(b)(d), Fig-
ure 9(a)(d), Figure 10(b)(d), and Figure 11(c)(d) show the
results generated by self-exemplar SR methods and the pro-
posed algorithm. Self-exemplar SR algorithms [5, 3] iter-
atively upsample images with a small scaling factor (e.g.,
1.25). Such an approach has an advantage of generating
sharp and clear edges because it is easy to find similar
patches in some slightly downsampled input images, but
difficult to do so in other image datasets. However, the num-
ber of patches generated by the input image is still limited.
To reduce the errors caused by using a small exemplar set,
the back-projection technique is used in [5] to compensate
the generated image in each upsampling loop. However,

over-compensated artifacts may also be generated, as shown
in Figure 8(b) and Figure 11(c), the edges and textures are
over-sharpened and unnatural. In addition, it entails com-
putationally expensive patch match processes that prevents
it from real-time applications although this problem is alle-
viated by local approximate operations and GPU [3]. How-
ever, such fast approximation methods [3] are likely to exac-
erbate the problems with the self-exemplar SR method [5]
and generate more artifacts. As shown in Figure 9(a), the
structure of windows and the texture of bushes are distorted.
The details of nose structure are almost lost in Figure 10(b)
with unrealistic stripes near the hand and rock region. In
contrast, the proposed method overcomes the difficulty of
finding rare patches by using a huge exemplar set. Even
the probability of finding similar edge patches is low in a
few training images, the chances are improved significantly
with thousands of images. Although the computational load
to collect those exemplar patches is high in the offline train-



(a) Freedman [3] (b) Kim [9] (c) Sun [16] (d) Proposed
PSNR / SSIM: 18.7 / 0.3876 20.4 / 0.4699 20.1 / 0.4395 20.5 / 0.4921

Figure 9. Mansion. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least
480 × 320 pixels (full resolution).

(a) Wang [21] (b) Freedman [3] (c) Sun [16] (d) Proposed
PSNR / SSIM: 25.9 / 0.6746 23.2 / 0.6374 25.8 / 0.6606 26.5 / 0.7133

Figure 10. Mermaid. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least
320 × 480 pixels (full resolution).

ing phase, a SR image can be generated very efficiently.
As shown in Figure 6(d), Figure 7(d), Figure 8(d), Fig-
ure 10(d), and Figure 11(d), the proposed method generates
SR images with sharp edges effectively.

SR methods based on dictionary learning: Fig-
ure 6(g)(h), Figure 8(c), and Figure 10(a) show images
generated by SR algorithms based on dictionary learn-
ing [24, 21]. The proposed algorithm is different from these
algorithms in several aspects. Numerous mapping functions
are learned individually by the proposed algorithm from
sets of training patches grouped by similarity, but only one
mapping function (the paired dictionaries) is trained by all
patches in the existing SR methods based on sparse dictio-

nary learning [24, 21]. Therefore, the learned dictionaries
may not capture the details from the all diverse and some
infrequent patches. Blocky edges can be observed in Fig-
ure 6(g) as such patches of sharp edges appear less fre-
quently than other smooth patches in natural images. An ad-
ditional transform matrix is used in [21] to reduce the prob-
lem by increasing the flexibility of mapping the LR sparse
coefficients to HR sparse coefficients. As shown in Fig-
ure 6(h), Figure 8(c) and Figure 10(a), the edges are sharp
without blocky artifacts. However, the additional trans-
form matrix blurs textures because the mapping of sparse
coefficients becomes many-to-many rather than one-to-one,
which results in effects of averaging. In contrast, the pro-



(a) Bicubic Interpolation (b) Shan [15] (c) Glasner [5] (d) Proposed
PSNR / SSIM: 23.1 / 0.5241 22.4 / 4908 23.7 / 0.5839 23.8 / 0.5835

Figure 11. Shore. Results best viewed on a high-resolution display with adequate zoom level where each image is shown with at least
320 × 480 pixels (full resolution).

posed method exploits the advantage of the divide-and-
conquer approach to ensure each linear function effectively
works in a compact feature subspace. Using simple feature
and linear functions, the proposed method generates sharper
edges than [24] and richer textures than [21], as shown in
Figure 6(d)(g)(h), Figure 8(c)(d), and Figure 10(a)(d).

5. Conclusions
In this paper, we propose a fast algorithm which learns

mapping functions to generate SR images. By splitting the
feature space into numerous subspaces and collecting suf-
ficient training exemplars to learn simple regression func-
tions, the proposed method generates high-quality SR im-
ages with sharp edges and rich textures. Numerous experi-
ments with qualitative and quantitative comparisons against
several state-of-the-art SR methods demonstrate the effec-
tiveness and stability of the proposed algorithm.
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