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Abstract

Principal Component Analysis and Fisher Linear
Discriminant methods have demonstrated their success
in face detection, recognition and tracking. The repre-
sentations in these subspace methods are based on sec-
ond order statistics of the image set, and do not address
higher order statistical dependencies such as the rela-
tionships among three or more pizels. Recently Higher
Order Statistics and Independent Component Analysis
(ICA) have been used as informative representations
for visual recognition. In this paper, we investigate the
use of Kernel Principal Component Analysis and Ker-
nel Fisher Linear Discriminant for learning low dimen-
sional representations for face recognition, which we
call Kernel Figenface and Kernel Fisherface methods.
While Eigenface and Fisherface methods aim to find
projection directions based on second order correlation
of samples, Kernel FEigenface and Kernel Fisherface
methods provide generalizations which take higher or-
der correlations into account. We compare the perfor-
mance of kernel methods with classical algorithms such
as Eigenface, Fisherface, ICA, and Support Vector Ma-
chine (SVM) within the context of appearance-based
face recognition problem using two data sets where im-
ages vary in pose, scale, lighting and expression. Fx-
perimental results show that kernel methods provide
better representations and achieve lower error rates for
face recognition.

1 Motivation and Approach

Subspace methods have demonstrated their success
in numerous visual recognition tasks such as face de-
tection, face recognition, 3D object recognition, and
tracking. In particular, Principal Component Analysis
(PCA) [30] [17], and Fisher Linear Discriminant (FLD)
[6] methods have been applied to face recognition with
impressive results. While PCA aims to extract a sub-
space in which the variance is maximized (or the re-
construction error is minimized), some unwanted vari-
ations (due to changes in lighting, facial expressions,
viewing points, etc.) may be retained (See [8] [10] for
examples). It has been observed that in face recog-
nition the variations between the face images of the

same person due to illumination and viewing direction
are almost always larger than image variations due to
the changes in face identity [1]. Therefore, while the
PCA projections are optimal in a correlation sense (or
for reconstruction from a low dimensional subspace),
these eigenvectors or bases may be suboptimal from
the classification viewpoint.

Representations of Eigenface [30] (based on PCA)
and Fisherface [6] [32] [27] (based on FLD) methods
encode pattern information based on second order de-
pendencies, i.e., pixel-wise covariance among the pixels,
and are insensitive to the dependencies among mul-
tiple (more than two) pixels in the samples. Higher
order dependencies in an image include nonlinear re-
lations among the pixel intensity values, such as the
relationships among three or more pixels in an edge
or a curve, which may capture important information
for recognition. Several researchers have conjectured
that higher order statistics may be crucial to better
represent complex patterns. Recently, Higher Order
Statistics (HOS) have been applied to visual learning
problems. Rajagopalan et al. used HOS of the images
of a target object to get a better density estimation.
Experiments on face detection [22] and vehicle detec-
tion [21] showed comparable, if not better, results than
PCA-based methods.

The concept of Independent Component Analysis
(ICA) maximizes the degree of statistical independence
among output variables using contrast functions such
as Kullback-Leibler divergence, negentropy and cumu-
lants [11]. A neural network algorithm (i.e., infomax
learning rule) to carry out ICA was proposed by Bell
and Sejnowski [7], and was applied to face recogni-
tion [3]. Although the idea of extracting higher order
(nonlinear) statistical dependencies in the ICA-based
face recognition method is attractive, the assumption
that the face images comprise of a set of indepen-
dent basis images (or factorial code) is not intuitively
clear. In [3] Bartlett et al. showed that ICA-based ap-
proach outperform PCA-based method in face recog-
nition using a subset of frontal view FERET face im-
ages. However, Moghaddam showed that ICA-based



approach does not provide significant advantage over
PCA-based method [16]. The experimental results sug-
gest that seeking non-Gaussian and independent com-
ponents may not necessarily provide a better represen-
tation for face recognition.

One reason for the recent success of Support Vector
Machine (SVM) algorithms is the kernel trick which
provides an efficient way to compute nonlinear features
of samples, thereby yielding a rich representation (or
one can view this as projecting samples from an input
space to a higher dimensional feature space). Never-
theless, it is clear that not all these nonlinear features
are essential for recognition or classification purpose
in most applications (See also [31] on feature extrac-
tion for SVM). In [25], Scholkopf et al. extended the
classical PCA to Kernel Principal Component Analysis
(KPCA). Empirical results on digit recognition using
MNIST data set and object recognition using a chair
database showed that Kernel PCA is able to extract
nonlinear features and thus provided better recogni-
tion results. Baudat and Anouar [5], Roth and Stein-
hage [23], and Mika et al. [15] applied the kernel trick
to FLD and proposed Kernel Fisher Linear Discrimi-
nant (KFLD) method. Their experiments showed that
KFLD is able to extract the most discriminant features
in the feature space, which is equivalent to extracting
the most discriminant nonlinear features in the original
input space.

In this paper we seek a method that not only ex-
tracts higher order statistical dependencies of samples
as features, but also maximizes the class separation
when we project these features to a lower dimensional
space for efficient recognition. Since much of the im-
portant information may be contained in the high order
dependencies among pixels of a face image, we investi-
gate the use of Kernel PCA and Kernel FLD for face
recognition, which we call Kernel Eigenface and Kernel
Fisherface methods, and compare their performance
against the standard Eigenface, Fisherface, [CA-based
and SVM-based methods. In the meanwhile, we ex-
plain why kernel methods are suitable for visual recog-
nition tasks such as face recognition.

2 Kernel Principal Component Analy-
sis
Given a set of m centered (zero mean, unit variance)
samples xi, X, = [Tk1,---,Trn]? € R, PCA aims to
find the projection directions that maximize the vari-
ance of a subspace which is equivalent to finding the
eigenvalues from the covariance matrix, C,

Aw = Cw (1)

for eigenvalues A > 0 and eigenvectors w € R". In
Kernel PCA, each vector x is projected from the input

space, R™, to a high dimensional feature space, R, by
a nonlinear mapping function: ® : R* — Rf, f > n.
Note that the dimensionality of the feature space can
be arbitrarily large. In R/, the corresponding eigen-
value problem is

Iw? = C*w? (2)

where C'? is a covariance matrix. All solutions w® with
A # 0 lie in the span of ®(x1), ..., (X, ), and there
exist coefficients «; such that

w? = Z a;P(x;) (3)

Denoting an m x m matrix K by
Kij = k(xi, x5) = ®(xq) - 2(x;) (4)
, the Kernel PCA problem becomes

mMKa=K’a = mla=Ka (5)
where « denotes a column vector with entries
Qai,...,0,. The above derivation assume that all the
projected samples ®(x) are centered in Rf. See [25]
for a method to center the vectors ®(x) in R/.

Note that classical PCA is a special case of Ker-
nel PCA with first order polynomial kernel. In other
words, Kernel PCA is a generalization of classical PCA
since different kernels can be utilized for different non-
linear projections.

We can now project the vectors in R/ to a lower
dimensional space spanned by the eigenvectors w®, Let
x be a test sample whose projection is ®(x) in R/, then
the projection of ®(x) onto the eigenvectors w? is the
nonlinear principal components corresponding to ®:

m m

whB(x) =Y 0i(R(x) - B(x)) = Y aik(x;,%) (6)

i=1 =1

In other words, we can extract the first ¢ (1 < g < m)
nonlinear principal components (i.e., eigenvectors w?)
using the kernel function without the expensive opera-
tion that explicitly projects samples to a high dimen-
sional space R/. The first ¢ components correspond to
the first ¢ non-increasing eigenvalues of (5). For face
recognition where each x encodes a face image, we call
the extracted nonlinear principal components Kernel
Eigenfaces.

3 Kernel Fisher Linear Discriminant

Similar to the derivations in Kernel PCA, we assume
the projected samples ®(x) are centered in R/ (See
[25] for a method to center the vectors ®(x) in RY),



we can formulate the equations that use dot products
for FLD only. Denoting the within-class and between-
class scatter matrices by Sg, and S%, and applying
FLD in kernel space, we need to find eigenvalues A and
eigenvectors w® of

ASpw? = Spw? (7)
, which can be obtained by

W<I> TSCI> W<I>
Waer = argnv%%x”((‘y(gT—% =[wl...wr] (8)
where {w®|i = 1,2,...,m} is the set of generalized
eigenvectors corresponding to the m largest generalized
eigenvalues {\;|i = 1,2,...,m}.

Consider a c-class problem and let the r-th sample
of class t and the s-th sample of class u be x;, and X
respectively (where class ¢ has [; samples and class u
has [,, samples), we define the kernel function:

(krs)tu = k(xtraxus) = Q(Xtr) - q>(Xus) (9)

Let K be a m x m matrix defined by the elements
(Kpu)iZi0%, where Kyy is a matrix composed of dot

c?

products in the feature space R/, i.e.,

K = (Kw) =% where Ky = (kps) =177t (10)

Note K3, is a l; X1, matrix, and K is a m xm symmetric
matrix. We also define a matrix Z:

Z = (Zt)t=1,....c (11)

where (Z;) is a l; x [; matrix with terms all equal to %,
i.e., Z is a m x m block diagonal matrix. The between-
class and within-class scatter matrices in a high dimen-
sional feature space R are defined as

SB_leuz p/z T7 SW ZZ@X” Xl]

i=1 i=1 j=1
(12)
where p? is the mean of class i in R, [; is the number
of samples belonging to class i. From the theory of
reproducing kernels, any solution w® € R/ must lie in
the span of all training samples in R7, i.e.,

c Iy
= ZZaqu(qu) (13)

p=1g=1

It follows that we can get the solution for (13) by solv-
ing:
AM{Ka=KZKa (14)

Consequently, we can write (8) as

o (W) TSgW?|
opr = ABMAXwe 1rayTgE e (15)
_ |aKZKa\ P P
= argmaXyye m [Wl . Wm]

We can project ®(x) to a lower dimensional space
spanned by the eigenvectors w® in a way similar to
Kernel PCA (See Section 2). Adopting the same tech-
nique in the Fisherface method (which avoids singular-
ity problems in computing Wg’ pr) for face recognition
[6], we call the extracted eigenvectors in (15) Kernel
Fisherfaces.

4 Experiments

We tested both kernel methods against ICA, SVM,
Eigenface, and Fisherface methods using the publicly
available AT&T and Yale databases. The face images
in these databases have several unique characteristics.
While the images in the AT&T database contain fa-
cial contours and vary in pose as well as scale, the face
images in the Yale database have been cropped and
aligned. The face images in the AT&T database were
taken under well controlled lighting conditions whereas
the images in the Yale database were acquired under
varying lighting conditions. We used the first database
as a baseline study and then used the second one to
evaluate face recognition methods under varying light-
ing conditions.

The minimum number of components in Eigenface,
Kernel Eigenface, and ICA-based methods were empir-
ically determined to achieve the lowest error rates (See
Figures 2 and 3). For Fisherface and Kernel Fisher-
face methods, we projected all the samples onto a sub-
space spanned by the c—1 largest eigenvectors. We uti-
lized both polynomial and Gaussian kernels in the ker-
nel Eigenface, kernel Fisherface, and SVM-based meth-
ods. The types of kernel and corresponding parameters
(e.g., polynomial degree) were also empirically deter-
mined to achieve the best results. Typically, second or
third order polynomial kernels suffices to achieve good
results with less computation than Gaussian kernels.
We present more results of kernel methods with poly-
nomial kernels.

All experiments were performed using the “leave-
one-out” strategy: To classify an image of person, that
image is removed from the training set of (m — 1) im-
ages and the projection matrix is computed. All the m
images in the training and test sets were projected to a
reduced space using the computed projection matrix w
or w® and recognition was performed based on a near-
est neighbor classifier except SVM-based methods. We
adopted the “one-against-the-rest” scheme in training
SVMs for experiments. In other words, we trained 400



SVMs for AT & T database and 165 SVMs for the Yale
database.

4.1 Variation in Pose and Scale

The AT&T (formerly Olivetti) database contains
400 images of 40 subjects. To reduce the computa-
tional complexity, each face image was downsampled
to 23 x 28 pixels. We represented each image by a
raster scan vector of the intensity values, and then nor-
malize them to be zero-mean vectors. The mean and
standard deviation of Kurtosis of the face images are
2.08 and 0.41, respectively (the Kurtosis of a Gaussian
distribution is 3). Figure 1 (top) shows images of two
subjects. In contrast to images of the Yale database,
the images include facial contours, and variations in
pose as well as scale. However, the lighting conditions
remain relatively constant.
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Figure 1. Face images in the AT&T database
(Top) and the Yale database (Bottom).

The experimental results are shown in Figure 2.
Among all the methods, the Kernel Fisherface method
with Gaussian kernel and second order polynomial ker-
nel achieve the lowest error rate. Furthermore, the ker-
nel methods perform better than their classical coun-
terparts, respectively. The kernel methods also per-
form better than SVM-based and ICA-based methods.
Though our experiments using ICA seem to contradict
to the good empirical results reported in [4] [3] [2], a
close look at the data sets reveals a significant differ-
ence in pose and scale variations of the face images in
the AT&T database, whereas a subset of frontal view
FERET face images with change of expression was used
in [3] [2]. Furthermore, the comparative study on clas-
sification with respect to PCA in [4] (Table 1, pp. 819)
and the errors made by two ICA algorithms in [2] (Fig-
ure 2.18, pp. 50) seem to suggest that ICA methods
do not have clear advantage over other approaches in
recognizing faces with pose and scale variations.

4.2 Variation in Lighting and Expression

The Yale database used in our experiments contains
165 closely cropped face images of 11 subjects that in-
clude variations in both facial expression and lighting

(See Figure 1). For computational efficiency, each im-
age was downsampled to 29 x 41 pixels, and then rep-
resented by a centered vector of normalized intensity
values. The mean and standard deviation of Kurtosis
of the face images are 2.68 and 1.49, respectively. Fig-
ure 1 shows 22 closely cropped images of two subjects
which include internal facial structures such as the eye-
brow, eyes, nose, mouth and chin, but do not contain
facial contours.

Figure 3 shows the experimental results. Both ker-
nel methods perform better than standard methods us-
ing ICA and their classical counterparts, whereas SVM-
based method performs better than Kernel Eigenface
method. Notice that the improvements by the ker-
nel methods are significant (more than 15% reduc-
tion in error rate). Notice also that kernel methods
consistently perform better than classical methods for
both databases. The performance achieved by the ICA
method indicates that face representation using inde-
pendent sources is not effective when the images are
taken under varying lighting conditions.

Figure 4 shows the training samples of the Yale
database projected onto the first two eigenvectors ex-
tracted by the Kernel Eigenface and Kernel Fisherface
methods. The projected samples of different classes are
smeared by the Kernel Eigenface method whereas the
samples projected by the Kernel Fisherface are sepa-
rated quite well. In fact, the samples belonging to the
same class are projected to the same position by the
largest two eigenvectors. This example provides an ex-
planation to the good results achieved by the Kernel
Fisherface method.

4.3 Discussion

Our experimental results show that Kernel Eigen-
face and Fisherface methods are able to extract nonlin-
ear features and achieve lower error rates. One expla-
nation for some of the superior performance of Kernel
Fisherface method over SVM-based method may be at-
tributed to the fact that Kernel Fisherface method uses
all training samples to extract the most discriminant
(nonlinear) features in the solution, not all (possibly
infinite number of) the features of a subset set of sam-
ples, i.e., the support vectors, for recognition.

The performance of the proposed kernel methods
may be improved by using other classifiers such as k-
nearest neighbor and perceptrons. The performance
of SVM-based method may be improved by adopting
“one-against-one” strategy. downside is that a large
number of classifiers need to be trained (See also [20]
for a multiclass SVM method). Another potential im-
provement is to use the extracted nonlinear features
and a linear Support Vector Machine (SVM) to con-
struct a decision surface. Such a two-stage approach
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Figure 3. Experimental results on Yale database.
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Figure 4. Samples projected by Kernel PCA and
Kernel Fisher methods.

is, in spirit, similar to nonlinear SVMs in which the
samples are first projected to a high dimensional fea-
ture space where a hyperplane with largest margin is
constructed. In fact, one important factor of the re-
cent success in SVM applications for visual recognition
is due to the use of kernel methods. The superior re-
sults achieved by SVMs than the classical Eigenface
method in the second experiment can be attributed to
the rich feature representation and a decision surface
with large margin. However, our experimental results
also suggest that the feature representation of SVMs
does not have as much discriminative power as Fisher-
face or Kernel Fisherface method.

It is difficult, if not impossible, to estimate a true
distribution of face images (or a subset of face images).
Thus it is difficult to justify whether the density func-
tion of face images is Gaussian or not. Nevertheless,
kurtosis is often used as an index of non-Gaussianity of
samples. The computed kurtoses suggest that the face
images are not non-Gaussian (in fact, sub-Gaussian).
In general the more non-Gaussian the data, the bet-
ter ICA can be estimated. This may explain why
ICA-based methods do not perform well in these ex-
periments (We used the fixed point algorithm [12] to
extract independent components.). One potential im-
provement of ICA-based method is to select a subset
of independent components by class discriminability as
suggested in [2].

In terms of execution time, our experiments (with
Matlab implementations) show that the ratio of com-
putation loads required by these methods is, on the




average, ICA: SVM: KFLD: KPCA: FLD: PCA = 8.7:
5.1: 3.3: 3.2: 1.3: 1.0 (averaged over all the experi-
ments).

5 Conclusion and Future Work

The representations in the classical Eigenface and
Fisherface approaches are based on second order statis-
tics of the image set, i.e., covariance matrix, and do not
use high order statistical dependencies such as the re-
lationships among three or more pixels. For face recog-
nition, much of the important information may be con-
tained in the high order statistical relationships among
the pixels. Using the kernel tricks that are often used
in SVMs, we extend the classical methods to kernel
space where we can extract nonlinear features among
three or more pixels. We investigated Kernel Eigenface
and Kernel Fisherface methods, and demonstrated that
they provide a more effective representation for face
recognition. Compared to other techniques for nonlin-
ear feature extraction, kernel methods have the advan-
tages that they do not require nonlinear optimization,
but only the solution of an eigenvalue problem. Ex-
perimental results on two benchmark databases show
that Kernel Eigenface and Kernel Fisherface methods
achieve lower error rates than the ICA, Eigenface and
Fisherface approaches in face recognition. The perfor-
mance achieved by the ICA method also indicates that
face representation using independent basis images is
not effective when the images contain pose, scale or
lighting variations. Our future work will focus on ana-
lyzing face recognition methods using other kernel ma-
chines in high dimensional space [18] , nonlinear sub-
space algorithms [16] [29] [24] [9], evolutionary pursuit
[13], and generative methods [28] using FERET [19],
AR [14] and CMU PIE [26] databases.
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