
DFT-based Transformation Invariant Pooling
Layer for Visual Classification

Jongbin Ryu1, Ming-Hsuan Yang2, and Jongwoo Lim1

1 Hanyang University
2 University of California, Merced

Supplementary material

1 Run Time and Number of Parameters

The DFT magnitude pooling method captures shape information by pooling
the AC components of the frequency domain in addition to the DC component
that average pooling uses. The larger size of pooling output, the number of
parameters in the next fully-connected layer increases and thus it requires more
computational load. Table 1 shows the run time of the DFT and DFT+ methods
against the baseline model. Compared to the baseline models, the DFT magnitude
pooling method only requires one additional 2D-DFT operation, and thus the
overhead is negligible. It is worth noticing that the change of run time of the
DFT magnitude pooling method with respect to the pooling size does not change
significantly. In the DFT+ method, due to the extra overhead to compute the
responses from mid layers, the run time increases slightly. However, it only adds
DFT magnitude pooling layers and thus the run time still remains manageable.
The number of parameters of DFT magnitude pooling is N×N-times larger than
that of average pooling. As shown in Table 1, the computational overhead is not
significant since the convolution operations amount to the most part. A DFT
network with a small N achieves much improved performance, and the increase
of parameter size is manageable as shown Table 2.

Table 1: Run time of the DFT and DFT+ based models (in milliseconds) with
respect to the pooling size. The overhead by the DFT magnitude pooling layer is
negligible, and it is manageable for the DFT+ based model. Note that DFT+

3 is
the largest and most complex network in our experiments.

Networks Base
DFT DFT+

3

N=2 N=4 full N=2 N=4 full

VGG-VD 16 7.03 7.20 7.25 7.28 8.55 8.64 8.71

ResNet-50 4.15 4.25 4.31 4.38 5.01 5.07 5.15



2 J. Ryu, M.-H. Yang and J. Lim

Table 2: Number of parameters with respect to the pooling size N .

Network #classes Baseline DFT (N=2) (N=4)

Res-152
1000 (ImageNet) 60.0M 66.1M 90.7M

67 (MIT Indoors) 58.1M 58.5M 60.2M

VGG 16 Not dependent 138.0M 43.6M 68.8M

Table 3: Performance evaluation of the DFT magnitude pooling and baseline
methods on images with large translation and scale variations in complex scenes.

Dataset Network
S=0.25 S=0.50 S=0.75

Baseline DFT gain Baseline DFT gain Baseline DFT gain

CUB
AlexNet 21.69 31.64 +9.94 50.97 55.20 +4.23 60.22 64.00 +3.78

Inception-v3 44.94 60.34 +15.40 68.42 75.70 +7.28 73.35 79.50 +6.14

Caltech 101
AlexNet 46.19 58.37 +12.18 75.44 77.63 +2.19 83.97 83.78 -0.20

Inception-v3 74.42 78.65 +4.22 89.58 91.34 +1.76 91.57 93.21 +1.64

Table 4: Performance of CNNs on data augmentation (random 10-crops with
horizontal flipping) and scale variation. The results show the DFT magnitude
pooling method improves classification performance in all cases (top1/top5 error).

Network Scale Baseline DFT

AlexNet
256 37.97 / 16.70 37.33 / 16.05
384 40.80 / 18.67 39.38 / 17.75
512 51.02 / 27.16 49.35 / 25.65

VGG-VD 16
256 26.61 / 8.62 25.26 / 7.78
384 29.48 / 9.77 27.57 / 8.84
512 38.17 / 15.17 35.74 / 13.73

ResNet-50
256 23.42 / 6.73 22.66 / 6.51
384 24.27 / 6.99 23.46 / 6.68
512 28.13 / 9.12 27.21 / 8.55

2 Evaluations for Data Augmentation and Variations

In the following experiments, we evaluate DFT and DFT+ methods with respect
to large translation, scale changes and data augmentation. We first evaluate the
translation invariance property of the DFT magnitude pooling method using the
images synthetically generated with large variations of translation and scale in
complex scenes. Original images from the CUB and Caltech 101 datasets are
scaled by 25%, 50%, and 75%, and then overlaid on randomly selected images
from the MIT Indoor dataset. The networks are trained and tested as described in
Section 4.2 with the synthesized images. Table 3 shows that the DFT magnitude
pooling significantly outperforms the baselines that use an average pooling or
direct connection to the fully-connected layer. The performance gain was 15.40%



DFT-based Transformation Invariant Pooling Layer for Visual Classification 3

Table 5: Experimental comparison of DFT with baseline networks on the CUB
dataset. S=1 is single scale of size=256, S=2, S=3 are multi scale of [256, 384]
and [256, 384, 512].

Network
Pooling type

Baseline (10 crops) DFT

#S=1 #S=2 #S=3 (1 crop)

VGG-VD 16 76.0 77.0 77.2 79.6
ResNet-50 78.1 78.1 78.2 81.0

Table 6: Performance evaluation on the DFT, DFT+ methods and previous
works with respect to the multi scale training. We additionally evaluate multi
scale training introduced by Deep-TEN [1]. The result shows DFT and DFT+

methods performs well in the multi scale training setting. The methods use the
ResNet-50 [2] as the baseline network.

Method Scale
Dataset

FMD
MIT

Indoor

FV Multi 78.2 76.1

Deep-TEN
Single 80.2 71.3

Multi 78.8 76.2

DFT
Single 79.2 74.8

Multi 81.0 78.6

DFT+ Single 81.2 76.9

Multi 82.8 80.2

for the Inception-v3 model on the CUB dataset, and 12.18% for the AlexNet on
the Caltech 101 dataset when an object is rescaled by 25%. These experimental
results show that the deep network with the DFT magnitude pooling layer
maintains translation invariance properties effectively for visual classification.

Second, we evaluate CNNs of the DFT magnitude pooling and baseline under
data augmentation and multi-scale evaluation for the ImageNet. We use 10
random crops with horizontal flipping for the data augmentation and three
scales (256,384,512) for the multi-scale evaluation. Although we train three
CNNs (AlexNet, VGG-VD 16 and ResNet-50) by the single scale of [256,256],
we evaluate them on multiple test scales to confirm the consistent improvement
of DFT magnitude pooling. The result of Table 4 shows that DFT magnitude
pooling improves baseline methods in all cases. Further, the larger the scale, the
higher the performance gap is achieved, due to the translation invariant property
of DFT magnitude pooling. As a result, we can expect that DFT magnitude



4 J. Ryu, M.-H. Yang and J. Lim

Table 7: Performance evaluation on the DFT, DFT+ methods and previous works
to the horizontal flip and bounding box annotation. The left and right numbers
of the CUB dataset are with and without bounding annotation. Overall, the
DFT and DFT+ methods perform well compared to previous works. All results
are obtained by the VGG-VD 16 [3] model except B-CNN [D,M], which use the
VGG-VD 16 and VGG-M of [4]. Numbers marked with ∗ is an result by without
the fine-tuning network.

Mtehod Input
size

Dataset

FMD DTD CUB MIT
Indoor

Source

FV
224 75.0 - - 67.8 [1]

224 75.1 67.8 - 70.1 [5]

B-CNN [D,M] 448 - - 84.1/85.1 - [6]

B-CNN [D,D] 224 77.8 69.6 - 72.8 [5]

B-CNN [D,D] 448 - - 84.0/84.8 - [6]

B-CNNcompact 448 - 64.5 (67.7∗) 84.0/ - 72.7 [7]

DFT (w/o flip) 224 78.8 72.4 75.3/79.6 72.6 -

DFT (w/ flip) 224 79.4 72.8 76.3/80.7 74.5 -

DFT+ (w/o flip) 224 80.0 73.2 76.5/80.1 75.2 -

DFT+ (w/ flip) 224 80.2 74.0 77.0/81.3 77.8 -

pooling further improves the performance of CNNs trained by large scale images
and augmentation of scale jittering.

We evaluate the DFT magnitude pooling with respect to scale and cropping
settings on the transferred domain (CUB) from ImageNet. we conduct experiments
with scaling [3/4,4/3], cropping [224-256] and flip jittering (10 crops) but the
DFT magnitude pooling uses just one crop for training and testing. Table 5
shows DFT magnitude pooling performs well in this setting while it uses only
single crop.

Third, we evaluate DFT and DFT+ methods with respect to various settings
such as the multi scale training, the bounding box annotation and the horizontal
flip. In general, the multi scale training, use of bounding box annotation and data
augmentation by the horizontal flip are performed to validate the performance of
CNNs. Previous works evaluate their algorithm under the horizontal flip for data
augmentation, bounding box annotation [8] for the CUB dataset and multi scale
training for CNNs. Thus, we first evaluate multi scale training suggested by [1]
in Table 6. Second, DFT and DFT+ methods are evaluated with respect to the
data augmentation by the horizontal flip and bounding box annotation for CUB
dataset in Table 7. The result of these additional evaluations also confirms that
DFT and DFT+ methods perform well under various environment.



DFT-based Transformation Invariant Pooling Layer for Visual Classification 5

3 Formula for forward and backward propagation

When x and y are the input and output of the DFT magnitude pooling method,
the forward propagation function is F (ξ) = F (f(x)), y =

√
F 2
r (ξ) + F 2

i (ξ), and

the backpropagattion function is ∂y
∂Fr

= Fr(ξ)√
F 2

r (ξ)+F
2
i (ξ)

, ∂y
∂Fi

= Fi(ξ)√
F 2

r (ξ)+F
2
i (ξ)

, where

F denotes the Fourier transform, and Fr and Fi are the real and imaginary parts.
The gradient is computed by the inverse Fourier transform as F−1({Fr, Fi}).

References

1. Zhang, H., Xue, J., Dana, K.: Deep ten: Texture encoding network. In: IEEE
Conference on Computer Vision and Pattern Recognition. (2017)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition. (2016)

3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Arxiv (2014)

4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the
details: Delving deep into convolutional nets. Arxiv (2014)

5. Lin, T.Y., Maji, S.: Visualizing and understanding deep texture representations. In:
IEEE Conference on Computer Vision and Pattern Recognition. (2016) 2791–2799

6. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual
recognition. In: IEEE International Conference on Computer Vision. (2015) 1449–
1457

7. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: IEEE
Conference on Computer Vision and Pattern Recognition. (2016) 317–326

8. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset. Technical report, California Institute of Technology (2011)


