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Abstract. Photorealistic image stylization concerns transferring style of
a reference photo to a content photo with the constraint that the stylized
photo should remain photorealistic. While several photorealistic image
stylization methods exist, they tend to generate spatially inconsistent
stylizations with noticeable artifacts. In this paper, we propose a method
to address these issues. The proposed method consists of a stylization
step and a smoothing step. While the stylization step transfers the
style of the reference photo to the content photo, the smoothing step
ensures spatially consistent stylizations. Each of the steps has a closed-
form solution and can be computed efficiently. We conduct extensive
experimental validations. The results show that the proposed method
generates photorealistic stylization outputs that are more preferred by
human subjects as compared to those by the competing methods while
running much faster. Source code and additional results are available at
https://github.com/NVIDIA/FastPhotoStyle.
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1 Introduction

Photorealistic image stylization aims at changing style of a photo to that of a
reference photo. For a faithful stylization, content of the photo should remain
the same. Furthermore, the output photo should look like a real photo as it
were captured by a camera. Figure 1 shows two photorealistic image stylization
examples. In one example, we transfer a summery photo to a snowy one, while
in the other, we transfer a day-time photo to a night-time photo.

Classical photorealistic stylization methods are mostly based on color/tone
matching [1,2,3,4] and are often limited to specific scenarios (e.g., seasons [5]
and headshot portraits [6]). Recently, Gatys et al. [7,8] show that the correla-
tions between deep features encode the visual style of an image and propose
an optimization-based method, the neural style transfer algorithm, for image
stylization. While the method shows impressive performance for artistic styl-
ization (converting images to paintings), it often introduces structural artifacts
and distortions when applied to photorealistic image stylization as shown in
Figure 1(c). In a follow-up work, Luan et al. [9] propose adding a regularization
term to the optimization objective function of the neural style transfer algorithm

https://github.com/NVIDIA/FastPhotoStyle


2 Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz

(a) Style (b) Content (c) Gatys et al. [8] (d) Luan et al. [9] (e) Ours

Fig. 1: Given a style photo (a) and a content photo (b), photorealistic image
stylization aims at transferring style of the style photo to the content photo as
shown in (c), (d) and (e). Comparing with existing methods [8,9], the output
photos computed by our method are stylized more consistently and with fewer
artifacts. Moreover, our method runs an order of magnitude faster.

for avoiding distortions in the stylization output. However, this often results in
inconsistent stylizations in semantically uniform regions as shown in Figure 1(d).
To address the issues, we propose a photorealistic image stylization method.

Our method consists of a stylization step and a smoothing step. Both have
a closed-form solution1 and can be computed efficiently. The stylization step
is based on the whitening and coloring transform (WCT) [10], which stylizes
images via feature projections. The WCT was designed for artistic stylization.
Similar to the neural style transfer algorithm, it suffers from structural artifacts
when applied to photorealistic image stylization. Our WCT-based stylization step
resolves the issue by utilizing a novel network design for feature transform. The
WCT-based stylization step alone may generate spatially inconsistent stylizations.
We resolve this issue by the proposed smoothing step, which is based on a
manifold ranking algorithm. We conduct extensive experimental validation with
comparison to the state-of-the-art methods. User study results show that our
method generates outputs with better stylization effects and fewer artifacts.

2 Related Work

Existing stylization methods can be classified into two categories: global and local.
Global methods [1,2,11] achieve stylization through matching the means and
variances of pixel colors [1] or their histograms [2]. Local methods [12,6,13,5,14]
stylize images through finding dense correspondences between the content and
style photos based on either low-level or high-level features. These approaches
are slow in practice. Also, they are often developed for specific scenarios (e.g.,
day-time or season change).

1 A closed-form solution means that the solution can be obtained in a fixed finite
number of operations, including convolutions, max-pooling, whitening, etc.
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IC IS Y = F1(IC , IS) F2(Y, IC)

F2F1

Fig. 2: Our photorealistic image stylization method consists of two closed-form
steps: F1 and F2. While F1 maps IC to an intermediate image carrying the style
of IS , F2 removes noticeable artifacts, which produces a photorealistic output.

Gatys et al. [7,8] propose the neural style transfer algorithm for artistic
stylization. The major step in the algorithm is to solve an optimization problem
of matching the Gram matrices of deep features extracted from the content and
style photos. A number of methods have been developed [15,16,17,18,19,20,21,10]
to further improve its stylization performance and speed. However, these meth-
ods do not aim for preserving photorealism (see Figure 1(c)). Post-processing
techniques [22,23] have been proposed to refine these results by matching the
gradients between the input and output photos.

Photorealistic image stylization is related to the image-to-image translation
problem [24,25,26,27,28,29,30,31] where the goal is to learn to translate an image
from one domain to another. However, photorealistic image stylization does not
require a training dataset of content and style images for learning the translation
function. Photorealistic image stylization can be considered as a special kind of
image-to-image translation. Not only can it be used to translate a photo to a
different domain (e.g., form day to night-time) but also transfer style (e.g., extent
of darkness) of a specific reference image to the content image.

Closest to our work is the method of Luan et al. [9]. It improves photorealism
of stylization outputs computed by the neural style transfer algorithm [7,8]
by incorporating a new loss term to the optimization objective, which has the
effect of better preserving local structures in the content photo. However, it
often generates inconsistent stylization with noticeable artifacts (Figure 1(d)).
Moreover, the method is computationally expensive. Our proposed algorithm aims
at efficient and effective photorealistic image stylization. We demonstrate that it
performs favorably against Luan et al. [9] in terms of both quality and speed.

3 Photorealistic Image Stylization

Our photorealistic image stylization algorithm consists of two steps as illustrated
in Figure 2. The first step is a stylization transform F1 called PhotoWCT. Given a
style photo IS , F1 transfer the style of IS to the content photo IC while minimizing
structural artifacts in the output image. Although F1 can faithfully stylize
IC , it often generates inconsistent stylizations in semantically similar regions.
Therefore, we use a photorealistic smoothing function F2, to eliminate these
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artifacts. Our whole algorithm can be written as a two-step mapping function:

F2

(
F1(IC , IS), IC

)
, (1)

In the following, we discuss the stylization and smoothing steps in details.

3.1 Stylization

The PhotoWCT is based on the WCT [10]. It utilizes a novel network design for
achieving photorealistic image stylization. We briefly review the WCT below.

WCT. The WCT [10] formulates stylization as an image reconstruction problem
with feature projections. To utilize WCT, an auto-encoder for general image
reconstruction is first trained. Specifically, it uses the VGG-19 model [32] as the
encoder E (weights are kept fixed) and trains a decoder D for reconstructing the
input image. The decoder is symmetrical to the encoder and uses upsampling
layers (pink blocks in Figure 3(a)) to enlarge the spatial resolutions of the feature
maps. Once the auto-encoder is trained, a pair of projection functions are inserted
at the network bottleneck to perform stylization through the whitening (PC) and
coloring (PS) transforms. The key idea behind the WCT is to directly match
feature correlations of the content image to those of the style image via the two
projections. Specifically, given a pair of content image IC and style image IS , the
WCT first extracts their vectorised VGG features HC = E(IC) and HS = E(IS),
and then transform the content feature HC via

HCS = PSPCHC , (2)

where PC = ECΛ
− 1

2

C E>C , and PS = ESΛ
1
2

SE
>
S . Here ΛC and ΛS are the diagonal

matrices with the eigenvalues of the covariance matrix HCH
>
C and HSH

>
S re-

spectively. The matrices EC and ES are the corresponding orthonormal matrices
of the eigenvectors, respectively. After the transformation, the correlations of
transformed features match those of the style features, i.e., HCSH

>
CS = HSH

>
S .

Finally, the stylized image is obtained by directly feeding the transformed feature
map into the decoder: Y = D(HCS). For better stylization performance, Li et
al. [10] use a multi-level stylization strategy, which performs the WCT on the
VGG features at different layers.

The WCT performs well for artistic image stylization. However it generates
structural artifacts (e.g., distortions on object boundaries) for photorealistic
image stylization (Figure 4(c)). The proposed PhotoWCT is designed to suppress
these structural artifacts.

PhotoWCT. Our PhotoWCT design is motivated by the observation that the
max-pooling operation in the WCT reduces spatial information in feature maps.
Simply upsampling feature maps in the decoder fails to recover detailed structures
of the input image. That is, we need to pass the lost spatial information to the
decoder to facilitate reconstructing these fine details. Inspired by the success of
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IC YPC PS

(a) WCT

YIC PC PS

(b) PhotoWCT

Convolution Max pooling Upsampling Unpooling Max pooling mask

… … … …

Fig. 3: The PhotoWCT and WCT share the same encoder architecture and
projection steps. In the PhotoWCT, we replace the upsampling layers (pink)
with unpooling layers (green). Note that the unpooling layer is used together
with the pooling mask (yellow) which records where carries the maximum over
each max pooling region in the corresponding pooling layer [33].

the unpooling layer [33,34,35] in preserving spatial information, the PhotoWCT
replaces the upsampling layers in the WCT with unpooling layers. The PhotoWCT
function is formulated as

Y = F1(IC , IS) = D(PSPCHC), (3)

where D is the decoder, which contains unpooling layers and is trained for image
reconstruction. Figure 3 illustrates the network architecture difference between
the WCT and the proposed PhotoWCT.

Figure 4(c) and (d) compare the stylization results of the WCT and Pho-
toWCT. As highlighted in close-ups, the straight lines along the building boundary
in the content image becomes zigzagged in the WCT stylization result but remains
straight in the PhotoWCT result. The PhotoWCT-stylized image has much fewer
structural artifacts. We also perform a user study in the experiment section to
quantitatively verify that the PhotoWCT generally leads to better stylization
effects than the WCT.

3.2 Photorealistic Smoothing

The PhotoWCT-stylized result (Figure 4(d)) still looks less like a photo since
semantically similar regions are often stylized inconsistently. As shown in Figure 4,
when applying the PhotoWCT to stylize the day-time photo using the night-
time photo, the stylized sky region would be more photorealistic if it were
uniformly dark blue instead of partly dark and partly light blue. It is based
on this observation, we employ the pixel affinities in the content photo to
smooth the PhotoWCT-stylized result.

We aim to achieve two goals in the smoothing step. First, pixels with similar
content in a local neighborhood should be stylized similarly. Second, the output
should not deviate significantly from the PhotoWCT result in order to maintain
the global stylization effects. We first represent all pixels as nodes in a graph
and define an affinity matrix W = {wij} ∈ RN×N (N is the number of pixels) to
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(a) Style (b) Content

(c) WCT [10] (d) PhotoWCT

(e) WCT + smoothing (f) PhotoWCT + smoothing

Fig. 4: The stylization output generated by the PhotoWCT better preserves local
structures in the content images, which is important for the image smoothing
step as shown in (e) and (f).

describe pixel similarities. We define a smoothness term and a fitting term that
model these two goals in the following optimization problem:

argmin
r

1

2
(

N∑
i,j=1

wij‖
ri√
dii
− rj√

djj
‖2+λ

N∑
i=1

‖ri − yi‖2), (4)

where yi is the pixel color in the PhotoWCT-stylized result Y and ri is the
pixel color in the desired smoothed output R. The variable dii =

∑
j wij is the

diagonal element in the degree matrix D of W , i.e., D = diag{d11, d22, ..., dNN}.
In (4), λ controls the balance of the two terms.

Our formulation is motivated by the graph-based ranking algorithms [36,37].
In the ranking algorithms, Y is a binary input where each element indicates if
a specific item is a query (yi = 1 if yi is a query and yi = 0 otherwise). The
optimal solution R is the ranking values of all the items based on their pairwise
affinities. In our method, we set Y as the PhotoWCT-stylized result. The optimal
solution R is the smoothed version of Y based on the pairwise pixel affinities,
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(a) Style (b) Content (c) PhotoWCT (Ours)

(d) MattingAff (e) GaussianAff σ = 1 (f) GaussianAff σ = 0.1

Fig. 5: Smoothing with different affinities. To refine the PhotoWCT result in (c),
it is hard to find an optimal σ for the Gaussian Affinity that performs globally
well as shown in (e)-(f). In contrast, using the Matting Affinity can simultaneously
smooth different regions well as shown in (d).

which encourages consistent stylization within semantically similar regions. The
above optimization problem is a simple quadratic problem with a closed-form
solution, which is given by

R∗ = (1− α)(I − αS)−1Y, (5)

where I is the identity matrix, α = 1
1+λ and S is the normalized Laplacian

matrix computed from IC , i.e., S = D−
1
2WD−

1
2 ∈ RN×N . As the constructed

graph is often sparsely connected (i.e., most elements in W are zero), the inverse
operation in (5) can be computed efficiently. With the closed-form solution, the
smoothing step can be written as a function mapping given by:

R∗ = F2(Y, IC) = (1− α)(I − αS)−1Y. (6)

Affinity. The affinity matrix W is computed using the content photo based
on an 8-connected image graph assumption. While several choices of affinity
metrics exist, a popular one is to define the affinity (denoted as GaussianAff) as

wij = e−‖Ii−Ij‖
2/σ2

where Ii, Ij are the RGB values of adjacent pixels i, j and
σ is a global scaling hyper-parameter [38]. However, it is difficult to determine
the σ value in practice. It often results in either over-smoothing the entire photo
(Figure 5(e)) or stylizing the photo inconsistently (Figure 5(f)). To avoid selecting
one global scaling hyper-parameter, we resort to the matting affinity [39,40]
(denoted as MattingAff) where the affinity between two pixels is based on means
and variances of pixels in a local window. Figure 5(d) shows that the matting
affinity is able to simultaneously smooth different regions well.
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WCT plus Smoothing. We note that the smoothing step can also remove
structural artifacts in the WCT as shown in Figure 4(e). However, it leads to
unsatisfactory stylization. The main reason is that the content photo and the WCT
result are severely misaligned due to spatial distortions. For example, a stylized
pixel of the building in the WCT result may correspond to a pixel of the sky in
the content photo. Consequently this causes wrong queries in Y for the smoothing
step. This shows why we need to use the PhotoWCT to remove distortions first.
Figure 4(f) shows that the combination of PhotoWCT and smoothing leads to
better photorealism while still maintaining faithful stylization.

4 Experiments

In the section, we will first discuss the implementation details. We will then
present visual and user study evaluation results. Finally, we will analyze various
design choices and run-time of the proposed algorithm.

Implementation details. We use the layers from conv1 1 to conv4 1 in the
VGG-19 network [32] for the encoder E . The encoder weights are given by
ImageNet-pretrained weights. The decoder D is the inverse of the encoder. We
train the decoder by minimizing the sum of the L2 reconstruction loss and
perceptual loss [17] using the Microsoft COCO dataset [41]. We adopt the
multi-level stylization strategy proposed in the WCT [10] where we apply the
PhotoWCT to VGG features in different layers.

Similar to the state-of-the-art methods [42,9], our algorithm can leverage
semantic label maps for obtaining better stylization results when they are available.
When performing PhotoWCT stylization, for each semantic label, we compute a
pair of projection matrices PC and PS using the features from the image regions
with the same label in the content and style photos, respectively. The pair is then
used to stylize these image regions. With a semantic label map, content and style
matching can be performed more accurately. We note that the proposed algorithm
does not need precise semantic label maps for obtaining good stylization results.
Finally, we also use the efficient filtering step described in Luan et al. [9] for
post-processing.

Visual comparison. We compare the proposed algorithm to two categories of
stylization algorithms: photorealistic and artistic. The evaluated photorealistic
stylization algorithms include Reinhard et al. [1], Pitié et al. [2], and Luan et
al. [9]. Both Reinhard et al. [1] and Pitié et al. [2] represent classical techniques
that are based on color statistics matching, while Luan et al. [9] is based on neural
style transfer [8]. On the other hand, the set of evaluated artistic stylization
algorithms include Gatys et al.[8], Huang et al.[21], and the WCT [10]. They all
utilize deep networks.
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Style Content Reinhard et al. [1]

Pitié et al. [2] Luan et al. [9] Ours

Style Content Reinhard et al. [1]

Pitié et al. [2] Luan et al. [9] Ours

Style Content Reinhard et al. [1]

Pitié et al. [2] Luan et al. [9] Ours

Fig. 6: Visual comparisons with photorealistic stylization methods. In addition to
color transfer, our method also synthesizes patterns in the style photos (e.g., the
dark cloud in the top example, the snow at the bottom example).
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(a) Style (b) Content (c) Gatys et al. [8]

(d) Huang et al. [21] (e) Li et al. [10] (f) Ours

(a) Style (b) Content (c) Gatys et al. [8]

(d) Huang et al. [21] (e) Li et al. [10] (f) Ours

Fig. 7: Visual comparison with artistic stylization algorithms. Note the structural
distortions on object boundaries (e.g., building) and detailed edges (e.g., sea,
cloud) generated by the competing stylization methods.

Figure 6 shows visual results of the evaluated photorealistic stylization algo-
rithms. Overall, the images generated by the proposed algorithm exhibit better
stylization effects. While both Reinhard et al. [1] and Pitié et al. [2] change colors
of the content photos, they fail to transfer the style. We argue that photorealistic
stylization cannot be purely achieved via color transfer. It requires adding new
patterns that represent the style photo to the content photo. For example, in the
third example of Figure 6 (bottom), our algorithm not only changes the color of
ground regions to white but also synthesizes the snow patterns as they appear in
the style photo. The method of Luan et al. [9] achieves good stylization effects
at first glance. However, a closer look reveals that the generated photos contain
noticeable artifacts, e.g., the irregular brightness on buildings and trees. Several
semantically similar regions are stylized inconsistently.

Figure 7 shows the visual comparison between the proposed algorithm and
artistic stylization algorithms. Although the other evaluated algorithms are
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Table 1: User preference: proposed vs. Luan et al. and proposed vs. Pitié et al.

Luan et al. [9] / proposed Pitié et al. [2] / proposed

Better stylization 36.9% / 63.1% 44.8% / 55.2%
Fewer artifacts 26.5% / 73.5% 48.8% / 51.2%

Table 2: User preference: proposed versus artistic stylization algorithms.

Gatys et al. [8] Huang et al. [21] Li et al. [10] proposed

Better stylization 19.2% 8.4% 16.0% 56.4%
Fewer artifacts 21.6% 6.0% 6.8% 65.6%

able to transfer the style well, they render noticeable structural artifacts and
inconsistent stylizations across the images. In contrast, our method produces
more photorealistic results.

User studies. We resort to user studies for performance evaluation since pho-
torealistic image stylization is a highly subjective task. Our benchmark dataset
consists of a set of 25 content–style pairs provided by Luan et al. [9]. We use the
Amazon Mechanical Turk (AMT) platform for evaluation. In each question, we
show the AMT workers a content–style pair and the stylized results from the
evaluated algorithms displayed in random order. The AMT workers (lifetime
Human Intelligent Task approval rate greater than 98%) are asked to select
a stylized result based on the instructions. Each question is answered by 10
different workers. Hence, the performance score for each study is computed based
on 250 questions. We compute the average number of times the images from an
algorithm is selected, which is used as the preference score of the algorithm.

We conduct two user studies. In one study, we ask the AMT workers to select
which stylized photo better carries the target style. In the other study, we ask the
workers to select which stylized photo looks more like a real photo (containing
fewer artifacts). Through the studies, we would like to answer which algorithm
better stylizes content images and which renders better photorealistic outputs.

In Table 1, we compare the proposed algorithm to Luan et al. [9], which
is the current state-of-the-art. The results show that 63.1% of the users prefer
the stylization results generated by our algorithm and 73.5% regard our output
photos as more photorealistic. We also compare our algorithm to the classical
algorithm of Pitié et al. [2]. From Table 1, our results are as photorealistic as those
computed by the classical algorithm (which simply performs color matching),
and 55.2% of the users consider our stylization results better.

Table 2 compares our algorithm with the artistic stylization algorithms for
user preference scores. We find our algorithm achieves a score of 56.4% and 65.6%
for the stylization effect and photorealism, which are significantly better than the
other algorithms. The artistic stylization algorithms do not perform well since
they are not designed for the photorealistic stylization task.
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Fig. 8: Visualization of effects of using different λ values in the photorealistic
smoothing step. We show the edge maps of different stylization results (inset)
at bottom and compare them with the edge map of the content in terms of the
ODS and OIS metric (rightmost).

(a) PhotoWCT (b) Luan et al. [9] (c) Mechrez et al. [23] (d) proposed

Fig. 9: Comparison between using our photorealistic smoothing step and other
refinement methods (b)-(d).

WCT versus PhotoWCT. We compare the proposed algorithm with a variant
where the PhotoWCT step is replaced by the WCT [10]. Again, we conduct two
user studies on stylization effects and photorealism as described earlier. The result
shows that the proposed algorithm is favored over its variant for better stylization
83.6% of the times and favored for better photorealism 83.2% of the times.

Sensitivity analysis on λ. In the photorealistic smoothing step, the λ balances
between the smoothness term and fitting term in (4). A smaller λ renders smoother
results, while a larger λ renders results that are more faithful to the queries (the
PhotoWCT result). Figure 8 shows results of using different λ values. In general,
decreasing λ helps remove artifacts and hence improves photorealism. However, if
λ is too small, the output image tends to be over-smoothed. In order to find the
optimal λ, we perform a grid search. We use the similarity between the boundary
maps extracted from stylized and original content photos as the criteria since
object boundaries should remain the same despite the stylization [44]. We employ
the HED method [43] for boundary detection and use two standard boundary
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detection metrics: ODS and OIS. A higher ODS or OIS score means a stylized
photo better preserves the content in the original photo. The average scores over
the benchmark dataset are shown on the rightmost of Figure 8. Based on the
results, we use λ = 10−4 in all the experiments.

Alternative smoothing techniques. In Figure 9, we compare our photoreal-
istic smoothing step with two alternative approaches. In the first approach, we
use the PhotoWCT-stylized photo as the initial solution for solving the second
optimization problem in the method of Luan et al. [9]. The result is shown in
Figure 9(b). This approach leads to noticeable artifacts as the road color is
distorted. In the second approach, we use the method of Mechrez et al. [23],
which refines stylized results by matching the gradients in the output photo
to those in the content photo. As shown in Figure 9(c), we find this approach
performs well for removing structural distortions on boundaries but does not
remove visual artifacts. In contrast, our method (Figure 9(d)) generates more
photorealistic results with an efficient closed-form solution.

Run-time. In Table 3, we compare the run-time of the proposed algorithm to
that of the state-of-the-art [9]. We note that while our algorithm has a closed-form
solution, Luan et al. [9] rely on non-convex optimization. To stylize a photo,
Luan et al. [9] solve two non-convex optimization problems sequentially where
the solution to the first optimization problem is used as an initial solution to
solve the second optimization problem. We report the total run-time required
for obtaining the final stylization results. We resize the content images in the
benchmark dataset to different sizes and report the average run-time for each
image size. The experiment is conducted on a PC with an NVIDIA Titan X
Pascal GPU. To stylize images of 1024×512 resolution, our algorithm takes 13.16
seconds, which is 49 times faster than 650.45 seconds achieved by Luan et al. [9].

In Table 3, we also report the run-time of each step in our algorithm. We find
the smoothing step takes most of the computation time, since it involves inverting
the sparse matrix W in (5) using the LU decomposition. By employing efficient
LU-decomposition algorithms developed for large sparse matrices, the complexity
can be roughly determined by the number of non-zero entries in the matrices
only. In our case, since each pixel is only connected to its neighbors (e.g., 3×3
window), the number of non-zero values in W grows linearly with the image size.

For further speed-up, we can approximate the smoothing step using guided
image filtering [45], which can smooth the PhotoWCT output based on the
content photo. We will refer to this version of our algorithm approx. Although
approximating the smoothing step with guided image filtering results in slightly
degraded performance as comparing to the original algorithm, it leads to a large
speed gain as shown in Table 3. To stylize images of 1024×512 resolution, approx
only takes 0.64 seconds, which is 1,016 times faster than 650.45 seconds achieved by
Luan et al. [9]. To quantify the performance degradation due to the approximation,
we conduct additional user studies comparing the proposed algorithm and its
approximation. We use the same evaluation protocol as described above. The
results are shown in Table 4. In general, the stylization results rendered by
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Table 3: Run-time comparison. We compute the average run time (in seconds) of
the evaluated algorithms across various image resolutions.

Image resolution Luan et al.[9] proposed PhotoWCT smoothing approx

256×128 79.61 0.96 0.40 0.56 0.41
512×256 186.52 2.95 0.42 2.53 0.47
768×384 380.82 7.05 0.53 6.52 0.55
1024×512 650.45 13.16 0.56 12.60 0.64

Table 4: User preference score comparison: comparing approx (the fast approxi-
mation of the proposed algorithm) to the proposed algorithm as well as other
photorealistic stylization algorithms.

proposed/approx Luan et al. [9]/approx Pitié et al. [2]/approx

Better stylization 59.6% / 40.4 36.4 / 63.6% 46.0 / 54.0%
Fewer artifacts 52.8% / 47.2 20.8 / 79.2% 46.8 / 53.2%

Content/Style Reinhard et al. [1] Pitié et al. [2] Luan et al. [9] Ours

Fig. 10: Failure case. Both the proposed and other photorealistic stylization
algorithms fail to transfer the flower patterns to the pot.

approx are less preferred by the users as compared to those generated by the
full algorithm. However, the results from approx are still preferred over other
methods in terms of both stylization effects and photorealism.

Failure case. Figure 10 shows a failure case where the proposed method fails
to transfer the flower patterns in the style photo to the content photo. Similar
limitations also apply to the other photorealistic stylization methods [2,1,9]. Since
the proposed method uses the pixel affinity of the content in the photorealistic
smoothing step, it favors a stylization output with smooth color transition on
the pot surface as in the input photo.

5 Conclusions

We presented a novel fast photorealistic image stylization method. It consists of
a stylization step and a photorealistic smoothing step. Both steps have efficient
closed-form solutions. Experimental results show that our algorithm generates
stylization outputs that are much more preferred by human subject as compared
to those by the state-of-the-art, while running much faster.
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