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Abstract

SupportVector Machines (SVMs)are investigatedfor
visual gender classificationwith low resolution“thumb-
nail” faces(21-by-12pixels)processedfrom1,755images
fromtheFERETfacedatabase. Theperformanceof SVMs
(3.4%error) is shownto besuperiorto traditional pattern
classifiers (Linear, Quadratic, FisherLinear Discriminant,
Nearest-Neighbor)as well as more modern techniques
such asRadial BasisFunction(RBF)classifiers and large
ensemble-RBFnetworks.SVMsalsoout-performedhuman
testsubjectsat thesametask: in a perceptionstudywith 30
humantestsubjects,rangingin age from mid-20sto mid-
40s, the average error rate was found to be 32% for the
“thumbnails” and6.7%with higherresolutionimages.The
differencein performancebetweenlow andhigh resolution
testswithSVMswasonly1%,demonstratingrobustnessand
relativescaleinvariancefor visualclassification.

1 Intr oduction

This paperaddressesthe problemof classifyinggender
from thumbnailfacesin whichonly themainfacialregions
appear(withouthair information).Themotivationfor using
suchimagesis two fold. First, hair stylescan changein
appearanceeasily and frequently. Therefore,in a robust
facerecognitionsystemface imagesare usually cropped
to keeponly the main facial regions. It hasbeenshown
thatbetterrecognition ratescanbeachievedusinghairless
images[10]. Second,wewishedto investigatetheminimal
amountof faceinformation (resolution)requiredto learn
male and female facesby various classifiers. Previous
studieson genderclassificationhave usedhigh resolution
imageswith hair informationandrelatively small datasets
for their experiments. In our study, we demonstratethat
SVM classifiersareableto learnandclassifygenderfrom
a largesetof hairlesslow resolutionimageswith very high
accuracy.

In recentyears,SVMs have beensuccessfullyapplied
to varioustasksin computationalface-processing.These
include facedetection[16], faceposediscrimination[14]

and face recognition[18]. In this paper, we use SVMs
for genderclassificationof thumbnail facial imagesand
comparetheir performancewith traditionalclassifiers(e.g.,
Linear, Quadratic,FisherLinearDiscriminant,andNearest
Neighbor)andmoremoderntechniquessuchasRBF net-
worksandlargeensemble-RBFclassifiers.

We also comparethe performanceof SVM classifiers
to that of human test subjectswith both high and low
resolution images. Although humansare quite good at
determininggenderfrom generic photographs,our tests
showedthatthey haddifficulty with hairlesshighresolution
images. Nevertheless,the human performanceat high
resolutionwasdeemedadequate(6.5%error),but degraded
with low resolutionimages(31% error). SVM classifiers
showednegligiblechangesin theiraverageerrorrate.In our
study, little or no hair informationwasusedin bothhuman
andmachineexperiments. This is in contrastto previous
resultsreportedin the literaturewherealmostall methods
usedincludesomehair informationin genderclassification.

2 Background

Genderperceptionanddiscriminationhasbeeninvesti-
gatedfrom bothpsychologicalandcomputationalperspec-
tives. Although genderclassificationhas attractedmuch
attentionin psychologicalliterature[2, 5, 9, 17], relatively
few learningbasedvisionmethodshavebeenproposed.

Gollomb et al. [12] traineda fully connectedtwo-layer
neuralnetwork, SEXNET, to identify genderfrom 30-by-
30faceimages.Theirexperimentsonasetof 90photos(45
malesand45 females)gave an averageerror rateof 8.1%
comparedto anaverageerrorrateof 11.6%from a studyof
five humansubjects.Cottrell andMetcalfe[7] alsoapplied
neuralnetworksfor faceemotionandgenderclassification.
Thedimensionalityof asetof 16064-by-64faceimages(10
malesand10females)wasreducedfrom 4096to 40with an
auto-encoder. Thesevectorswerethenpresentedasinputs
to anotherone layer network for training. They reported
perfectclassification.

�
Brunelli andPoggio[3] developed�

However oneshouldnotethata datasetof only 20 uniqueindividuals
maybeinsufficient to yield statisticallysignificantresults.
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HyperBFnetworks for genderclassificationin which two
competingRBF networks, one for maleand the other for
female,weretrainedusing16 geometricfeaturesasinputs
(e.g., pupil to eyebrow separation,eyebrow thickness,and
nose width). The results on a data set of 168 images
(21 malesand 21 females)show an averageerror rate of
21%. Using similar techniquesasGolombet al. [12] and
Cottrell andMetcalfe [7], Tamuraet al. [20] usedmulti-
layerneuralnetworks to classifygenderfrom faceimages
at multiple resolutions(from 32-by-32 to 8-by-8 pixels).
Theirexperimentson30testimagesshow thattheirnetwork
was able to determinegenderfrom 8-by-8 imageswith
an averageerror rate of 7%. Insteadof using a vector
of gray levels to representfaces,Wiskott et al. [22] used
labeledgraphsof two-dimensionalviews to describefaces.
The nodeswererepresentedby wavelet-basedlocal “jets”
and the edgeswere labeledwith distancevectorssimilar
to the geometricfeaturesin [4]. They useda small setof
controlledmodel graphsof malesand femalesto encode
“generalfaceknowledge,” in order to generategraphsof
new facesby elasticgraphmatching.For eachnew face,a
compositereconstructionwasgeneratedusingthenodesin
themodelgraphs.Thegenderof themajorityof nodesused
in thecompositegraphwasusedfor classification.Theerror
rateof their experimentson a gallery of 112 faceimages
was 9.8%. Recently, Gutta et al. [13] proposeda hybrid
classifierbasedon neuralnetworks (RBFs) and inductive
decisiontreeswith Quinlan’sC4.5algorithm.Experiments
were conductedon 3000 FERET facesof size 64-by-72
pixels.Thebestaverageerrorratewasfoundto be4%.

3 GenderClassifiers

A genericgenderclassifieris shown in Figure 1. An
input facial image " generatesa scalaroutput #%$&"(' whose
polarity– signof #%$)"(' – determinesclassmembership.The
magnitude*+#%$&",* canusuallybe interpretedasa measure
of belief or certainty in the decisionmade. Nearly all
binaryclassifierscanbeviewedin theseterms;for density-
basedclassifiers(Linear, QuadraticandFisher)the output
function #%$&"(' is a log likelihoodratio, whereasfor kernel-
basedclassifiers(Nearest-Neighbor, RBFsandSVMs) the

outputis a “potentialfield” relatedto thedistancefrom the
separatingboundary. Wewill now briefly review thedetails
of thevariousclassifiersusedin ourstudy.-/.�0 1325454�6�798;:=<�>?8�6@7BADCE>�F5G�H5<�I

A SupportVector Machineis a learningalgorithm for
patternclassificationand regression[21, 6]. The basic
training principle behind SVMs is finding the optimal
linear hyperplanesuchthat the expectedclassificationer-
ror for unseentest samplesis minimized — i.e., good
generalizationperformance. According to the structural
risk minimizationinductive principle [21], a function that
classifiesthe training data accuratelyand which belongs
to a set of functions with the lowest VC dimension[6]
will generalizebestregardlessof thedimensionalityof the
input space.Basedon this principle,a linearSVM usesa
systematicapproachto find alinearfunctionwith thelowest
VC dimension.For linearly non-separabledata,SVMs can
(nonlinearly)mapthe input to a high dimensionalfeature
spacewherea linear hyperplanecan be found. Although
thereis noguaranteethata linearsolutionwill alwaysexist
in thehighdimensionalspace,in practiceit is quitefeasible
to constructa workingsolution.

Givenalabeledsetof J trainingsamples$&"EKMLON9KP' , where"EKRQTSVU and N�K is the associatedlabel ( N9KWQYX�Z\[�L+[^] ),
aSVM classifierfindstheoptimalhyperplanethatcorrectly
separates(classifies)thelargestfractionof datapointswhile
maximizingthedistanceof eitherclassfrom thehyperplane
(themargin). Vapnik[21] shows thatmaximizingthemar-
gin distanceis equivalentto minimizing theVC dimension
in constructinganoptimalhyperplane.Computingthebest
hyperplaneis posedasa constrainedoptimizationproblem
andsolved usingquadraticprogrammingtechniques.The
discriminanthyperplaneis definedby thelevel setof

#%$)"(',_ `a Kcb � N K�d@Kfehg $&"3LO" K '(ikj
where g $ e L e ' is a kernel function and the sign of #%$&"('
determinesthemembershipof " . Constructinganoptimal
hyperplaneis equivalentto finding all thenonzerod�K . Any
vector " K that correspondsto a nonzerod@K is a supported
vector(SV) of theoptimalhyperplane.A desirablefeature
of SVMs is that the numberof training points which are
retainedas support vectors is usually quite small, thus
providing a compactclassifier.

For a linear SVM, the kernel function is just a simple
dotproductin theinputspacewhile thekernelfunctionin a
nonlinearSVM effectively projectsthesamplesto a feature
spaceof higher(possiblyinfinite)dimensionvia anonlinear
mappingfunction:l m S Uonqp ` LWJsrqt



and then constructsa hyperplanein p . The motivation
behindthis mappingis that it is morelikely to find a linear
hyperplanein the high dimensionalfeaturespace. Using
Mercer’s theorem[8], the expensive calculationsrequired
in projecting samplesinto the high dimensionalfeature
spacecan be replacedby a muchsimpler kernel function
satisfyingtheconditiong $)"3LO" K ',_

l
$)"(' e

l
$)" K '

where

l
is thenonlinearprojectionfunction.Severalkernel

functions,suchaspolynomialsandradial basisfunctions,
have been shown to satisfy Mercer’s theoremand have
beenusedsuccessfullyin nonlinearSVMs. In fact, by
using different kernel functions, SVMs can implementa
varietyof learningmachines,someof which coincidewith
classicalarchitectures. Nevertheless,automaticselection
of the“right” kernelfunctionandits associatedparameters
remainsproblematicandin practiceonemustresortto trial
anderrorfor modelselection.-/.)u vwCEx�GyC(zV{WCEI�GyI;|}25H5>?8�GP6%H�~�<�8+�W6@79�3I

A radialbasisfunction (RBF) network is alsoa kernel-
basedtechniquefor improvedgeneralization,but it is based
instead on regularization theory [19]. A typical RBF
network with � Gaussianbasisfunctionsis givenby

#%$)"(';_ �a K�� Kf� $&"3��� K L��f�K '�i�j
wherethe � is the � th Gaussianbasisfunctionwith center� K and variance� �K . The weight coefficients � K combine
the basisfunctionsinto a singlescalaroutputvalue,withj asa biasterm. Training a GaussianRBF network for a
givenlearningtaskinvolvesdeterminingthetotalnumberof
Gaussianbasisfunctions,locatingtheir centers,computing
their correspondingvariances,and solving for the weight
coefficientsandbias. Judiciouschoiceof � , ��K , and � �K ,
canyield RBFnetworkswhicharequitepowerful in classi-
fication andregressiontasks. The numberof radial bases
in a conventionalRBF network is predeterminedbefore
training, whereasthe numberfor a large ensemble-RBF
network is iteratively increaseduntil the error falls below
a setthreshold.TheRBF centersin bothcasesareusually
determinedby g -meansclustering. In contrast,a SVM
with thesameRBF kernelwill automaticallydeterminethe
numberandlocationof the centers,aswell astheweights
andthresholdthatminimizeanupperboundontheexpected
risk. Recently, Evgeniouet al. [11] have shown that both
SVMsandRBFnetworkscanbeformulatedunderaunified
framework in the context of Vapnik’s theoryof statistical
learning[21]. As such,SVMs provide a moresystematic
approachto classificationthan classicalRBF and various
otherneuralnetworks.

-/.&- |�GyI�F,<�7B��G�H5<�C(7���GyI^>	7�G��oG�H5C(H@8
Fisher Linear Discriminant (FLD) is an example of

a class specific subspacemethod that finds the optimal
linear projection for classification. Rather than finding
a projection that maximizesthe projectedvarianceas in
principalcomponentanalysis,FLD determinesaprojection,N�_����� " , thatmaximizestheratiobetweenthebetween-
classscatterand the within-classscatter. Consequently,
classificationis simplifiedin theprojectedspace.

Considera � -classproblem,with thebetween-classscat-
termatrixgivenby

�E� _ �a K b � t�K�$)¡ K ZB¡¢'£$)¡ K Zw¡�' �
andthewithin-classscattermatrixby

��¤ _ �a K b � a¥�¦h§�¨%© $&"(ª�ZB¡ K '�$&"(ª�ZB¡ K ' �
where¡ is themeanof all samples,¡ K is themeanof class� , and t«K is thenumberof samplesin class� . Theoptimal
projection � � is the projectionmatrix which maximizes
the ratio of thedeterminantof thebetween-classscatterto
thedeterminantof thewithin-classscatterof theprojections

� � _�¬^M®/¯°¬²±³ ´ ��� �f� � ´´ � � �(¤ � ´ _¶µ � � � �;·+·�· �¢¸ ¹
where X � K ´ �º_ [�L¼»�L ·+·�· LO½¾] is the set of generalized
eigenvectorsof

�E�
and

� ¤
, correspondingto the ½ largest

generalizedeigenvalues XÀ¿�K ´ �Á_Â[�L¼»�L ·+·�· LO½¾] . However,
the rank of

�f�
is �ÃZ�[ or lesssince it is the sum of �

matricesof rankoneor less. Thus,theupperboundon ½
is �ÄZÅ[ . To avoid thesingularity, onecanapplyPCA first
to reducethedimensionof thefeaturespaceto t�Z�� , and
thenuseFLD to reducethedimensionto �ÆZ�[ . This two-
stepprocedureis usedin computing“FisherFaces”[1], for
example.In our experiments,we useda singleGaussianto
model the distributionsof maleand femaleclassesin the
resultingone dimensionalspace. The classmembership
of a samplewas then determinedusing the maximum a
posterioriprobability, or equivalentlyby a likelihoodratio
test.-/.ÈÇ ��G�H5<�CE7BC(H5xYÉ;2,CEx}7�Cf89Gy>ÅÊWzPC(I^I�GPË}<�7�I

Thedecisionboundaryof aquadraticclassifieris defined
by a quadraticform in " , derived throughBayesianerror
minimization. Assumingthat thedistribution of eachclass
is Gaussian,theclassifieroutputis givenby

#%$&"('Ì_ �� $)"�ZB¡ � 'O�%Í=Î �� $&"WZB¡ � '�Z�� $)"�ZB¡ � 'O�%Í=Î �� $&"WZB¡ � '(i ��/Ï Ð Ñ Ò@Ó�ÑÑ Ò(ÔhÑ
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where ¡ K and Í K ( ��_�[9LM» ) are the meanandcovariance
matrixof therespectiveGaussiandistributions.

A linear classifier is a special caseof the quadratic
form, basedon the assumptionthat Í � = Í � = Í , which
simplifiesthediscriminantto

#%$)"(',_å$P¡ � Zw¡ � 'MÍ Î � "=i [» $P¡ � � Í Î � ¡ � ZB¡ �� Í Î � ¡ � '
For both classifiers, the sign of #%$&"(' determinesclass
membershipandis alsoequivalentto a likelihoodratio test.

4 Experiments

In our study, 256-by-384pixel FERET “mug-shots”
werepre-processedusinganautomaticface-processingsys-
tem which compensatesfor translation,scaleas well as
slightrotations.Shown in Figure2, thissystemis described
in detail in [15] andusesmaximum-likelihoodestimation
for face detection, affine warping for geometric shape
alignmentandcontrastnormalizationfor ambientlighting
variations. The resultingoutput “f ace-prints”in Figure 2
were standardizedto 80-by-40 (full) resolution. These
“f ace-prints”were further sub-sampledto 21-by-12pixel
“thumbnails”for our low resolutionexperiments.Figure3
shows a few examplesof processedface-prints(note that
thesefacescontainlittle or no hair information). A total
of 1755 thumbnails(1044 malesand 711 females)were
usedin our experiments. For eachclassifier, the average
error ratewasestimatedwith 5-fold crossvalidation(CV)
— i.e., a 5-way datasetsplit, with 4/5th usedfor training
and1/5thusedfor testing,with 4 subsequentrotations.The
averagesize of the training set was 1496(793 malesand
713 females)and the averagesizeof the testsetwas259
(133malesand126females).

â��?æ?��
�	�3à�ç�Ý�
��è�Ö×=
���Ø�������
��+�	� Ø¼��éV� Ø�ê�Ø�ê	��×ëæ������ì� �²�
Classifier ErrorRate

Overall Male Female

SVM with GaussianRBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.88% 4.21% 5.59%
Largeensemble-RBF 5.54% 4.59% 6.55%
ClassicalRBF 7.79% 6.89% 8.75%
Quadraticclassifier 10.63% 9.44% 11.88%
Fisherlineardiscriminant 13.03% 12.31% 13.78%
Nearestneighbor 27.16% 26.53% 28.04%
Linearclassifier 58.95% 58.47% 59.45%

Ç,.�0 ADCE>�F5G�H5<íÊWzPC(I^I�GPË}>�Cf89Gy6%H
TheSVM classifierwasfirst testedwith variouskernels

in order to explore the spaceof possibilitiesand perfor-
mance.A GaussianRBF kernelwasfound to performthe
best(in termsof errorrate),followedby acubicpolynomial
kernelassecondbest. In the large ensemble-RBFexper-
iment, the numberof radial baseswas incrementeduntil
the error fell below a set threshold. The averagenumber
of radialbasesin the largeensemble-RBFwasfoundto be
1289 which correspondsto 86% of the training set. The
numberof radial basesfor classicalRBF networks was
heuristicallyset to 20 prior to actualtraining and testing.
Quadratic,LinearandFisherclassifierswereimplemented
usingGaussiandistributionsandin eachcasea likelihood
ratiotestwasusedfor classification.Theaverageerrorrates
of all the classifierstestedwith 21-by-12pixel thumbnails
arereportedin Table1 andsummarizedin Figure4.
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TheSVMs out-performedall otherclassifiers,although

theperformanceof largeensemble-RBFnetworkswasclose
to SVMs. However, nearly 90% of the training set was
retainedas radial basesby the large ensemble-RBF. In
contrast, the number of support vectors found by both
SVMs was only about20% of the training set. We also
applied SVMs to classificationbasedon high resolution
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images.The Gaussianandcubic kernelSVMs performed
equally well at both low and high resolutionswith only
a slight 1% error rate difference. Figure 5 shows three
pairsof opposite(maleandfemale)supportfacesfrom an
actualSVM classifier. Thisfigureis, of course,acrudelow-
dimensionaldepictionof theoptimalseparatinghyperplane
(hyper-surface)andits associatedmargins(shownasdashed
lines). However, thesupportfacesshown arepositionedin
accordancewith their basicgeometry. Eachpair of support
facesacrossthe boundarywas the closestpair of images
in the projectedhigh dimensionalspace. It is interesting
to note not only the visual similarity of a given pair but
alsotheir androgynousappearance.Naturally, this is to be
expectedfrom a facelocatedneartheboundaryof themale
andfemaledomains.As seenin Table1, all theclassifiers
testedhad higher error ratesin classifyingfemales,most
likely dueto the lessprominentanddistinct facial features
presentin femalefaces.Ç,.)u þÿ25�oC(HºÊ�zyCEI^I�GPË�>	Cf8�GP6%H

In orderto calibratetheperformanceof SVM classifiers,
humansubjectswere also asked to classify genderusing
bothlow andhighresolutionimages.A total of 30subjects
(22 malesand8 females)rangingin agefrom mid-20sto
mid-40sparticipatedin anexperimentwith high resolution
imagesand10 subjects(6 malesand4 females)with low
resolutionimages.All subjectswereasked to classifythe
genderof 254faces(presentedin randomorder)asbestas
they could without time constraints.Although thesetests
werenotascomprehensiveasthemachineexperiments,the
testsetusedwith humanswasidenticalto oneof the5-fold
CV partitionsusedin Section4.1.
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Genderof ErrorRate
humansubject High resolution Low resolution

Male 7.02% 30.87%
Female 5.22% 30.31%
Combined 6.54% 30.65%
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Thehumanerrorratesobtainedin ourstudyaretabulated

in Table2. ComparingTables1 and2, it is clearthatSVMs
also perform betterthan humanswith both low and high
resolutionfaces— this is more easily seenin Figure 6.
Theseresultssuggestthat the conceptof genderis more
accuratelymodeledby SVMs thanany otherclassifier. It
is not surprisingthat humansubjectsperform betterwith
high resolutionimagesthan with low resolutionimages.
SVM performance,however, wasmostlyunaffectedby the
changein resolution.

Figure 7 shows the top 5 mistakes made by human
test subjects(the true genderis F-M-M-F-M from left to
right). Our resultsalso indicatedthat therewas a degree
of correlationbetweenthe mistakes madeby SVMs and
those made by humans. Facesmisclassifiedby SVMs
werealmostalways misclassifiedby humansas well (for
all the SVM mistakes, the averagehumanerror rate was
more than 30%). On the other hand, the conversewas
not generally found to be true (humansmade different
mistakesthanSVMs). Finally, wenotethatSVM classifiers
performedbetter than any single humantest subject, at
eitherresolution.
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5 Discussion

In this paperwe have presenteda comprehensive eval-
uationof variousclassificationmethodsfor determination
of genderfrom facial images. The non-triviality of this
task (madeeven harderby our “hairless” low resolution
faces)is demonstratedby the fact that a linear classifier
hadan error rate of 60% (i.e., worsethana randomcoin
flip). Furthermore,anacceptableerrorrate( � 5%) for the
large ensemble-RBFnetwork requiredstorageof 86% of
thetrainingset(SVMsrequiredabout20%).Storageof the
entiredatasetin the form of thenearest-neighborclassifier
yielded too high an error rate (30%). Clearly, SVMs
succeededin the difficult task of finding a near-optimal
genderpartition in facespacewith the addedeconomyof
asmallnumberof supportfaces.

The comparisonof machinevs. humanperformance,
shown in Figure6, indicatesthatSVMswith low resolution
imagesactuallydo better(3.4%)thanhumansubjectswith
highresolutionimages(6.5%).Thiscanbepartlyexplained
by the fact that hair cues(mostly missingin our dataset)
are importantfor humangenderdiscrimination. The fact
thathumanperformancedegradeswith lower resolutionis
not too surprising:ashumans,our lifetime of “training” in
genderclassificationhasbeencarriedout with moderate-
to-highresolutionstimuli. Thevariousmachineclassifiers,
on theotherhand,werere-trainedfor eachresolution.The
relative invarianceof SVMs to input resolutionis due to
thefactthattheir complexity (henceperformance)depends
primarily on the numberof training samplesandnot their
dimension[21].

Given the relative successof previous studieswith low
resolutionfacesit is re-assuringthat 21-by-12 faces(or
even 8-by-6 faces[20]) can in fact be usedfor reliable
genderclassification.Unfortunately, mostof the previous
studiesused datasetsof relatively few faces (and even
fewer humansubjectsto test themon). The mostdirectly
comparablestudyto oursis thatof Guttaet al. [13], which
also usedFERET faces. With a datasetof 3000 facesat
a resolutionof 64-by-72,their hybrid RBF/Decision-Tree
classifierachieveda 4% errorrate. In our study, with 1800
facesat a resolutionof 21-by-12,a GaussiankernelSVM
was able to achieve a 3.4% error rate. Both studiesuse
extensivecrossvalidationto estimatetheerrorrates.Given
our resultswith SVMs, it is clearthatbetterperformanceat
even lower resolutionsis madepossiblewith this learning
technique.
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Facerecognitionandgenderdetermination. In Proceedingsof the
InternationalWorkshoponAutomaticFaceandGestureRecognition,
pages92–97,1995.


