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Abstract

SupportVector Machines (SVMs)are investigatedfor
visual gender classificationwith low resolution“thumb-
nail” faces(21-by-12pixels)processedrom1,755images
fromthe FERETfacedatabase Theperformanceof SVMs
(3.4%error) is shownto be superiorto traditional pattern
classifies (Linear, Quadratic, Fisher Linear Discriminant,
Neaest-Neighbor)as well as more modern techniques
sud as Radial BasisFunction (RBF) classifies and large
ensemble-RBRetworks.SVMsalso out-performechuman
testsubjectsat the sametask: in a perceptionstudywith 30
humantest subjectsrangingin age from mid-20sto mid-
40s, the avelage error rate wasfoundto be 32% for the
“thumbnails” and6.7%with higherresolutionmages.The
differencein performancebetweerow andhigh resolution
testswith SVMswasonly 1%, demonstatingrobustnessind
relativescaleinvariancefor visual classification.

1 Intr oduction

This paperaddressethe problemof classifyinggender
from thumbnailfacesin which only the mainfacialregions
appeafwithouthairinformation). Themotivationfor using
suchimagesis two fold. First, hair stylescan changein
appearanceasily and frequently Therefore,in a robust
face recognitionsystemface imagesare usually cropped
to keeponly the main facial regions. It hasbeenshavn
thatbetterrecaynition ratescanbe achiezed usinghairless
imagedq10]. Secondwe wishedto investigatehe minimal
amountof faceinformation (resolution)requiredto learn
male and female facesby various classifiers. Previous
studieson genderclassificationhave usedhigh resolution
imageswith hair informationandrelatively small datasets
for their experiments. In our study we demonstrate¢hat
SVM classifiersareableto learnandclassifygenderfrom
alarge setof hairlesdow resolutionimageswith very high
accurag.

In recentyears,SVMs have beensuccessfullyapplied
to varioustasksin computationaface-processingThese
include facedetection[16], faceposediscrimination[14]
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and facerecognition[18]. In this paper we use SVMs

for genderclassificationof thumbnail facial imagesand
compareheir performancevith traditionalclassifierqe.g.,

Linear, Quadratic FisherLinearDiscriminant,andNearest
Neighbor)and more moderntechniquesuchas RBF net-
worksandlargeensemble-RBElassifiers.

We also comparethe performanceof SVM classifiers
to that of humantest subjectswith both high and low
resolutionimages. Although humansare quite good at
determininggenderfrom generic photographs,our tests
shavedthatthey haddifficulty with hairlesshigh resolution
images. Nevertheless,the human performanceat high
resolutiorwasdeemedidequaté6.5%error),but degraded
with low resolutionimages(31% error). SVM classifiers
shavedngyligible changesén theiraveragesrrorrate.In our
study little or no hair informationwasusedin bothhuman
and machineexperiments. This is in contrastto previous
resultsreportedin the literaturewherealmostall methods
usedincludesomehairinformationin gendetrclassification.

2 Background

Genderperceptionand discriminationhasbeeninvesti-
gatedfrom both psychologicabndcomputationaperspec-
tives. Although genderclassificationhas attractedmuch
attentionin psychologicaliterature[2, 5, 9, 17], relatively
few learningbasedvision methodshave beenproposed.

Gollombet al. [12] traineda fully connectedwo-layer
neuralnetwork, SEXNET, to identify genderfrom 30-by-
30faceimages.Theirexperimentsonasetof 90 photos(45
malesand 45 females)gave an averageerror rate of 8.1%
comparedo anaverageerrorrateof 11.6%from a studyof
five humansubjects.CottrellandMetcalfe[7] alsoapplied
neuralnetworksfor faceemotionandgenderclassification.
Thedimensionalityof asetof 16064-by-64faceimageg10
malesand10females)wasreducedrom 4096to 40 with an
auto-encoderThesevectorswerethenpresente@sinputs
to anotherone layer network for training. They reported
perfectclassification. Brunelli and Poggio[3] developed

IHowever oneshouldnotethata datasebf only 20 uniqueindividuals
may beinsuficientto yield statisticallysignificantresults.
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Figure 1. Gender classifier

HyperBF networks for genderclassificationin which two
competingRBF networks, one for male and the other for
female,weretrainedusing 16 geometricfeaturesasinputs
(e.g., pupil to eyebron separationgyebrow thicknessand
nosewidth). The resultson a data set of 168 images
(21 malesand 21 females)shav an averageerror rate of
21%. Using similar techniquesasGolombet al. [12] and
Cottrell and Metcalfe[7], Tamuraet al. [20] usedmulti-
layer neuralnetworks to classifygenderfrom faceimages
at multiple resolutions(from 32-by-32to 8-by-8 pixels).
Theirexperimenton 30testimagesshav thattheirnetwork
was able to determinegenderfrom 8-by-8 imageswith
an averageerror rate of 7%. Insteadof using a vector
of gray levels to represenfaces,Wiskott et al. [22] used
labeledgraphsof two-dimensionaliews to describefaces.
The nodeswererepresentethy wavelet-basedocal “jets”
and the edgeswere labeledwith distancevectorssimilar
to the geometricfeaturesin [4]. They useda small setof
controlledmodel graphsof malesand femalesto encode
“generalface knowledge; in orderto generategraphsof
new facesby elasticgraphmatching.For eachnew face,a
compositereconstructiorwasgeneratedisingthe nodesin
themodelgraphs.Thegendernf themajority of nodesused
in thecompositegraphwasusedor classificationTheerror
rate of their experimentson a gallery of 112 faceimages
was 9.8%. Recently Guttaet al. [13] proposeda hybrid
classifierbasedon neuralnetworks (RBFs) and inductive
decisiontreeswith Quinlan’s C4.5algorithm. Experiments
were conductedon 3000 FERET facesof size 64-by-72
pixels. Thebestaverageerrorratewasfoundto be 4%.

3 Gender Classifiers

A genericgenderclassifieris shavn in Figure1. An
input facialimagex generates scalaroutput f (x) whose
polarity—signof f(x) —determineglassmembershipThe
magnitude|| f (x|| canusuallybe interpretedasa measure
of belief or certaintyin the decisionmade. Nearly all
binaryclassifierscanbeviewedin theseterms;for density-
basedclassifierg(Linear, Quadraticand Fisher)the output
function f(x) is alog likelihoodratio, whereador kernel-
basedclassifiers(Nearest-NeighbgiRBFsand SVMs) the

outputis a “potentialfield” relatedto the distancerom the
separatingpoundary We will now briefly review thedetails
of thevariousclassifieraisedin our study

3.1 Support Vector Machines

A SupportVector Machineis a learningalgorithm for
pattern classificationand regression[21, 6]. The basic
training principle behind SVMs is finding the optimal
linear hyperplanesuchthat the expectedclassificationer-
ror for unseentest samplesis minimized — i.e., good
generalizationperformance. According to the structural
risk minimizationinductive principle [21], a function that
classifiesthe training data accuratelyand which belongs
to a set of functionswith the lowest VC dimension[6]
will generalizebestregardlessf the dimensionalityof the
input space.Basedon this principle, a linear SVM usesa
systemati@pproacho find alinearfunctionwith thelowest
VC dimension.For linearly non-separabldata,SVMs can
(nonlinearly)mapthe input to a high dimensionalfeature
spacewherea linear hyperplanecan be found. Although
thereis no guarante¢hata linearsolutionwill alwaysexist
in thehigh dimensionabkpacein practiceit is quitefeasible
to constructaworking solution.

Givenalabeledsetof M trainingsamplegx;, y;), where
x; € RN andy; is the associatedabel (y; € {—1,1}),
aSVM classifierfindsthe optimalhyperplanghatcorrectly
separate&lassifiesyhelargestfractionof datapointswhile
maximizingthedistanceof eitherclassfrom thehyperplane
(themamin). Vapnik[21] showvs thatmaximizingthe mar
gin distancds equialentto minimizing the VC dimension
in constructingan optimal hyperplane Computingthe best
hyperplands posedasa constrainedptimizationproblem
and solved using quadraticprogrammingtechniques.The
discriminanthyperplanés definedby thelevel setof

M
Fx) =" giai-k(x,x:) +b
i=1

where k(-,-) is a kernel function and the sign of f(x)
determineghe membershif x. Constructingan optimal
hyperplands equialentto finding all thenonzerow;. Any
vectorx; that correspond$o a nonzeroq; is a supported
vector(SV) of theoptimalhyperplane A desirabldeature
of SVMs is that the numberof training points which are
retainedas supportvectorsis usually quite small, thus
providing acompactlassifier

For a linear SVM, the kernelfunction is just a simple
dot productin theinputspacewhile the kernelfunctionin a
nonlinearSVM effectively projectsthesamplego afeature
spaceof higher(possiblyinfinite) dimensiorvia anonlinear
mappingfunction:

®:RN 5 FM M>N



and then constructsa hyperplanein F. The motivation
behindthis mappingis thatit is morelikely to find alinear
hyperplanein the high dimensionalfeaturespace. Using
Mercer's theorem[8], the expensve calculationsrequired
in projecting samplesinto the high dimensionalfeature
spacecan be replacedby a much simpler kernelfunction
satisfyingthe condition

k(x, %) = ®(x) - D(x:)

where® is thenonlineamprojectionfunction. Severalkernel
functions,suchas polynomialsand radial basisfunctions,
have beenshovn to satisfy Mercers theoremand have
beenusedsuccessfullyin nonlinearSVMs. In fact, by
using different kernel functions, SVMs canimplementa
variety of learningmachinessomeof which coincidewith
classicalarchitectures. Neverthelessautomaticselection
of the“right” kernelfunctionandits associategharameters
remainsproblematicandin practiceonemustresortto trial
anderrorfor modelselection.

3.2 Radial Basis Function Networks

A radial basisfunction (RBF) network is alsoa kernel-
basedechniqueor improvedgeneralizationbut it is based
instead on regularizationtheory [19]. A typical RBF
network with K Gaussiarbasisfunctionsis givenby

K
f) = Y wiGlxieio?) + b

wherethe G is the ith Gaussiarbasisfunction with center
c; andvariances?. The weight coeficientsw; combine
the basisfunctionsinto a single scalaroutputvalue, with
b asa biasterm. Training a GaussiarRBF network for a
givenlearningtaskinvolvesdetermininghetotalnumberof
Gaussiarbasisfunctions,locatingtheir centerscomputing
their correspondingrariances and solving for the weight
coeficientsand bias. Judiciouschoiceof K, c;, ando?,
canyield RBF networkswhich arequite powerful in classi-
fication and regressiontasks. The numberof radial bases
in a conventional RBF network is predeterminedefore
training, whereasthe numberfor a large ensemble-RBF
network is iteratively increaseduntil the error falls below
a setthreshold. The RBF centersin both casesareusually
determinedby k-meansclustering. In contrast,a SVM
with thesameRBF kernelwill automaticallydeterminehe
numberandlocationof the centersaswell asthe weights
andthresholdhatminimizeanupperboundontheexpected
risk. Recently Evgeniouet al. [11] have shovn that both
SVMsandRBF networkscanbeformulatedunderaunified
frameawork in the context of Vapnik’s theory of statistical
learning[21]. As such,SVMs provide a more systematic
approachto classificationthan classicalRBF and various
otherneuralnetworks.

3.3 Fisher Linear Discriminant

Fisher Linear Discriminant (FLD) is an example of
a class specific subspacemethod that finds the optimal
linear projection for classification. Ratherthan finding
a projectionthat maximizesthe projectedvarianceas in
principalcomponenanalysisFLD determinesprojection,
y = WE x, thatmaximizestheratio betweerthebetween-
classscatterand the within-classscatter Consequently
classificationis simplifiedin the projectedspace.

Considerac-classproblem with the between-classcat-
ter matrix givenby

c
Sp = Ni(w; — pw)(p; —p)"
i=1
andthe within-classscattermatrix by

Sw = Z Z (xk — p;) (XK — l‘l‘i)T

=1 xp€X;

wherey is themeanof all samplesp; is the meanof class
i, and IV; is the numberof samplesn classi. The optimal
projectionW £ is the projectionmatrix which maximizes
the ratio of the determinanof the between-classcatterto
thedeterminanbof thewithin-classscatteiof the projections

W7 S5W|
WSy W|

W = argmax = [wy wa ... wp]

w
where {w;|i = 1,2,...,m} is the set of generalized
eigervectorsof Sp andSyw, correspondingo them largest
generalizeceigervalues{\;|i = 1,2,... ,m}. However,
the rank of Sg is ¢ — 1 or lesssinceit is the sumof ¢
matricesof rank oneor less. Thus,the upperboundon m
is ¢ — 1. To avoid the singularity onecanapply PCA first
to reducethe dimensionof the featurespaceo N — ¢, and
thenuseFLD to reducethe dimensionto ¢ — 1. This two-
stepprocedurds usedin computing“FisherFaces™[1], for
example.In our experimentswe useda single Gaussiarto
modelthe distributions of male and femaleclassesn the
resulting one dimensionalspace. The classmembership
of a samplewas then determinedusing the maximuma
posteriori probability, or equivalently by alikelihoodratio
test.

3.4 Linear and Quadratic Classifiers

Thedecisionboundaryof aquadraticclassifietis defined
by a quadraticform in x, derived throughBayesianerror
minimization. Assumingthatthe distribution of eachclass
is Gaussianthe classifieroutputis givenby

fx) = sx—p)"S (x -

[N
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Figure 2. Face alignment system
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Figure 3. Some processed FERET faces.

wherep, andX; (i = 1,2) arethe meanand covariance
matrix of therespectre Gaussiaristributions.

A linear classifieris a special caseof the quadratic
form, basedon the assumptiorthat 3; = X5 = X, which
simplifiesthe discriminanto

_ 1 _ _
FOO = (o = )T x4+ (D — 3 B )
For both classifiers,the sign of f(x) determinesclass
membershi@ndis alsoequivalentto alik elihoodratiotest.

4 Experiments

In our study 256-by-384 pixel FERET “mug-shots”
werepre-processedsinganautomatidace-processingys-
tem which compensate$or translation,scaleas well as
slightrotations.Shavn in Figure2, this systemis described
in detail in [15] and usesmaximum-likelihood estimation
for face detection, affine warping for geometric shape
alignmentand contrastnormalizationfor ambientlighting
variations. The resultingoutput “f ace-prints”in Figure 2
were standardizedo 80-by-40 (full) resolution. These
“face-prints"were further sub-sampledo 21-by-12 pixel
“thumbnails”for our low resolutionexperiments.Figure3
shavs a few examplesof processedace-prints(note that
thesefacescontainlittle or no hair information). A total
of 1755 thumbnails(1044 malesand 711 females)were
usedin our experiments. For eachclassifier the average
error ratewas estimatedwith 5-fold crossvalidation (CV)
— i.e., a 5-way datasetplit, with 4/5th usedfor training
and1/5thusedfor testing,with 4 subsequenbtations.The
averagesize of the training setwas 1496 (793 malesand
713 females)and the averagesize of the testsetwas 259
(133malesand126females).

Table 1. Experimental results with thumbnails.

Classifier Error Rate

Overall | Male [ Female
SVM with GaussianRBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.88% | 4.21% | 5.59%
Largeensemble-RBF 5.54% | 4.59% | 6.55%
ClassicaRBF 7.79% | 6.89% | 8.75%
Quadraticclassifier 10.63% | 9.44% | 11.88%
Fisherlineardiscriminant 13.03% | 12.31% | 13.78%
Nearesneighbor 27.16% | 26.53% | 28.04%
Linearclassifier 58.95% | 58.47% | 59.45%

4.1 Machine Classification

The SVM classifierwasfirst testedwith variouskernels
in orderto explore the spaceof possibilitiesand perfor
mance.A GaussiarRBF kernelwasfoundto performthe
best(in termsof errorrate),followedby a cubicpolynomial
kernelas secondbest. In the large ensemble-RBFexper
iment, the numberof radial baseswas incrementeduntil
the error fell belov a setthreshold. The averagenumber
of radialbasesn thelarge ensemble-RBRvasfoundto be
1289 which corresponddo 86% of the training set. The
numberof radial basesfor classicalRBF networks was
heuristicallysetto 20 prior to actualtraining and testing.
QuadraticLinearandFisherclassifiersvereimplemented
using Gaussiardistributionsandin eachcasea likelihood
ratiotestwasusedfor classificationTheaveragesrrorrates
of all the classifiergestedwith 21-by-12pixel thumbnails
arereportedn Tablel andsummarizedn Figure4.

SVM w/ RBF kernel

SVM w/ cubic poly. kernel
Large ensemble of RBF
Classical RBF

Quadratic classifier

Fisher linear discriminant

Nearest neighbor

Linear classifier

0 10 20 30 40 50 60
Error Rate

Figure 4. Error rates of various classifiers

The SVMs out-performedall otherclassifiersalthough
theperformancef largeensemble-RBRetworkswasclose
to SVMs. However, nearly 90% of the training setwas
retainedas radial basesby the large ensemble-RBFIn
contrast, the number of supportvectorsfound by both
SVMs was only about20% of the training set. We also
applied SVMs to classificationbasedon high resolution



Figure 5. Support faces at the boundary

images. The Gaussiarand cubic kernel SVMs performed
equally well at both low and high resolutionswith only
a slight 1% error rate difference. Figure5 shaws three
pairsof opposite(maleandfemale)supportfacesfrom an
actualSVM classifier Thisfigureis, of courseacrudelow-
dimensionatlepictionof the optimalseparatindnyperplane
(hypekrsurfaceandits associatethagins(shavn asdashed
lines). However, the supportfacesshavn arepositionedn
accordancevith their basicgeometry Eachpair of support
facesacrossthe boundarywas the closestpair of images
in the projectedhigh dimensionalspace. It is interesting
to note not only the visual similarity of a given pair but
alsotheir androgynousppearanceNaturally, thisis to be
expectedrom afacelocatednearthe boundaryof themale
andfemaledomains.As seenin Table1, all the classifiers
testedhad higher error ratesin classifyingfemales,most
likely dueto the lessprominentanddistinctfacial features
presentn femalefaces.

4.2 Human Classification

In orderto calibratethe performancef SVM classifiers,
humansubjectswere also asked to classify genderusing
bothlow andhighresolutionimages.A total of 30 subjects
(22 malesand 8 females)rangingin agefrom mid-20sto
mid-40sparticipatedn anexperimentwith high resolution
imagesand 10 subjects(6 malesand4 females)with low
resolutionimages. All subjectswereasled to classifythe
genderof 254 faces(presentedn randomorder)asbestas
they could without time constraints. Although thesetests
werenotascomprehensie asthemachinesxperimentsthe
testsetusedwith humansvasidenticalto oneof the 5-fold
CV partitionsusedin Section4.1.

Table 2. Human error rates

Genderof Error Rate
humansubject || Highresolution] Low resolution
Male 7.02% 30.87%
Female 5.22% 30.31%
Combined 6.54% 30.65%
% Error Rates
S0 BN Low-Res

25t l:l Hi-Res
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Figure 6. SVM vs. Human performance

Thehumarerrorratesobtainedn our studyaretatkulated
in Table2. ComparingTablesl and2, it is clearthatSVMs
also perform betterthan humanswith both low and high
resolutionfaces— this is more easily seenin Figure 6.
Theseresultssuggesthat the conceptof genderis more
accuratelymodeledby SVMs thanary otherclassifier It
is not surprisingthat humansubjectsperform betterwith
high resolutionimagesthan with low resolutionimages.
SVM performancehowever, wasmostly unafectedby the
changen resolution.

Figure 7 shows the top 5 mistales made by human
test subjects(the true genderis F-M-M-F-M from left to
right). Our resultsalso indicatedthat therewas a degree
of correlationbetweenthe mistales madeby SVMs and
those made by humans. Facesmisclassifiedby SVMs
were almostalways misclassifiedoy humansas well (for
all the SVM mistales, the averagehumanerror rate was
more than 30%). On the other hand, the corversewas
not generally found to be true (humansmade different
mistalesthanSVMs). Finally, we notethatSVM classifiers
performedbetter than ary single humantest subject, at
eitherresolution.

U0

Figure 7. Top five human misclassifications




5 Discussion

In this paperwe have presentedh comprehensie eval-
uation of variousclassificationmethodsfor determination
of genderfrom facial images. The non-triviality of this
task (madeeven harderby our “hairless” low resolution
faces)is demonstratedy the fact that a linear classifier
had an error rate of 60% (i.e., worsethana randomcoin
flip). Furthermoreanacceptablerrorrate (< 5%) for the
large ensemble-RBmetwork requiredstorageof 86% of
thetrainingset(SVMs requiredabout20%). Storageof the
entiredatasetn the form of the nearest-neighbarassifier
yielded too high an error rate (30%). Clearly, SVMs
succeededn the difficult task of finding a nearoptimal
genderpartition in facespacewith the addedeconomyof
asmallnumberof supportfaces.

The comparisonof machinevs. humanperformance,
shavn in Figure6, indicateghatSVMswith low resolution
imagesactuallydo better(3.4%)thanhumansubjectswith
highresolutionmageq6.5%). Thiscanbepartly explained
by the fact that hair cues(mostly missingin our dataset)
are importantfor humangenderdiscrimination. The fact
thathumanperformancedegradeswith lower resolutionis
not too surprising:ashumanspur lifetime of “training” in
genderclassificationhasbeencarried out with moderate-
to-highresolutionstimuli. The variousmachineclassifiers,
ontheotherhand,werere-trainedfor eachresolution.The
relative invarianceof SVMs to input resolutionis dueto
thefactthattheir compleity (henceperformanceflepends
primarily on the numberof training samplesand not their
dimension21].

Giventhe relative succes®f previous studieswith low
resolutionfacesit is re-assuringthat 21-by-12 faces(or
even 8-by-6 faces[20]) canin fact be usedfor reliable
genderclassification. Unfortunately mostof the previous
studiesused datasetsof relatively few faces(and even
fewer humansubjectsto testthemon). The mostdirectly
comparablestudyto oursis thatof Guttaetal. [13], which
alsousedFERET faces. With a datasetof 3000 facesat
a resolutionof 64-by-72,their hybrid RBF/Decision-Tee
classifierachiereda 4% errorrate. In our study with 1800
facesat a resolutionof 21-by-12,a Gaussiarkernel SVM
was able to achieve a 3.4% error rate. Both studiesuse
extensie crossvalidationto estimatethe errorrates.Given
ourresultswith SVMs, it is clearthatbetterperformancet
evenlower resolutionss madepossiblewith this learning
technique.
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