
Online Multiple Support Instance Tracking

Qiu-Hong Zhou Huchuan Lu Ming-Hsuan Yang
School of Electronic and Information Engineering Electrical Engineering and Computer Science

Dalian University of Technology University of California at Merced
Liaoning, China California, USA

Abstract— We propose an online tracking algorithm in which
the support instances are selected adaptively within the multiple
instance learning framework. The support instances are selected
from training 1-norm support vector machines in a feature
space, thereby learning large margin classifiers for visual
tracking. An algorithm is presented to update the support
instances by taking image data obtained previously and recently
into account. In addition, a forgetting factor is introduced
to weigh the contribution of support instances obtained at
different time stamps. Experimental results demonstrate that
our tracking algorithm is robust in handling occlusion, abrupt
motion and illumination.

I. INTRODUCTION

Visual tracking plays a crucial role in numerous vision
applications including intelligent surveillance, human motion
analysis, interaction video processing, to name a few [20].
Notwithstanding demonstrated success in the literature, vi-
sual tracking remains a challenging problem as effective and
efficient algorithms entail the need to account for appear-
ance variation caused by illumination change, varying pose,
cluttered background, motion blur and occlusion.

Tracking algorithms can be categorized to into generative
and discriminative approaches. Generative tracking methods
model appearances of objects using intensity or features,
and predict the object location by finding the image patch
most similar to the target. Numerous algorithms have been
proposed with demonstrated success, e.g., [5] [9] [15] [18]
[14] [4], to name a few.

Discriminative algorithms formulate visual tracking as a
classification problem with local search in which the optimal
decision boundary for separating the target from the back-
ground is inferred. The support vector tracking algorithm [2]
integrates a trained support vector machine (SVM) within the
optical flow framework for predicting target locations. Al-
though impressive empirical results have been demonstrated,
it requires a large hand-labeled data set for training, and
once trained, the SVM classifier is not updated. To adapt
to object appearance change, discriminative trackers have
been extended to update classifiers with online learning. In
[8], a confidence map is constructed by finding the most
discriminative color features in each frame for separating
the target object from the background. In [3], an online
method is proposed to learn an ensemble of weak classifiers
for visual tracking. Grabber et al. [12] present a tracking
method using the online AdaBoost algorithm, which achieves
real-time performance. Nevertheless, the above-mentioned
methods rely mostly on the recently arrived data and thus

the classifier may not be correctly trained if the data is noisy
due to factors such as occlusion and motion blur.

Multiple-instance learning (MIL) is introduced by Diet-
terich et al. [11] in the context of drug activity prediction.
It provides a framework to handle scenarios where labels
of training data are naturally represented by sets of samples,
instead of individual ones. In recent years numerous learning
problems, e.g., image database retrieval [16], image catego-
rization [7], and object detection [19], have been successfully
proposed within the multiple instance learning framework.
With this general framework, generative approaches based
on inductive learning [11], diversity density [16] [21] have
been proposed. Furthermore, discriminative classifiers such
as support vector machines [1] [7] [6], and AdaBoost [19]
have been incorporated within the multiple instance learning
framework.

Within the multiple instance leaning framework, the noisy-
or model is with boosting methods to integrate the proba-
bility of each bag for face detection [19]. Babenko et al.
[4] develop an online multiple instance learning algorithm
for visual tracking Although their results show that MIL
helps in reducing drifts for visual tracking, the instances in
bags are not selected effectively due to the use of noisy-
or model. While the noisy-or model is used to account
for ambiguities in labeling positive instances (e.g., object
location for visual tracking), it inevitably includes instances
that are less effective for classification. To eliminate such
unwanted instances, we propose an online algorithm that
selects important instances that support the classifier, and call
it the Online Multiple Support Instances Tracking (OMSIT)
method.

In this paper, we use the 1-norm SVMs [22] for learning
sparse and effective support instances in the presence of
redundant noisy samples. These support instances provide a
compact representation of the SVM classifier which is used
for finding the most similar image patches for visual tracking.
Our update algorithm takes into account the recently found
support instances and those found in previous time stamps.
A forgetting factor is introduced in order to emphasize
the importance of the most recent support instances in the
update process. Our tracker is bootstrapped with the IVT
method [18] for collecting positive and negative samples in
the first few frames. Some outputs with higher confidence
value from the IVT are put in the positive bag, and image
patches randomly sampled from an annular region of the
target object are considered as negative instances to negative



bags. Next, the instances of each bag are mapped to a
feature space based their similarity measure, and the 1-norm
SVM is applied to select effective features for constructing
the large margin classifier. The 1-norm SVMs are updated
constantly (e.g., every 5 frames) to select the most effective
support instances so as to account for appearance change. In
addition, a forgetting factor is introduced to to avoid drifting
problem by focusing on the most recent instances. Empirical
evaluations against state-of-the-art algorithms show that our
method is able to track objects effectively and efficiently.

II. PRELIMINARIES

As the proposed algorithm is developed within the multi-
ple instance learning framework with 1-norm support vector
machines, we first describe the preliminaries of these algo-
rithms and then our approach in the next section.

Learning algorithms for binary classification prob-
lems are often posed within a probabilistic framework
in which p(y|x) is estimated from a set of training
data, {(x1,y1) , . . . ,(xn,yn)}, where each xi is an instance,
and yi ∈ {0,1} is a binary label. In the multiple in-
stance learning framework the training data is formed as
{(X1,y1), . . . ,(Xn,yn)} where Xi = {xi1, . . . ,xim} is a bag (or
set) of instances and yi is a bag label. The main difference is
that examples are presented in sets (“bags”), and labels are
provided for the bags rather than individual instances. The
essence of MIL is that a bag is labeled positive if it contains
at least one positive instance. On the other hand, a bag is
labeled negative if all the instances are negative [11].

In this work, a positive bag i is denoted as B+
i and the

j-th instance in that bag as x+i j . The bag B+
i consists of

n+i instances x+i j , j = 1, . . . ,n+i . Similarly, B−i , x−i j , and n−i
represent a negative bag, the j-th instance in bag i, and the
number of instances in bag i, respectively. When the label
of the bag does not matter in description, it is referred to as
Bi with instances as xi j. The number of positive (negative)
bags is denoted as l+(l−). The diverse density framework,
derived in [16], is based on the assumption that there exists a
single target concept from which individual instances can be
labeled correctly. Let a given concept class be c, the diverse
density D of a concept t ∈ c is defined as the probability that
the concept t is the target concept given the training bags
[16]:

D(t) = Pr(t/B+
1 , . . . ,B

+
l+ ,B

−
1 , . . . ,B

−
l−). (1)

Applying Bayes’ rule to (1) and further assuming that all
bags are conditionally independent given the target concept,
it can be shown that [16]:

D(t) =
Pr(t)∏

l+
i=1 Pr(B+

i /t)∏
l−
i=1 Pr(B−i /t)

Pr(t/B+
1 , . . . ,B

+
l+ ,B

−
1 , . . . ,B

−
l−)

=

[
∏

l+
i=1 Pr(B+

i )∏
l−
i=1 Pr(B−i )

Pr(B+
1 , . . . ,B

+
l+ ,B

−
1 , . . . ,B

−
l−)Pr(t)l++l−−1

]
×
[
∏

l+

i=1 Pr(t/B+
i )∏

l−

i=1 Pr(t/B−i )
]
.

(2)

Assuming a uniform prior on t, maximizing D(t) is equiv-
alent to maximizing ∏

l+
i=1 Pr(t/B+

i )∏
l−
i=1 Pr(t/B−i ), Maron

[16] proposed that if c is a single point concept class, where
every concept corresponds to a single point in a big set, the
maximum likely estimates can be computed by

Pr(t
/

B+
i )→max

j
exp

−
∥∥∥x+i j − t

∥∥∥2

σ2


Pr(t

/
B−i )→ 1−max

j
exp

−
∥∥∥x−i j − t

∥∥∥2

σ2

 ,

(3)

where σ is a predefined factor and the maximum likelihood
of D can be estimated. Although this algorithm is extended
with the EM algorithm [21], neither of them guarantee the
global optimality. In order to obtain the optimal estimates,
multiple runs with different initializations are necessary.
Consequently, the process of such maximum likelihood es-
timates is often very time consuming.

The similarity measure between two instances, xi and
x j, is defined by s(xi,x j) = exp

(
− 1

σ2

∥∥xi− x j
∥∥2

2

)
. Based on

this, the similarity between an instance xk and a bag Bi is
determined by xk and the closest instance in the bag as:

s(xk,Bi) = max
j

exp

(
−
∥∥xi j− xk

∥∥2

σ2

)
. (4)

Using all instances in the training bags {x1, . . . ,xk, . . . ,xN},
and a bag Bi is mapped to feature vector: f (Bi) =
[s(x1,Bi),s(x2,Bi), . . . ,s(xn,Bi)]

>, the mapping is described
by [

f+1 , . . . , f+l+ , f−1 , . . . , f−l−
]

=
[

f (B+
1 ), . . . , f (B+

l+), f (B+
1 ), . . . , f (B−l−)

]
=


s(x1,B+

1 ) . . . s(x1,B−l−)

s(x2,B+
1 ) . . . s(x2,B−l−)

. . .

s(xn,B+
1 ) . . . s(xn,B−l−)

 .
(5)

where each column represents a bag, and the k-th feature in
the mapped feature space is the k-th row in the above matrix,

s(xk, ·) =
[
s(xk,B+

1 ), . . . ,s(xk,B+
l+),(xk,B−1 ), . . . ,(xk,B−l−)

]
.

(6)
If xk has high similarity score to some positive bags and
low similarity score to some negative bags, s(xk, ·) provides
useful information in determining the decision boundary, and
is considered as a support instance, which will be derived in
the following section.

III. PROPOSED ALGORITHM

In our algorithm, each instance is mapped to a feature
space where its similarity score is computed with respect to
each bag. The support instances are then extracted via the
1-norm SVM [22] and used for locating objects in visual
tracking. A forgetting factor is introduced in order to weigh
more on the most recent support instances. We propose an
effective update method using the newly arrived support
instances. Figure 1 shows the flow chart of our tracking
algorithm and the major steps are summarized in Figure 2.



select 
corresponding 

support instances

using 1-norm SVM to 
select features

candidates

ensamble support 
instances into the 

set

support 
instance set

target
 location

new training 
data

training data
instance-based 
feature mapping

Fig. 1. Flowchart of the proposed OMSIT algorithm.

A. Initialization
Most tracking algorithms are initialized manually or with

object detectors. For efficiency, our algorithm is bootstrapped
with some outputs from the IVT where only a small number
of particles are drawn (e.g., 300 in our experiments). For
each particle, we extract its corresponding image patch, and
calculate its confidence value (i.e., likelihood) using the
current observation model. In the initialization process, the
IVT is used to track the target object in the first few frames
for collecting samples to form positive and negative bags.
The samples with higher confidence values from the IVT
model are used to form positive bags. The patches randomly
sampled from an annular region of the target object are
considered as negative instances of the negative bags. The
samples collected in the initialization process are then used
to train a 1-norm SVM for classification.

B. Feature Extraction and Feature Mapping
We use the histogram of oriented gradients (HOG) [10]

to represent objects. As described above, image patches for
positive and negative instances are sampled to form a few
bags. In this work, we use a small set of positive and negative
instances as well as bags to form a feature matrix for training
1-norm SVM. For example, we typically use 5 positive and 5
negative bags with a total of 500 instances for initialization.
Thus, we have 500×10 feature matrix as follows:

s(x1,B+
1 ) . . . s(x1,B−l−)

s(x2,B+
1 ) . . . s(x2,B−l−)

. . .

s(xn,B+
1 ) . . . s(xn,B−l−)

 . (7)

As this feature matrix is rather small, this 1-norm SVM can
be trained efficiently.

C. 1-norm SVM and Support Instance Selection
The 1-norm SVM exploits the `1-norm (i.e., Lasso)

penalty term in deriving a sparse large margin classifier
[22], which has been shown to be effective in the presence
of redundant noisy features [22] [6]. Within the multiple
instance learning framework, the 1-norm SVM can be trained
with features mapped from positive and negative bags as

y = sign
(

w> f +b
)
, (8)

where w and b are model parameters and f corresponds to
the mapped feature of a bag in the feature space. While
conventional SVMs entail the need of solving a quadratic
program and 1-norm SVMs are trained via a linear program,
the MIL 1-norm SVM is formulated as the following opti-
mization problem [1] [6]:

min
w,b,ξ ,η

λ

n

∑
k=1
|wk|+C1

l+

∑
i=1

ξi +C2

l−

∑
j=1

η j

s.t.
(

w> f+i +b
)
+ξi > 1, i = 1, . . . , l+,

−
(

w> f−i +b
)
+ηi > 1, i = 1, . . . , l−,

ξi,η j > 0, i = 1, . . . , l+, j = 1, . . . , l−,

(9)

where ξi and ηi are slack variables for positive and negative
bags, and C1 as well as C2 are penalty weights for false
positives and negatives. This optimization problem can be
posed and solved as a linear program in a way similar to
[22] [6]. Assume that w∗ and b∗ are the optimal parameters
of (9), the magnitude w∗ determines the weight of the k-th
feature whereas most elements of the w∗ are zero as a result
of using 1-norm penalty in deriving a sparse SVM. That is,
we only need to retain a set of indexes for nonzero elements
of w∗:

Λ = {k : |w∗k |> 0} . (10)

Consequently, xk can be classified using MIL 1-norm SVM
with respect to bag Bi by

y = sign

(
∑
k∈Λ

w∗ks(xk,Bi)+b∗
)
. (11)

D. Locate Object Using Support Instances

An instance in bag Bi is assigned to the positive class
(negative class) if its contribution to ∑k∈Λ w∗ks(xk,Bi) of (11)
is greater (less) than or equal to a threshold. For efficient
visual tracking, we aim to find a minimal set of support
instance from the ones extracted from 1-norm SVMs. That
is, we aim to reselect the most important instances from
the ones on the decision boundaries. Such approaches have
also been exploited for fast object detection [17] and image
categorization [6]. We define an index set:

Ψ=

{
j∗ : j∗ = argmax

j
exp

(
−
∥∥xi j− xk

∥∥2

σ2

)
,k ∈ Λ,xi j ∈ Bi

}
.

(12)
From this set, for bag Bi the instances in the set Ψ are
effective, and other instances xi j ( j∗ /∈Ψ) that do not affect
the value of ∑k∈Λ w∗ks(xk,Bi) can thus be discarded. Further-
more, xi j ( j∗ ∈Ψ) can be a maximizer of (12) for different
xk, k ∈ Λ, and then for each ( j∗ ∈Ψ), we can find a smaller
set of instances as follows:

Λ j∗ =

{
k : k ∈ Λ, j∗ = argmax

j
exp

(
−
∥∥xi j− xk

∥∥
σ2

2)}
.

(13)



Initialization
Initialize parameters including a region of interest and parame-
ters of IVT
for i = 1 to n (n is usually set to 5)

1) Rank the tracking outputs of IVT, and those with higher
probability are considered as positive instances to form
positive bags. Randomly sample patches from an annular
region of the current target object and use them as
negative instances to form negative bags.

2) Extract HOG features from positive and negative in-
stances.

3) Construct feature matrix (7) and put the instances into a
training set.

end
Train 1-norm SVMs using (9), and select support instances.

Online tracking
for i = n+1 to the end of the sequence

1) Sample candidates and extract HOG features.
2) Determine the index set using (13) and the corresponding

similarity score using (14).
3) Determine the object location in current frame by weight-

ing the support instances found in the current and previous
frames with (15), (16) and (17).

4) Extract positive and negative instance to accumulate train-
ing data into training data set.

when periodic update takes place
1) Update the 1-norm SVMs and select new support in-

stances by (9).
2) Update the set of support instances.
3) Empty the current training data set.
end

end

Fig. 2. Proposed Online Multiple Support Instance Tracking algorithm.

After retaining only the most important and effective
instances, we can compute s(xk,Bi) efficiently using
s
(
xk,
{

xi j∗
})

for (k ∈ Λ j∗), i.e.,

s(xk,Bi) = s
(
xk,
{

xi j∗
})

. (14)

For efficient visual tracking, our goal is to find the most
important support instances, and thus we use (13) to reselect
support instances rather than every instance in Λ. The
contribution of a support instance xs is computed by

h f (xs) = ∑
k∈Λ j∗

w∗ks(xk,xs)

mk
, (15)

where mk represents the number of maximizers for the xk.
That is, the contribution of xs is computed by considering
both its similarity to existing support instances xk and the
number of times xk is selected. As h f (xs) is computed by the
current support instances whereas we have support instances
from previous frames, it is important to retain only the most
relevant ones in the context of visual tracking. If we retain
all previous training data in 1-norm SVMs training process,
the time complexity grows significantly. For visual tracking,
we use an update method for selecting support instances
(described in Section III-E) that takes both performance and

efficiency into account. The weighted MIL 1-norm SVM is
computed by

H(xs) = ∑
f

e−
1
f h f (xs), (16)

where f is the number of frames corresponding to support
instances, and we select support instances periodically (e.g.,
f is a multiple of 5 in our experiments). The term, e−

1
f , plays

the role as a forgetting factor. It puts more weight on the
newly selected support instances and retains the contribution
of support instances found in previous frames.

E. Updating 1-norm SVMs and Renew Support Instances Set

We update the 1-norm SVM periodically and obtain new
support instances to account for appearance variation. This
is of great importance as the object appearance may undergo
drastic change due to variation in illumination, pose, oc-
clusion and background scene. The weights of new support
instances are determined with (15) and the weighted SVM
is computed by (16).

The new support instances are inferred from a training
set collected using a sampling strategy similar to [4]. For
each new frame we crop out a set of image patches X s ={

x |s >
∥∥∥l(x)− l∗f−1

∥∥∥} as candidates where l∗f−1 denotes the
target location in the previous frame. We compute H(x) for
all x ∈ X s, then update the current location l∗f by

l∗f = l
(

argmaxH(x)
x∈Xs

)
. (17)

Once the target location is, we crop out a set of patches
X r =

{
x |r >

∥∥∥l(x)− l∗f
∥∥∥} for positive instances to form a

positive bag, and patches from an annular region X r,β ={
x |β >

∥∥∥l(x)− l∗f
∥∥∥> r

}
as negative instances. Each neg-

ative is put into its own negative bag. The radius r is the
same as before and β is another scalar (β > r).

During each update, we accumulate a number of bags (e.g.,
5 positive and 5 negative bags in our experiments) to train 1-
norm SVMs and select new support instances. To ensure the
efficiency and performance, we only use new bags obtained
in the recent frames, but retain all the support instances found
in previous frames. We employ (15) and (16) to select the
support instances. Figure 3 illustrates support instances that
are updated using test sequence D. Note that the support
instances change significantly as there are drastic scene
variations in the image sequence. This also demonstrates the
importance of online update of support instances.

IV. EXPERIMENTS

We present the implementation details, experimental re-
sults, and discussion in this section.

A. Implementation Details

In our experiments, we use HOG features to represent
the tracking targets. The number of particles is set to 300
for initialization with IVT. Each positive bag contains 50
instances among which at least of them is a positive one,
and each negative bag contains 50 negative instances. Both



# 1 # 150 # 180# 110

Fig. 3. Online support instances set. We update the 1-norm SVMs and select support instances into the set periodically.

A. Deer

B. Girl

Deer Girl

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

Fig. 4. Tracking results when the objects undergo pose variation with heavy occlusion (red: OMSIT, blue: NPI, light blue: MILTrack).

penalty weights C1 and C2 of (16) are set to 0.5. The
parameters for sampling instances, s, r and β , are set to
20, 8, and 40, respectively. We utilize the CPLEX toolbox
for solving linear programming problems with 1-norm SVMs
where σ is set to 103. In order to validate that the proposed
algorithm can be applied to different sequences without
tuning, all these parameters are fixed in the experiments. In
addition, we evaluate our algorithm with other methods using
the videos available in the public domain except sequence B.
To demonstrate the necessity and merits of the our update
method, we carry out a series of experiments with no prior
information, i.e., the support instances obtained in previous
frames. Namely, (16) is reduced to H(xs)= h f (xs) in the NIP
tracker. Our MATLAB implementation currently runs on a
Pentium 4 PC with 2GB memory at 2 to 5 frames per second.
As mentioned above, by solving linear programs of 1-norm
SVMs instead of quadratic programs of standard SVMs,
our method reduces computation complexity significantly.
We implement the proposed online multiple support instance
tracking (OMSIT) algorithm, and its variant with no previous
information (NPI). The MATLAB codes and data sets are
available at our web sites.

B. Empirical Results

We evaluate the empirical tracking performance of our
method with the MILTtrack algorithm [4], the online Ad-
aBoost tacking method [12] (OAB), and the SemiBoost
tracker [13] using the code available on the web for fair eval-
uation. The tracking results of our algorithm, NPI tracker and
MILTrack are shown with solid red, dashed blue, and dashed
light blue boxes, respectively. Table I lists the sequences
evaluated in our experiments and their characteristics. The
empirical results are presented in the following sections, and
videos can be found on our web sites.

TABLE I
TRACKING SEQUENCES IN OUR EXPERIMENTS.

Sequence Frames Main Challenges
A. Deer 72 pose variation, background clutter
B. Girl 187 occlusions
C. Shopper 320 abrupt motions
D. Bono 182 illumination changes
E. Woman 103 occlusions
F. Man 500 occlusions, similar objects
G. Santana 181 varying illumination
H. Female 898 occlusions



C. Shopper

D. Bono

Shopper Bono

0 50 100 150 200 250 300 350
0

5

10

15

20

25

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

Fig. 5. Tracking results when the objects undergo abrupt motion and illumination (red: OMSIT, blue: NPI, light blue: MILTrack).

Pose Variation and Occlusion
Figure 4 shows the tracking results of a deer galloping
through water (sequence A) and a girl whose face is par-
tially occluded (sequence B). The target object undergoes
rapid motion with similar deers in the scene. The proposed
algorithm is able to track the deer throughout the entire
sequence whereas the NPI tracker fails at frame 25 and
the MILTrack method loses track of the target at frame 40.
The sequence B contains a girl whose face is constantly
occluded by a magazine. From frame 160 to 180, the face of
this girl is almost fully occluded. In the presence of heavy
occlusion, our OMSIT algorithm is still able to track the
target in all frames. At frame 33, the NPI tracker mistakenly
tracks the magazine cover when the girl reappears from the
occlusion. It can be explained that the NPI tracker mistakenly
updates its model with most recent instances from image
patches of the magazine cover without using the instances
learned in previous frames (i.e., without using (15) and (16)).
Consequently, the tracker ends up tracking the image patch
of the magazine cover. We note that the MILTrack performs
well in this sequence due to the use of Haar-like features
and online update.

Abrupt Motion and Illumination Change
Figure 5 shows how the proposed method performs when
the targets undergo abrupt motions and illumination change.
At the end of the sequence C, an abrupt motion occurs and
the MILTrack method drifts off the target. Nevertheless, our
method is able to handle abrupt motion and achieve good
performance. The sequence D consists of a singer performing

on stage with drastic lighting change as a result of neon and
spot lights. It is worth noticing that the images are acquired
with flying camera shots, thereby causing significant appear-
ance change of the signer. Our tracker is able to track the
singer reasonably well in this challenging sequence whereas
the NPI tracker fails at frame 60 and the MILTrack method
gradually loses track of the target as shown in Figure 5.

Scale Change and Severe Occlusion
We evaluate three trackers using sequences from the
CAVIAR data set and present the results in Figure 6. As
the scenes in sequence E are rather static without significant
occlusion, all the trackers perform reasonably well. On the
other hand, sequence F is rather challenging as it contains
significant occlusion and scale change. Our method tracks
the target person well until the end of this sequence. The
MILTrack method loses the target when another person
occludes the target subject at frame 221, and the NPI misses
the target at the same frame. The reason that our tracker
performs well can be explained as follows. First, our tracker
is able to reduce drifts with the use of multiple support
instances. Second, the proposed algorithm uses 1-norm SVM
to update support instances that account for large and drastic
appearance change. In addition, our method introduces a
forgetting factor for retaining previous support instances,
thereby reducing the effects of noisy data during update.
Finally, Figure 7 shows the results from sequences G and
F. The proposed algorithm is able to track faces undergoing
large lighting variation and heavy occlusion.



E. Woman

F. Man

Woman Man

0 20 40 60 80 100 120
0

5

10

15

20

25

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Frame

C
en

te
r E

rr
or

s 
(in

 p
ix

el
)

 

 

NPI
MIL Tracker
our approach

Fig. 6. Tracking results when the objects undergo scale change and heavy occlusion (red: OMSIT, blue: NPI, light blue: MILTrack).

G. Santana

H. Female

Fig. 7. Tracking results of the proposed OMSIT method (red: OMSIT, blue: NPI, light blue: MILTrack).

Fig. 8. Tracking results using Online-AdaBoost Tracker [12] (OAB) on the first row, and SemiBoost Tracker [13] on the second row.



C. Discussion

We evaluate the performance of the proposed OMSIT
algorithm against the tracker with no previous instances
Tracker (NPI), MILTrack [4], online AdaBoost tracker [12]
(OAB), and SemiBoost method [13] using publicly available
data sets. The ground truth center location of the target object
in each sequence are manually labeled. The average tracking
error are presented in Table II where the best and results are
shown with bold red fonts, and the second best ones are
shown with blue fonts.

TABLE II
AVERAGE CENTER LOCATION ERRORS (PIXELS).

Image sequence OMSIT NPI MIL OAB Semi
A. Deer 7.7 117 189 49 68
B. Girl 5 79 26 9 6
C. Shopper 4 21 7 8 50
D. Bono 12 79 66 174 165
E. Woman 8 12 8 12 19
F. Man 6 28 12 73 14

In all sequences our OMSIT algorithm outperforms the
Online AdaBoost and SemiBoost Trackers, and in most cases
outperforms or ties with the MILTrack method. Figure 8
illustrates some failure results of the OAB and SemiBoost
algorithms using the same sequences in our experiments
(shown in Figure 4-6). The MILTrack method updates weak
classifiers with all instances including redundant and irrel-
evant ones, and consequently the discriminative power of
the classifier may gradually degrade. Similarly, the OAB
and SemiBoost algorithms rely mostly on all the samples
obtained online, and consequently these methods do not work
well when there is an abrupt motion or heavy occlusion. One
contribution of this paper is the use of support instances
to represent the target object. As the support instances are
the ones that reside on decision boundaries, they provide
more critical and representative information than other ones.
The second contribution of this work is we propose an
update method that takes all previous and most recent support
instances into account. A forgetting factor is used to properly
weigh the contribution of previous support instances, which
is important in the presence of occlusion. Otherwise, the
occluded image patches may be mistakenly considered as
the “correct” and “recent” instances for updating the target
object, thereby resulting in drifts when the target reappears
in the scene without occlusion.

V. CONCLUSIONS

In this paper, we propose an online multiple support
instance tracking algorithm in which instances are mapped
into features for training 1-norm SVMs and selecting a
compact set of instances. These support instances are used to
locate the target in each frame. The update method includes
training 1-norm SVMs and reselecting support instances in
order to account for appearance change for robust visual
tracking. A forgetting factor is used to weigh the contribution
of previous support instances, which facilitates in handling

occlusion. Our future work will extend this algorithm in
several aspects. First, we aim to derive more robust and in-
formative features for object representation. Second, we will
extend the proposed algorithm for tracking multiple objects.
Finally, we will apply the proposed multiple support instance
algorithm to other problems including image classification,
image retrieval and object detection.

REFERENCES

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector
machines for multiple-instance learning. In Advances in Neural
Information Processing Systems, pages 561–568, 2002.

[2] S. Avidan. Support vector tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(8):1064–1072, 2004.

[3] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(2):261–271, 2007.

[4] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online
multiple instance learning. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 983–990, 2009.

[5] M. J. Black and A. D. Jepson. Eigentracking: Robust matching
and tracking of articulated objects using a view-based representation.
International Journal of Computer Vision, 26(1):63–84, 1998.

[6] Y. Chen, J. Bi, and J. Z. Wang. Miles: Multiple-instance learning via
embedded instance selection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28:1931–1947, 2006.

[7] Y. Chen and J. Z. Wang. Image categorization by learning and
reasoning with regions. Journal of Machine Learning Research,
5:913–939, 2004.

[8] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of discrim-
inative tracking features. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10):1631–1643, 2005.

[9] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(5):564–577, 2003.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 886–893, 2005.

[11] T. G. Dietterich, R. H. Lathrop, and L. T. Perez. Solving the multiple-
instance problem with axis parallel rectangles. Artificial Intelligence,
89(1-2):31–71, 1997.

[12] H. Grabner and H. Bischof. On-line boosting and vision. In
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 260–267, 2006.

[13] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line
boosting for robust tracking. In Proceedings of European Conference
on Computer Vision, pages 234–247, 2008.

[14] B. Han, Y. Zhu, D. Comaniciu, and L. S. Davis. Visual tracking
by continuous density propagation in sequential Bayesian filtering
framework. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(5):919–930, 2009.

[15] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online
appearance models for visual tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(10):1296–1311, 2003.

[16] O. Maron. Learning from ambiguity. PhD thesis, Massachusetts
Institute of Technology, 1998.

[17] S. Romdhani, P. H. S. Torr, B. Schölkopf, and A. Blake. Computation-
ally efficient face detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 695–700, 2001.

[18] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning
for robust visual tracking. International Journal of Computer Vision,
77(1-3):125–141, 2008.

[19] P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting
for object detection. In Advances in Neural Information Processing
Systems, pages 1417–1426, 2005.

[20] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM
Computing Surveys, 38(4):1–45, 2006.

[21] Q. Zhang and S. A. Goldman. Em-dd: An improved multiple-instance
learning technique. In Advances in Neural Information Processing
Systems, pages 1073–1080, 2001.

[22] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector
machines. In Advances in Neural Information Processing Systems,
pages 49–56, 2003.


