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Abstract
In this paper, we propose a visual saliency detection al-

gorithm from the perspective of reconstruction errors. The
image boundaries are first extracted via superpixels as like-
ly cues for background templates, from which dense and
sparse appearance models are constructed. For each im-
age region, we first compute dense and sparse reconstruc-
tion errors. Second, the reconstruction errors are propa-
gated based on the contexts obtained from K-means cluster-
ing. Third, pixel-level saliency is computed by an integra-
tion of multi-scale reconstruction errors and refined by an
object-biased Gaussian model. We apply the Bayes formula
to integrate saliency measures based on dense and sparse
reconstruction errors. Experimental results show that the
proposed algorithm performs favorably against seventeen
state-of-the-art methods in terms of precision and recall.
In addition, the proposed algorithm is demonstrated to be
more effective in highlighting salient objects uniformly and
robust to background noise.

1. Introduction
Visual saliency is concerned with the distinct perceptual

quality of biological systems which makes certain region-
s of a scene stand out from their neighbors and catch im-
mediate attention. Numerous biologically plausible model-
s have been developed to explain the cognitive process of
humans and animals [12]. In computer vision, more em-
phasis is paid to detect salient objects in images based on
features with generative and discriminative algorithms. Ef-
ficient saliency detection plays an important preprocessing
role in many computer vision tasks, including segmentation,
detection, recognition and compression, to name a few.

Motivated by the neuronal architecture of the early pri-
mate vision system, Itti et al. [13] define visual attention as
the local center-surround difference and propose a saliency
model based on multi-scale image features. Rahtu et al. [18]
propose a saliency detection algorithm by measuring the
center-surround contrast of a sliding window over the entire
image. While center-surround contrast-based measures are
able to detect salient objects, existing bottom-up approach-
es are less effective in suppressing background pixels. D-

ifferent from the center-surround contrast, local contrast is
measured by comparing a region only with its relevant con-
texts (defined as a set of region neighbors in the spatial or
feature space) [9, 14, 4].

Despite local contrast accords with the neuroscience
principle that neurons in the retina are sensitive to region-
s which locally stand out from their surroundings, global
contrast should also be taken into account when one re-
gion is similar to its surrounds but still distinct in the w-
hole scene. In other words, global contrast aims to capture
the holistic rarity from an image. Recent methods [7, 8]
measure global contrast-based saliency based on spatially
weighted feature dissimilarities. Perazzi et al. [17] formu-
late saliency estimation using two Gaussian filters by which
color and position are respectively exploited to measure re-
gion uniqueness and distribution. In [4], global saliency
is computed inverse proportionally to the probability of a
patch appearing in the entire scene. However, global con-
trast has its inherent drawbacks. When a foreground re-
gion is globally compared with the remaining portion of
the scene (which inevitably includes the other foreground
regions unless the object boundary is known), its contrast
with the background is less distinct and the salient object is
unlikely to be uniformly highlighted. In addition, priors or
heuristics regarding the likely positions of foreground (e.g.,
near the image center) and background (e.g., near the image
boundary) have been shown to be effective in recent meth-
ods [5, 21, 23].

In this paper, we exploit image boundaries as the like-
ly background regions from which templates are extract-
ed. Based on the background templates, we reconstruct the
entire image by dense and sparse appearance models from
which errors are used as indication of saliency. While dense
or sparse representations have been separately applied to
saliency detection recently [8, 4], these methods are devel-
oped for describing generic scenes. In addition, each im-
age patch is represented by the bases learned from a set of
natural image patches rather than other ones directly from
the scene, which means that the most relevant visual infor-
mation is not fully extracted for saliency detection. There-
fore, these methods do not uniformly detect salient objects
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Figure 1. Main steps of the proposed saliency detection algorithm.

or suppress the background in a scene.
To address the above mentioned issues, we make full use

of the visual information by using background templates
from each individual image and reconstruct image regions
with both dense and sparse representations. In this work,
the saliency of each image region is measured by the recon-
struction errors using background templates. We exploit a
context-based propagation mechanism to obtain more uni-
form reconstruction errors over the image. The saliency of
each pixel is then assigned by an integration of multi-scale
reconstruction errors followed by an object-biased Gaussian
refinement process. In addition, we present a Bayesian inte-
gration method to combine saliency maps constructed from
dense and sparse reconstruction. The main steps of the pro-
posed algorithm are shown in Figure 1.

The main contributions of this work are as follows:
1. We propose an algorithm to detect salient objects by
dense and sparse reconstruction using the background tem-
plates for each individual image, which computes more ef-
fective bottom-up contrast-based saliency.
2. A context-based propagation mechanism is proposed for
region-based saliency detection, which uniformly highlight-
s the salient objects and smooths the region saliency.
3. We present a Bayesian integration method to combine
saliency maps, which achieves more favorable results.

2. Background Templates
To better capture structural information, we first gener-

ate superpixels using the simple linear iterative clustering
(SLIC) algorithm [3] to segment an input image into multi-
ple uniform and compact regions (i.e., segments). As shown
in [4], the use of both Lab and RGB color spaces leads to
saliency maps with higher accuracy. We use the mean color
features and coordinates of pixels to describe each segment
by x = {L, a, b, R,G,B, x, y}. The entire image is then
represented as X = [x1, x2, . . . , xN ] ∈ RD×N , where N is
the number of segments and D is the feature dimension.

It has been shown that image boundaries are good visu-
al cues for background models which can be exploited for
salient object detection [21, 23]. On the other hand, salient
objects are likely to appear at the center of a scene [19, 5].
While these assumptions may not always hold, they nev-

ertheless provide useful visual information which can be
utilized to detect salient objects. Motivated by these find-
ings, we extract the D-dimensional feature of each bound-
ary segment as b and construct the background template set
as B = [b1,b2, ...,bM ], where M is the number of im-
age boundary segments. Figure 1(a) shows some bound-
ary templates extracted at different scales (where the non-
background regions are masked out).

3. Saliency Measure via Reconstruction Error
We use both dense and sparse reconstruction errors to

measure the saliency of each region which is represented by
a D-dimensional feature. We note that a dense appearance
model renders more expressive and generic descriptions of
background templates, whereas a sparse appearance mod-
el generates unique and compact representations. It is well
known that dense appearance models are more sensitive to
noise. For cluttered scenes, dense appearance models may
be less effective in measuring salient objects via reconstruc-
tion errors. On the other hand, solutions (i.e., coefficients)
by sparse representation are less stable (e.g., similar region-
s may have different sparse coefficients), which may lead
to discontinuous saliency detection results. In this work,
we use both representations to model regions and measure
saliency based on reconstruction errors.

The saliency measures via dense and sparse reconstruc-
tion errors are computed as shown in Figure 1(b). First,
we reconstruct all the image regions based on the back-
ground templates and normalize the reconstruction errors
to the range of [0, 1]. Second, a propagation mechanism is
proposed to exploit local contexts obtained from K-means
clustering. Third, pixel-level saliency is computed by tak-
ing multi-scale reconstruction errors followed by an object-
biased Gaussian refinement process.

3.1. Reconstruction Error
Given the background templates, we intuitively consider

image saliency detection as an estimation of reconstruction
error on the background, with an assumption that there must
be a large difference between the reconstruction errors of
foreground and background regions using the same bases.
For each region, we compute two reconstruction errors by
dense and sparse representation, respectively.
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3.1.1 Dense Reconstruction Error
A segment with larger reconstruction error based on the
background templates is more likely to be the foreground.
Based on this concern, the reconstruction error of each re-
gion is computed based on the dense appearance model gen-
erated from the background templates B = [b1,b2, ...,bM ],
B ∈ RD×M using Principal Component Analysis (PCA).

The eigenvectors from the normalized covariance matrix
of B, UB = [u1,u2, ...,uD′ ], corresponding to the largest
D′ eigenvalues, are computed to form the PCA bases of the
background templates. With the PCA bases UB, we com-
pute the reconstruction coefficient of segment i (i ∈ [1, N ]).

βi = UB
>(xi − x̄), (1)

and the dense reconstruction error of segment i is

εdi = ‖xi − (UBβi + x̄)‖22 , (2)

where x̄ is the mean feature of X. The saliency measure is
proportional to the normalized reconstruction error (within
the range of [0, 1]). Figure 2(b) shows some saliency detec-
tion results via dense reconstruction. Dense representations
model data points with a multivariate Gaussian distribution
in the feature space, and thus it may be difficult to capture
multiple scattered patterns especially when the number of
examples is limited. The middle row of Figure 2 shows an
example where some background regions have large recon-
struction errors (i.e., inaccurate saliency measure).
3.1.2 Sparse Reconstruction Error
We use the set of background templates B as the bases for
sparse representation, and encode the image segment i by

αi = argmin
αi

‖xi − Bαi‖22 + λ‖αi‖1, (3)

and the sparse reconstruction error is

εsi = ‖xi − Bαi‖22 . (4)

Since all the background templates are regarded as the ba-
sis functions, sparse reconstruction error can better suppress
the background compared with dense reconstruction error
especially in cluttered images, as shown in the middle row
of Figure 2.

Nevertheless, there are some drawbacks in measuring
saliency with sparse reconstruction errors. If some fore-
ground segments are collected into the background tem-
plates (e.g., when objects appear at the image boundaries),
their saliency measures are close to 0 due to low sparse re-
construction errors. In addition, the saliency measures for
the other regions are less accurate due to inaccurate inclu-
sion of foreground segments as part of sparse basis func-
tions. On the other hand, the dense appearance model is
not affected by this problem. When foreground segments
are mistakenly included in the background templates, the
extracted principle components from the dense appearance

(a) (b) (c) (d)
Figure 2. Saliency maps based on dense and sparse reconstruction
errors. Brighter pixels indicate higher saliency values. (a) Original
images. (b) Saliency maps from dense reconstruction. (c) Saliency
maps from sparse reconstruction. (d) Ground truth.

model may be less effective in describing these foreground
regions. As shown in the bottom row of Figure 2, when
some foreground segments at the image boundary (e.g., tor-
so and arm) are not detected via sparse reconstruction, these
regions are still be detected by the dense counterpart.

We note sparse reconstruction error is more robust to
deal with complicated background, while dense reconstruc-
tion error is more accurate to handle the object segments at
image boundaries. Therefore, dense and sparse reconstruc-
tion errors are complementary in measuring saliency.

3.2. Context-Based Error Propagation
We propose a context-based error propagation method

to smooth the reconstruction errors generated by dense and
sparse appearance models. Both dense and sparse recon-
struction errors of segment i (i.e., εdi and εsi ) are denoted by
εi for conciseness.

We first apply the K-means algorithm to cluster N im-
age segments into K clusters via their D-dimensional fea-
tures and initialize the propagated reconstruction error of
segment i as ε̃i = εi. All the segments are sorted in de-
scending order by their reconstruction errors and considered
as multiple hypotheses. They are processed sequentially by
propagating the reconstruction errors in each cluster. The
propagated reconstruction error of segment i belonging to
cluster k (k = 1, 2, ...,K), is modified by considering its
appearance-based context consisting of the other segments
in cluster k as follows:

ε̃i = τ

Nc∑
j=1

wikj ε̃kj + (1− τ) εi, (5)

wikj =
exp(−‖xi−xkj‖

2

2σx2
) (1− δ (kj − i))

Nc∑
j=1

exp(−‖xi−xkj‖
2

2σx2
)

, (6)

where {k1, k2, ..., kNc
} denote the Nc segment labels in

cluster k and τ is a weight parameter. The first term on
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(a) (b) (c) (d) (e) (f)
Figure 3. Saliency maps with the context-based error propagation.
(a) and (b) are original images and ground truth. (c) and (d) are
original and propagated dense reconstruction errors. (e) and (f) are
original and propagated sparse reconstruction errors.

the righthand side of Eq. 5 is the weighted averaging re-
construction error of the other segments in the same clus-
ter, and the second term is the initial dense or sparse re-
construction error. That is, for segment i, by considering
all the other segments belonging to the same cluster k (i.e.,
the appearance-based local context), the reconstruction er-
ror can be better estimated. The weight of each segment
context is defined by its normalized similarity with segment
i in Eq. 6, where σ2

x is the sum of the variance in each fea-
ture dimension of X and δ(·) is the indicator function.

Figure 3 shows three examples where the context-based
propagation mechanism smooths the reconstruction errors
in a cluster, thereby uniformly highlighting the image ob-
jects. The bottom row of Figure 3 presents one case that
several segments of the object (e.g., torso) are mistakenly
included in the background templates, and therefore they
are not correctly identified by the dense and sparse appear-
ance models. Nevertheless, the reconstruction errors of
these segments are modified by taking the contributions of
their contexts into consideration using Eq. 5.

3.3. Pixel-Level Saliency
For a full-resolution saliency map, we assign saliency

to each pixel by integrating results from multi-scale re-
construction errors, followed by refinement with an object-
biased Gaussian model.
3.3.1 Multi-Scale Reconstruction Error Integration
To handle the scale problem, we generate superpixels at Ns
different scales. We compute and propagate both dense and
sparse reconstruction errors for each scale. We integrate
multi-scale reconstruction errors and compute the pixel-
level reconstruction error by

E(z) =

Ns∑
s=1

ωzn(s) ε̃n(s)

Ns∑
s=1

ωzn(s)

, ωzn(s) =
1

‖fz − xn(s)‖2
, (7)

where fz is a D-dimensional feature of pixel z and n(s) de-
notes the label of the segment containing pixel z at scale s.
Similarly to [14], we utilize the similarity between pixel z
and its corresponding segment n(s) as the weight to average
the multi-scale reconstruction errors.

(a) (b) (c) (d) (e) (f)
Figure 4. Saliency maps with the multi-scale integration of prop-
agated reconstruction errors. (a) and (b) are original images and
ground truth. (c) and (d) are propagated dense reconstruction er-
rors without and with integration. (e) and (f) are propagated sparse
reconstruction errors without and with integration.

Figure 4 shows some examples where objects are more
precisely identified by the reconstruction errors with multi-
scale integration, which suggests the effectiveness of using
multi-scale integration mechanism to measure saliency.
3.3.2 Object-Biased Gaussian Refinement
Borji et al. show that there is a center bias in some saliency
detection datasets [5]. Recently center prior has been used
in [8, 14, 19] and usually formulated as a Gaussian model,

G (z) = exp

[
−

(
(xz − µx)

2

2σx2
+

(yz − µy)
2

2σy2

)]
, (8)

where µx = xc and µy = yc denote the coordinates of
the image center and xz and yz are the coordinates of pixel
z. Since salient objects do not always appear at the image
center as Figure 5 shows, the center-biased Gaussian model
is not effective and may include background pixels or miss
the foreground regions. We use an object-biased Gaussian
model Go with µx = xo and µy = yo, where xo and yo de-
note the object center derived from the pixel error in Eq. 7:

xo =
∑
i

E(i)∑
j
E(j)xi

yo =
∑
i

E(i)∑
j
E(j)yi

. (9)

We set σx = 0.25×H and σy = 0.25×W , whereW andH
respectively denote the width and height of an image. With
the object-biased Gaussian model, the saliency of pixel z is
computed by S (z) = Go (z) ∗ E (z).

Figure 5 shows an example when the object does not lo-
cate at the image center. Comparing the two refined maps
of the saliency via dense or sparse reconstruction in the bot-
tom row, the proposed object-biased Gaussian model ren-
ders more accurate object center, and therefore better refines
the saliency detection results.

4. Bayesian Integration of Saliency Maps
As mentioned in Section 3.1, the saliency measures by

dense and sparse reconstruction errors are complementary
to each other. To integrate both the saliency measures, we
propose an integration method by Bayesian inference.
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Recently, the Bayes formula has been used to measure
saliency by the posterior probability in [18, 20, 22]:

p(F |H(z)) =
p(F )p(H(z)|F )

p(F )p(H(z)|F ) + (1− p(F ))p(H(z)|B)
,

(10)
where the prior probability p(F ) is a uniform [18] or a
saliency map [20, 22] and H(z) is a feature vector of pixel
z. The likelihood probabilities are computed as:

p(H(z)|F ) =
∏

r∈{L,a,b}

NbF (r(z))

NF
,

p(H(z)|B) =
∏

r∈{L,a,b}

NbB(r(z))

NB
,

(11)

where NF denotes the number of pixels in the foreground
and NbF (r(z))(r ∈ {L, a, b}) is the number of pixels whose
color features fall into the foreground bin bF (r(z)) which
contains feature r(z), while the color distribution histogram
of the background is denoted likewise byNB andNbB(r(z)).
In this work, we take one saliency map as the prior and use
the other one instead of Lab color information to compute
the likelihoods, which integrates more diverse information
from different saliency maps.

Given two saliency maps S1 and S2 (i.e., from dense
and sparse reconstruction), we treat one of them as the prior
Si(i = {1, 2}) and use the other one Sj(j 6= i, j = {1, 2})
to compute the likelihood, as shown in Figure 6. First, we
threshold the map Si by its mean saliency value and ob-
tain its foreground and background regions described by Fi
and Bi, respectively. In each region, we compute the like-
lihoods by comparing Sj and Si in terms of the foreground
and background bins at pixel z:

p(Sj(z)|Fi) =
NbFi

(Sj(z))

NFi

, p(Sj(z)|Bi) =
NbBi

(Sj(z))

NBi

.

(12)
Consequently the posterior probability is computed with Si
as the prior by

p(Fi|Sj(z)) =
Si(z)p(Sj(z)|Fi)

Si(z)p(Sj(z)|Fi)+(1−Si(z))p(Sj(z)|Bi)
.

(13)

Bayes
Formula

Bayes
Formula

prior

likelihood

prior

likelihood

Ground Truth

Binary
map

Binary
map

Original Image
Input
Image

 2 1|p F S

 1 2|p F S

2S

1S  1 2,BS S S

Figure 6. Bayesian integration of saliency maps. The two salien-
cy measures via dense and sparse reconstruction are respectively
denoted by S1 and S2.

Similarly, the posterior saliency with Sj as the prior is com-
puted. We use these two posterior probabilities to com-
pute an integrated saliency map, SB(S1(z), S2(z)), based
on Bayesian integration:

SB(S1(z), S2(z)) = p(F1|S2(z)) + p(F2|S1(z)). (14)

The proposed Bayesian integration of saliency maps is
illustrated in Figure 6. It should be noted that Bayesian
integration enforces these two maps to serve as the prior
and cooperate with each other in an effective manner, which
uniformly highlights salient objects in an image.

5. Experiments
We evaluate the proposed algorithm with seventeen

state-of-the-art algorithms including IT98 [13], MZ03 [24],
LC06 [25], GB06 [10], SR07 [11], AC08 [1], FT09 [2],
CA10 [9], RA10 [18], RC11 [7], CB11 [14], SVO11 [6], D-
W11 [8], SF12 [17], LR12 [19], GS12 [21] and XL13 [22]
on three benchmark data sets: ASD, MSRA and SOD.

5.1. Data Sets
The MSRA database [15] contains 5000 images, where

each one is labeled with bounding boxes by nine subject-
s. We compute the mean of these bounding boxes as the
ground truth data. The ASD database [2] includes 1000 im-
ages selected from the MSRA database, where each image
is manually segmented into foreground and background.
Most images in the MSRA and ASD databases have on-
ly one salient object and there are usually strong contrast
between objects and backgrounds. In addition, we evalu-
ate the proposed algorithm on the SOD database. The SOD
database [16] is based on the Berkeley segmentation dataset
where seven subjects are asked to label 300 images with
object boundaries. For each object mask from each subjec-
t, a consistency score is computed by the other six masks.
Similar to [21], the objects with low consistency scores are
removed. This dataset is more challenging than the other
databases with multiple objects of different sizes and loca-
tions in more complicated backgrounds.
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Figure 7. Evaluation of saliency via reconstruction error. (a) Based on the context-based propagation. (b) Based on the multi-scale
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Figure 8. Evaluation of Bayesian integrated saliency. (a) Precision-recall curves of Dense-Sparse and Sparse-Dense Bayesian models. (c)
F-measure curves of the proposed Bayesian integrated saliency SB and four other integrated saliency of MDEPG and MSEPG.

5.2. Implementation Details

Parameter Setting. The two main parameters of our
method are the number of clustersK and the weight factor τ
in Eq. 5. We set K = 8 and τ = 0.5 in all experiments. We
vary K (K=4, 6, 8, 10, 12) and τ (τ=0.1, 0.3, 0.5, 0.7, 0.9)
in experiments, and observe that the saliency results are in-
sensitive to either parameter. The parameter λ of Eq. 3, is
empirically set to 0.01. For dense reconstruction, we use
the eigenvectors corresponding to the biggest eigenvalues
which retain 95% of the energy. For multi-scale reconstruc-
tion errors, we generate superpixels at eight different scales
respectively with 50 to 400 superpixels.
Evaluation Metrics. We evaluate all saliency detection al-
gorithms in terms of precision-recall curve and F-measure.
For each method, a binary map is obtained by segment-
ing each saliency map with a given threshold T ∈ [0, 255]
and then compared with the ground truth mask to compute
the precision and recall for an image. The mean precisions
and recalls of all images are then depicted in the precision-
recall curve. The evaluation of F-measure is similar to [2].
We first use the mean-shift algorithm to segment the orig-
inal image and extract the mean saliency of each segmen-
t. We then obtain the binary map by thresholding the seg-

ments using twice the mean saliency value. For each bi-
nary map, we compute the precision, recall and F-measure,

Fγ=
(1+γ2)Precision×Recall

γ2Precision+Recall , where we set γ2 = 0.3 to em-
phasize precision [2]. We compare the mean precision, re-
call and F-measure with a bar graph. For each image in
the MSRA database which is labeled with a bounding box
(rather than precise object contour), we fit a rectangle to the
thresholded saliency map for evaluation, similar to [5].

5.3. Experimental Results

In addition to comparisons with seventeen state-of-the-
art approaches, we also evaluate each individual component
of the proposed algorithm on the ASD database.
Saliency Detection via Reconstruction Error. We evalu-
ate the contribution of the context-based propagation, multi-
scale reconstruction error integration and object-biased
Gaussian refinement respectively in Figure 7. The ap-
proach in [7] (referred as RC11) is also presented as a base-
line model for comparisons. Figure 7(a) shows that the s-
parse reconstruction error based on background templates
achieves better accuracy in detecting salient objects than R-
C11 [7], while the dense one is comparable with it. The
context-based reconstruction error propagation method uses
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Figure 9. Performance of the proposed method compared with seventeen state-of-the-art methods on the ASD database.
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Figure 10. Performance of the proposed algorithm compared with other methods on the MSRA and SOD databases.

segment contexts through K-means clustering to smooth the
reconstruction errors and minimize the detection mistakes
introduced by the object segments in background templates
with improved performance (Figure 7(a)). The reconstruc-
tion error of a pixel is assigned by integrating the multi-
scale reconstruction errors, which helps generate more ac-
curate and uniform saliency maps. Figure 7(b) shows the
improved performance due to the integration of multi-scale
reconstruction errors. Figure 7(c) shows that the object-
biased Gaussian model further refines the results and per-
forms better than the center-biased one.
Bayesian Integrated Saliency Detection. In Section 4,
we discuss that the posterior probability can be more ac-
curate with likelihood computed by a saliency map rather
than the CIELab color space on the condition of the same
prior in the Bayes formula. We present experimental re-
sults in which we treat the saliency map by dense (or s-
parse) reconstruction as the prior, and use the other saliency
map by sparse (or dense) reconstruction and Lab color to
compute the likelihood probability, denoted respectively by
Dense-Sparse (or Sparse-Dense) and Dense-Lab (or Sparse-
Lab) in Figure 8(a) (or (b)). Figure 8(a) shows that with
the saliency via dense reconstruction as the prior, the result
with the likelihood based on sparse reconstruction (Dense-
Sparse) is more accurate than that with the CIELab color
space (Dense-Lab). While using the saliency map based on
sparse reconstruction as the prior, the result with the likeli-
hood based on dense reconstruction (Sparse-Dense) is com-
parable to that with the CIELab color space (Sparse-Lab)
as shown in Figure 8(b). Although both precisions of the

Sparse-Dense and Sparse-Lab models are lower than that of
the prior, the recalls are improved, which also suggests the
fact that the likelihood probability may introduce noise that
has been removed by the prior thus lead to worse posterior
than the prior in certain cases.

In addition, we also present the F-measure curve depict-
ed by the mean F-measure at each threshold from 0 to 255
in Figure 8(c). We evaluate the performance of Bayesian
integrated saliency map SB by comparing it with the inte-
gration strategies formulated in [5]:

Sc = 1
Z

∑
i

Q (Si) or Sc = 1
Z

∏
i

Q (Si), (15)

where Z is the partition function. In Figure 8(c),
we denote the linear summation Sc with Q(x) =
{x, exp(x),−1/ log(x)} respectively by identity, exp and
log, while denote the accumulation Sc with Q(x) = x by
mult. Figure 8(c) shows that the F-measure of the proposed
Bayesian integrated saliency map is higher than the other
methods at most thresholds, which demonstrates the effec-
tiveness of Bayesian integration.
Comparisons with State-of-the-Art Methods. We
present the evaluation results of the proposed method
compared with the state-of-the-art saliency detection
methods on the ASD database in Figure 9, and the MSRA
and SOD databases in Figure 10. The precision-recall
curves show our method achieves consistent and favorable
performance against the state-of-the-art methods. In
the bar graphs, the precision, recall and F-measure of
the proposed algorithm are comparable with those of
the other algorithms, especially with higher recall and
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Figure 11. Comparisons of saliency maps. Top, middle and bottom two rows are images from the ASD, SOD and MSRA data sets. DSR:
the proposed algorithm based on dense and sparse reconstruction. DSR cut: cut map using the generated saliency map. GT: ground truth.

F-measure. Figure 11 shows that our model generates
more accurate saliency maps with uniformly highlight-
ed foreground and well suppressed background. Our
Matlab implementation is available at http://ice.
dlut.edu.cn/lu/publications.html or http:
//faculty.ucmerced.edu/mhyang/pubs.html.

6. Conclusions
In this paper, we present a saliency detection algorith-

m via dense and sparse reconstruction based on the back-
ground templates. A context-based mechanism is designed
to propagate the reconstruction errors. The pixel-level
saliency is then computed by an integration of multi-scale
reconstruction errors followed by an object-biased Gaussian
refinement. To combine the two saliency maps via dense
and sparse reconstruction, we introduce a Bayesian integra-
tion method which performs better than the conventional
integration strategy. Experimental results show the perfor-
mance improvement of the proposed method compared to
seventeen state-of-the-art models.
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