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In this supplementary material, we describe additional experimental results
as summarized in Table 1 (see Section 4 of the manuscript for datasets).

Table 1. Numerous experiments in this work.

Experiment Figure/Table

Image generation from key patches Figure 1, Figure 2, Figure 3, Table 3
Image generation from random patches Figure 4, Figure 5, Figure 6, Table 3
Part combination Figure 7, Figure 8, Figure 9
Unsupervised feature learning Table 4
An alternative objective function Figure 10, Figure 11
An alternative network structure Figure 12, Figure 13, Figure 14
Different number of input patches Figure 15, Figure 16, Figure 17
Degraded input patches Figure 18, Figure 19
User study Figure 20, Figure 21, Table 5
Failure cases Figure 22

1 Experimental Details

Table 2 shows detailed description of the proposed network for an image with a
size of 256× 256× 3 pixels. The input parts are encoded into a 256-dimensional
vector. The slope of 0.2 is used for the leaky ReLU activation. The filters in the
network are initialized with a zero mean Gaussian distribution with a standard
deviation of 0.02.

For the CelebA-HQ dataset, we randomly sample 128 images for evaluation
and other images are used for training. For other databases, we randomly sample
10% of data for a test set.
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Table 2. Details of each network for 256×256 pixels image generation. # Filter is the
number of filters. BN is the batch normalization. Conv denotes a convolutional layer.
F-Conv denotes a transposed convolutional layer that uses the fractional-stride.

Layer # Filter Filter Size Stride Padding BN Activation Function

Conv. 1 64 4×4×3 2 1 × Leaky ReLU
Conv. 2 128 4×4×64 2 1 © Leaky ReLU
Conv. 3 256 4×4×128 2 1 © Leaky ReLU
Conv. 4 512 4×4×256 2 1 © Leaky ReLU
Conv. 5 512 4×4×512 2 1 © Leaky ReLU
Conv. 6 512 4×4×512 2 1 © Leaky ReLU
Conv. 7 {256,1} 4×4×512 1 0 × {Leaky ReLU, Sigmoid}

(a) Details of the {part encoding, discriminator} network

Layer # Filter Filter Size Stride Padding BN Activation Function

Conv. 1 4×4×512 1×1×256 1 0 © ReLU
F-Conv. 2 512 4×4×{1024,1536} 2 1 © ReLU
F-Conv. 3 512 4×4×{1024,1536} 2 1 © ReLU
F-Conv. 4 256 4×4×{1024,1536} 2 1 © ReLU
F-Conv. 5 128 4×4×{512,768} 2 1 © ReLU
F-Conv. 6 64 4×4×{256,384} 2 1 © ReLU
F-Conv. 7 {1,3} 4×4×{128,192} 2 1 × {Sigmoid, tanh}

(b) Details of the {mask prediction, image generation} network

Table 3. Appearance losses for different inputs.

Input Random patches Key patches

Appearance loss 0.192 0.0515

2 Image Generation from Local Patches

From Figure 1 to Figure 6 show that the proposed network can generate high-
resolution images either from key patches or random patches. We measure an
average of the appearance loss as shown in Table 3. Although generated images
from random patches are realistic, their appearance loss is larger than that of
the key patch case. It is attributed to the fact that generating an image from
random patches is more difficult.

3 Part Combination

In addition to the part combination results on the CelebA dataset in Figure 9 of
the paper, we report results for the CelebA-HQ dataset in Figure 7 and Figure 8.
The results show that the proposed algorithm generates realistic high-resolution
images by combining parts of different person.
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Table 4. Unsupervised feature learning results on the CIFAR10 dataset using a net-
work trained on the CompCars dataset.

DCGAN Ours
Observation Whole image Whole image Part images

Accuracy 94.59% 94.75% 87.15%

Figure 9 shows generated images and masks when input patches are from
different cars. It combines different styles of input patches into a new car image,
e.g., in the second image at the second row of Figure 9, the generated image has
a mixed color of two cars and its horizontal line at the bottom is similar to the
first car. Overall, the proposed algorithm generates reasonable images despite
large variations of input patches.

4 Unsupervised Feature Learning

We perform a classification task using features learned from our network. We
train a network on the CompCars dataset and test on CIFAR10 for binary
classification (car or not). We use the last layer of the discriminator as the feature
descriptor and a linear SVM for classification. We use DCGAN as a baseline for
comparison. Note that other methods, such as DCGAN, can learn features only
when the whole image is presented. On the other hand, the proposed algorithm
learn features from part images as shown in Table 4.

5 An Alternative Objective Function

In order to demonstrate the effectiveness of (4) in the paper, we show generation
results in Figure 10 and Figure 11 using the following objective function:

LR(GI , D) = Ey∼pdata(y)[logD(y)] + Ex∼pdata(x)[log(1−D(GI(x)))]. (1)

Both results are obtained after 25 epochs. The results show that generated im-
ages with (1) are less realistic compared to the results of (4) in the paper.

6 An Alternative Network Structure

We report results of three baseline networks as follows:

(i) Baseline 1: The proposed network without mask prediction branch,
(ii) Baseline 2: Conditional GAN based method,
(iii) Baseline 3: Auto-encoder based method.

For Baseline 1, the network is trained with an adversarial loss only. As shown
in Figure 12, the generated images have low visual quality and lack diversity.
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Figure 13(a) and Figure 13(b) show network structures for Baseline 2 and Base-
line 3, respectively. Baseline 2 concatenates a random vector and a part encoding
vector as an input for the generator. The whole network is trained using an ad-
versarial loss. This method not only fails to preserve the appearance of input
patches but also encounters a mode collapse problem as shown in Figure 14. On
the other hand, the objective of Baseline 3 is minimizing a reconstruction loss.
Although it contains input parts without significant modifications, generated
images are blurry and unrealistic.

The results show that the proposed algorithm performs favorably against
alternative approaches in terms of generating sharp images based on the ap-
pearance of inputs. In addition, ablation studies on each component of the net-
work demonstrate motivations of each aspect of the model, e.g., inferring spatial
arrangements is crucial for this task.

7 Different Number of Input Patches

In the manuscript, we show image generation results with three local patches
using the proposed algorithm. We describe two different ways to take a different
number of input patches. First, we simply train a new network with a different
number of input patches. For example, Figure 15 and Figure 16 show generated
images based on two local patches. The results show that the network can be
trained with different number of input patches.

Second, we train a single network to cover various number of inputs. For the
experiments, the original network structure is maintained except input nodes.
Let N be a fixed number of input nodes of the network. To train the network, we
first crop a set of N candidate input patches from an image. We then randomly
sample N patches from the candidate set with replacement. As such, the network
is trained with different number of unique patches. For evaluation, given n < N
patches, we randomly duplicate them to get a total number of N patches and
then feed to the network. If n = N , then we can feed inputs directly to the
network. The results in Figure 17 show that the proposed method can take
different number of input patches using a single network.

8 Degraded Input Patches

As a one way of degrading inputs, we reduce the size of input patches. In the
paper, the maximum area of a patch is 16% of the image size. Figure 18 de-
scribes new results when it is reduced to 9% and 4%. It shows that the proposed
algorithm can generate realistic images when the input patches are small.

Figure 19 shows the results when input patches are degraded by noises. We
apply the mean zero Gaussian noise at each pixel of the third input patch with
the standard deviation of 0.1 (column 1-4) and 0.5 (column 5-8). The results
show that the proposed algorithm is able to deal with certain amount of noise
when generating realistic images.
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Table 5. User study results for the first question type shown in Figure 20. Input pair
denotes a set of ground truth labels of images in the question. Accuracy = # of correct
answers / # of questions. R→F = # of real images labeled as fake / # of real images.
F→R = # of fake images labeled as real / # of fake images.

Input pair (Real, Real) (Real, Fake) (Fake, Fake) Overall

Accuracy 43.8% 48.6% 37.2% 44.7%
R→F 34.6% 26.1% - 30.2%
F→R - 41.0% 44.8% 42.8%

9 User Study

We assess generated images by asking two types of questions to 130 people. The
first question is to evaluate whether the generated image looks like a real image.
As shown in Figure 20, it presents two images where each image is independently
sampled from real or fake images at random. A question set is prepared with 6
pairs of real images, 6 pairs of fake images, and 13 pairs that are combined with
a real and a fake images. Then, we ask users to pick a real image from the two
images. The results are summarized in Table 5. Interestingly, less than a half of
questions get correct answers on average. It shows that the proposed algorithm
generates realistic images.

In addition to examine whether images are realistic, we also ask users to
pick a reasonable image that looks like to be synthesized from input patches. As
shown in Figure 21, we display three input patches; two of them are cropped from
the same person and the rest is cropped from a different person. Then, a user is
asked to pick the most likely image among five candidates. One of the candidates
is a generated image based on the proposed algorithm. Other candidates are real
images that are retrieved from the training set by four different baseline methods.
Let I0 and M0 denote an original image and a mask map for the two patches
from the same person. Then, the first baseline method search for the nearest
neighbor from the trianing data T as follows:

arg min
I∈T

‖I ⊗M0 − I0 ⊗M0‖1. (2)

The second baseline method uses `2 distance instead. Similarly, other baseline
methods find nearest neighbors based on an original image and a mask map for
the other patch. The results show that 85.3% of users preferred the generated
image rather than real images on average. It demonstrates that the proposed
algorithm generates not only realistic but also reasonable images based on the
input.

10 Failure cases

Figure 22 shows failure cases of the proposed algorithm. It is difficult to gen-
erate images when detected key input patches include less informative regions
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(column 1 and 2) or rare cases (column 3). In addition, when input patches
have conflicting information, e.g., the same nose-mouth patches that have differ-
ent orientations, the proposed algorithm is not able to generate realistic images
(column 4, 5, and 6). Furthermore, it becomes complicated when the inputs are
low-quality patches (column 7 and 8).
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Fig. 1. Results of the proposed algorithm on the CelebA-HQ dataset. Input patches
are cropped from an image (Real) based on the objectness score (Real M). Given inputs,
the proposed algorithm generates the image (Gen) and mask (Gen M).
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Fig. 2. Results of the proposed algorithm on the CelebA-HQ dataset.
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Fig. 3. Results of the proposed algorithm on the CelebA-HQ dataset.
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Fig. 4. Results on the CelebA-HQ dataset when inputs are random patches.
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Fig. 5. Results on the CelebA-HQ dataset when inputs are random patches.
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Fig. 6. Results on the CelebA-HQ dataset when inputs are random patches.



Unsupervised Holistic Image Generation from Key Local Patches 13

Fig. 7. Results of the proposed algorithm when input parts are combined with other
people on the CelebA-HQ dataset.
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Fig. 8. Results of the proposed algorithm when input parts are combined with other
people on the CelebA-HQ dataset.
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Fig. 9. Results of the proposed algorithm on the CompCars dataset when input
patches are from different cars. Input 1 and Input 2 are patches from Real 1. In-
put 3 is a local region of Real 2. Given inputs, the proposed algorithm generates the
image (Gen) and mask (Gen M). The size of the generated image is of 128×128 pixels.
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Fig. 10. Image generation results on the CelebA dataset. Gen 1 and GenM1 are
generated by (1). Gen 2 and GenM2 are obtained using (4) in the paper.
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Fig. 11. Image generation results on the CelebA dataset. Gen 1 and GenM1 are
generated by (1). Gen 2 and GenM2 are obtained using (4) in the paper.
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Fig. 12. Results of a baseline method (without mask prediction part from the proposed
network), on the CelebA dataset.

(a) Baseline 2: Conditional GAN based method

(b) Baseline 3: Auto-encoder based model

Fig. 13. Baseline network structures. Baseline 1 is the proposed network without the
mask prediction branch.
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Fig. 14. Image generation results on the CelebA dataset. Gen 1 and Gen 2 are gener-
ated using networks in Figure 13(a) and Figure 13(b), respectively.

Fig. 15. Image generation results with two input patches. Input 1 and 2 are local
patches from the image Real.
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(a)

Fig. 16. Image generation results with two input patches. Input 1 and 2 are local
patches from the image Real.
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Fig. 17. Generated images with a different number of input patches. Results are
obtained using a single network.
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Fig. 18. Generated images based on smaller patches. A percentage below each column
indicates the maximum area ratio (patch size/image size × 100) for each input patch.
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Fig. 19. Examples of generated results when the input image contains noises. We add
a Gaussian noise at each pixel of Input 3. Gen 1 and Gen M1 are generated without
noises. Gen 2 and Gen M2 are generated with noises.
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Fig. 20. An example of the first question type for the user study.
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Fig. 21. An example of the second question type for the user study.
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Fig. 22. Examples of failure cases of the proposed algorithm.


