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Abstract. In this paper, we consider numerous low-level vision prob-
lems (e.g., edge-preserving filtering and denoising) as recursive image
filtering via a hybrid neural network. The network contains several spa-
tially variant recurrent neural networks (RNN) as equivalents of a group
of distinct recursive filters for each pixel, and a deep convolutional neu-
ral network (CNN) that learns the weights of RNNs. The deep CNN can
learn regulations of recurrent propagation for various tasks and effec-
tively guides recurrent propagation over an entire image. The proposed
model does not need a large number of convolutional channels nor big ker-
nels to learn features for low-level vision filters. It is significantly smaller
and faster in comparison with a deep CNN based image filter. Experi-
mental results show that many low-level vision tasks can be effectively
learned and carried out in real-time by the proposed algorithm.

1 Introduction

Recursive filters, also called Infinite Impulse Response (IIR) filters, are efficient
algorithms that account for signals with infinite duration. As such, recursive
implementations are commonly exploited to accelerate image filtering methods,
such as spatially invariant/variant Gaussian filters [1,2,3], bilateral filters [4] and
domain transforms [5]. However, few methods are developed based on recursive
formulations for low-level vision tasks mainly due to the difficulty in filter design.

Recently, several deep CNN based methods have been proposed for low-level
vision tasks [6,7,8,9,10]. A convolutional filter can be considered equivalent to a
finite impulse response (FIR) filter. Unlike IIR filters, it is easier to design FIR
filters at the expense of using more parameters to support non-local dependency.
In deep CNNs, Xu et al. [7] approximate a number of edge-preserving filters using
a data-driven approach which can utilize hundreds of convolutional channels to
support spatially variant filtering or large (up to 16 × 16) kernels to support
global convolution. In spite of using a large number of parameters, this model
does not present local image structures well. Furthermore, it is difficult to extend
the deep CNN model to other low-level vision problems such as colorization and
image completion.

Fig. 1 shows a number of low-level vision tasks, e.g., denoising and inpaint-
ing, which can be efficiently carried out by the proposed algorithm. In this work,
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(a) smoothing (b) denoising (c) inpainting (d) color interpolation

Fig. 1. Several applications of the proposed algorithm. (a) Approximation of relative total variation
(RTV) [11] for edge-preserving smoothing. (b) Denoising. (c) Restoration of an image with random
50% pixels occluded. (d) Restoration of an image with only 3% color informations retained.

we incorporate a group of RNNs as an equivalent of a recursive filter. As an im-
portant class of neural networks, RNNs have been used for modeling contextual
information in sequential data [12,13,14]. The linear formulation of a RNN is
equivalent to a first order recursive filter, and the weight matrix corresponds to
the coefficients. In addition, higher order recursive filters can be formulated with
several RNNs integrated either in cascade, or in parallel. To design a data-driven
RNN filter, a straightforward approach is to take each pixel as a hidden recur-
rent node in a two-dimensional (2D) spatial sequence [15,16,17], and use the
recurrent structure to learn the propagation weight matrix. However, a stan-
dard RNN uses an invariant weight matrix, which makes all pixels share one
single recursive filter. Thus, this approach cannot be directly applied to filters
that are conditioned on an input image with spatially variant structures, e.g.
edge-preserving smoothing.

To address these issues, we propose a spatially variant RNN by introducing a
weight map conditioned on the input image. The map has a set of distinct values
for each node which control the node-wise recurrent propagation, or equivalently,
each node has a distinct recursive filter. The weight map is associated with an
image representation that reveals important structures e.g., salient edges (useful
for edge-preserving smoothing and denoising). It can be jointly trained through a
deep CNN that is combined with RNNs in an end-to-end fashion. The proposed
hybrid network is shown in Fig. 3, which exhibits significant differences from
existing pure data-driven CNN models [6,7,8,9,10]. It is worth emphasizing that
the CNN is not used to extract hierarchical image features, but to learn the
coefficients of RNNs. We show that a variety of low-level vision tasks can be
carried out as recursive image filtering by the proposed neural network.

The contributions of this work are summarized as: (a) A hybrid neural net-
work is proposed to learn recursive filters for low-level vision tasks. The network
contains several spatially variant RNNs as equivalents of a group of distinct re-
cursive filters for each pixel, and a deep CNN that learns the weights of the
RNNs. (b) The deep CNN effectively guides the propagation of RNNs through
learned regulations in a data-driven fashion. Specifically, the weight map from
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the CNN is highly correlated to the corresponding image structures, which plays
an important role in low-level vision problems. (c) The proposed model achieves
promising results without any special design, regularization of the coefficients,
pre-training or post-processing, and is suitable for real-time applications.

2 Related Work

Low-Level Vision. The recent years have witnessed significant advances in
numerous low-level vision problems due to the use of designed priors and propa-
gation methods under the guidance of image structures. In edge-preserving im-
age smoothing, the key problem is to design structural priors to preserve sharp
edges. Some explicit weight-averaging filters, e.g., bilateral filters [18] and guided
image filters [19] exploit internal or guided image structures to preserve the
edges of filtered images. Most energy-based edge-preserving methods explicitly
or implicitly design adaptive weight maps through image structures (e.g., image
gradients), such as edge-preserving decompositions [20], relative total variation
[11], to achieve this goal. In PDE-based image processing, the edge-preserving
effect is achieved by hand-craft anisotropic diffusion operators [21]. These adap-
tive weight maps control whether the image regions should be smoothed or not.
Similar ideas have been used in image denoising and inpainting.

Numerous recent image processing methods, e.g., colorization [22,23] and
image matting [24,23], involve propagation that is equivalent to implicitly filter-
ing an image according to its structure. Although significant progress has been
made, solving any of these problems is not a trivial task as specific operations
are required. Furthermore, it is difficult to solve them in a unified framework.

Deep Learning Models. Several data-driven deep learning methods for low-
level vision have been explored in recent years [6,7,8,9,10]. One significant ad-
vantage is that these data-driven models are good approximations to multiple
conventional filters/enhancers via one learning paradigm. The uniform edge-
preserving CNN filter [7] is able to achieve 200 times acceleration against some
conventional methods. In addition, CNNs have been applied to image denoising
[25,26,27], super resolution [28], and deconvolution [6], among others. However,
there are two factors that limit the performance of deep CNN based models.
First, these models are generally large due to numerous convolutional opera-
tions. Second, it is difficult to generalize CNN based models to a variety of
low-level vision problems. As another class of neural networks, RNNs have been
recently exploited for high-level vision problems such as object recognition [14]
and scene labeling [13], through applying recurrent propagations over the spatial
domain. In this work, we show that recurrent structures can be better exploited
for effective and efficient image filtering for low-level vision.

3 Recursive Filter via RNNs

The proposed model contains two parts: a deep CNN, and a set of RNNs that
take the output of the CNN as their input. Different from existing CNN based
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Fig. 2. An illustrative example of the proposed model for edge-preserving image smoothing with
a single RNN. The deep CNN generates a weight map (b) that guides the propagation of the RNN.
We consider an image as a group of sequences, and take the left-to-right recurrent propagation in 1D
as an example, where k denotes a spatial location. For a single RNN, the weight map corresponds
to the edges of an image and can be clearly visualized. When pk is close to zero, it cuts off the
propagations from k− 1 to k so that the edge is preserved (i.e., near boundary). On the other hand,
pk+1 maintains the propagation from k to k + 1 so that the image is smoothed at any non-edge
location. The CNN and RNN are jointly trained and the proposed network can be generalized to
many other applications such as colorization, inpainting and denoising (see Fig. 1).

methods [6,7,8], the filtered images are generated only through the set of RNNs.
The deep CNN, on the other hand, does not contribute any features or outputs
for the filtered result. Instead, it learns the internal regulations (see Fig. 2, an
example of a single RNN for edge-preserving smoothing) to guide the propaga-
tion process for each hidden node. In terms of the network structure, the deep
CNN does not need to have a large number of channels or large kernels, since
it focuses on learning the guidance for recurrent propagation instead of kernels
for low-level filters. In comparison to recent deep CNN models for [28,6,7], the
proposed model is much more efficient and light-weighted.

In this section, we describe the algorithmic details of the low-level part in
the proposed network. We show that a recursive filter can be equally expressed
by a set of RNNs, with its coefficients corresponding to the weight matrices of
RNNs. We present two schemes to combine a group of RNNs for constructing a
recursive filter, and show how to ensure the stability of the system.

3.1 Preliminaries of Recursive Filters

We first review recursive IIR filters [29] before presenting the hybrid neural
network. For illustration, we use a one-dimensional (1D) convolution FIR filter,
in which the output y [k] is composed of a weighed sum of the input signal
x [k − i], expressed in the causal, discrete-time formulation:

y [k] =

M∑
i=0

aix [k − i] , k = 0, . . . , N, (1)

where N is the range of the sequence to be filtered, k is one point in the signal
which practically corresponds to a frame, character, or pixel in the sequential
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data. A 1D IIR filter is different in the sense that the output also contains the
previously computed values:

y [k] =

P∑
i=0

aix [k − i] +

Q∑
j=1

bjy [k − j] , k = 0, . . . , N, (2)

where x [k − i] is the input and y [k] is the output sequence, {ai, bi} ∈ R are
filter coefficients, P and M are the order of convolutional filters, and Q is the
order of the recursive filter. A 0-th order IIR filter is reduced to a FIR filter.
An IIR filter (2) is equivalent to a FIR filter (1) by recursively expanding its
second term. For an impulse input, the expanded terms can be infinitely long
with exponentially decaying coefficients. That is, an IIR filter bypasses a long
convolution, with only a few coefficients involved. The causal IIR system from (2)
is equivalently described in the z-domain by its transfer function H(z) [29]:

H (z) =

∑P
i=0 aiz

−i

1−
∑Q

j=1 bjz
−j
. (3)

It describes the frequency properties of IIRs independent of specific input signals.
The output sequence y [k] can be obtained from the z-transform of the input
signal X (z) and H (z) by computing the inverse z-transform of H (z)X (z).
Note that for causal filters, we need to define the initial conditions of the input
signal x [−i] where i = 1, ..., P , and the output signal y [−j] where j = 1, ..., Q.
In this work, we set the initial conditions to zero in the training process since we
only use up to the second order (Q ≤ 2). Similarly, we obtain the testing results
by padding image borders.

3.2 Recursive Decomposition

The Q-th order IIR filter can be decomposited into a set of first order filters in
two different forms.

Cascade Decomposition. A recursive filter can be described in the z-plane
with poles and zeros [29]. Denoting the poles by {pj}Qj=1 and the nonzero zeros

by {qi}Pi=1, we have

H (z) = Hr (z)Hc (z) ,

Hr =
∏Q

j=1
gj

1−pjz−1 , Hc =
∏P

i=1 hi(1− qiz−1),
(4)

where Hr and Hc are recursive and convolutional parts, gi and hj are their
coefficients respectively, {g, h, p, q} ∈ C. While Hc is equivalent to an ordinary
0-th order FIR that can be constructed through a convolutional layer, Hr is a
cascade of Q first order IIR units. The spatial domain formulation with respect
to the j-th unit from sequences of input xr [k] and output yr [k] is:

yrj [k] = gjx
r
j [k] + pjy

r
j [k − 1] . (5)

We denote this formulation as a cascade decomposition.
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Parallel Decomposition. In [30], it is shown that H (z) can be decomposed
into a sum of Q first order recursive filters:

H (z) = Hr (z) +Hc (z) ,

Hr =
∑Q

j=1
gj

1−pjz−1 , Hc =
∑P−Q

i=0 hiz
−i,

(6)

where {g, h, p} ∈ C. Similar to the cascade formulation, the parallel decomposi-
tion also contains a FIR Hc with different kernel size (P −Q+ 1) of a convolu-
tional layer, as well as Q summed first order IIR units. Each one shares the same
formulation as in (5). We refer to this formulation as a parallel decomposition.

To simplify the framework, we do not apply Hc from (4) and (6) in this work.
Therefore, the parallel way has P = Q − 1, which is greater than the cascade
one with P = 0 when Q > 1. It is more amenable to be designed as a high-pass
filter (e.g., for enhancement effect) compared to the cascade connection [29].

3.3 Constructing Recursive Filter via Linear RNNs

Single Linear RNN is 1st Order Filter. RNNs have been used to learn
sequential data of varying length for various tasks. Let x ∈ X be the input
signal, h ∈ H be the hidden state, and {Wx,Wh} be the weight matrices, then
the recurrent relation over spatial or time is modeled by

h [k] = f {Wxx [k] +Wh (h [k − 1] + b)} . (7)

The formulation (7) is slightly different from the first order recursive filter, as
expressed in (5), where the sigmoid is often used for f to ensure the output is
bounded and the recurrent system is stable in transition.

To model the recursive filter (5), we set f as an identity function f (x) = x,
and {Wx,Wh} as diagonal matrixes. We refer to this neural network as the
Linear Recurrent Neural Network (LRNN) in this paper. With this method, we
ignore the bias term in (7) and formulate LRNN using the dot product:

h [k] = g · x [k] + p · h [k − 1] , (8)

where x [k] ∈ Rn×1. The {g, p} ∈ Rn×1 can be regarded as the diagonal values
of Wx and Wh, where · is a dot product operator.

We further formulate (8) in a normalized filter, which has unit gain at some
specified frequency. For example, a low-pass filter commonly has unit gain at
z = 1, which implies that its discrete impulse response should sum to one. Nor-
malizing a filter is carried out by scaling its impulse response by an appropriate
factor, where (8) is computed by setting g = 1 − p such that the prediction of
coefficients is reduced to estimating the parameter p only:

h [k] = (1− p) · x [k] + p · h [k − 1] . (9)

Its backward pass can be generalized by back propagation thorough time (BPTT)
used in RNNs [31]. The derivations with respect to h [k], denoted as θ [k] is,

θ [k] = δ [k] + p · θ [k + 1] . (10)
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The stability of LRNN (9) is different from the standard RNN (7) because the
range of h [k] is not controlled through some nonlinear functions (e.g., sigmoid).
The output sequence is likely to go to infinity when p is greater than one. Ac-
cording to z-transform [29], the causal recursive system can be stabilized by
regularizing p inside the unit circle |p| < 1, which we discuss in the next section.
In addition, the propagation of (9) can reach to a long range when p is close to
one, thereby enabling global propagation over an entire image.

Construction of High Order Filters. High order recursive filters [30] can be
constructed by combining a group of LRNNs in cascade or parallel schemes as
discussed in Section 3.2. In the cascade decomposition, LRNNs are stacked with
the input signal passing through one to the next. In the parallel approach, each
LRNN receives the input signal respectively, where the outputs are integrated
with node-wise operations. The FIR terms (which we do not use in this work)
can be implemented by convolutional layers that are integrated in the same way.

Two Dimensional Image. To filter an image we need to extend the 1D LRNN
in (9) to 2D. We adopt a strategy similar to the 4-way directional propagation
for two-dimensional data in [32]. First, the 1D LRNN is processed respectively
along left-to-right, top-to-bottom and their reverse directions, as shown in Fig. 3.
In any direction, we treat each row or column as 1D sequence. Taking the left-to-
right case as an example, the LRNN scans each row from left to right. As a result,
four hidden activation maps are generated. We integrate the four maps through
selecting the optimal direction based on the maximum response at each location.
This is carried out by a node-wise max pooling, which effectively selects the
maximally responded direction as the desired information to be propagated and
rejects noisy information from other directions. We note that the four directions
can be executed in parallel for acceleration as they are independent.

4 Learning Spatially Variant Recursive Filters

One problem with the standard or linear RNN in (7) and (9) is that it takes a
group of fixed weights for every point k. Filtering an image in such a way means
that each pixel is processed with the same recursive filter, which is not effective
for many low-level tasks, e.g., edge-preserving smoothing, where the edge and
texture areas need to be processed differently.

4.1 Spatially Variant LRNN

Therefore, we propose a spatially variant recurrent network by extending the
fixed parameter p to p [k], so that each pixel has a distinct recursive filter. Tak-
ing edge-preserving smoothing as an example (see Fig. 2), and considering the
first order recursive filter (a single LRNN), {p [k]}, namely the weight map, is
supposed to be associated with an “edge map”. Specifically, the weights that lie
on the edge regions should be close to zero such that the input x [k] is preserved,
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Fig. 3. Proposed hybrid network that contains a group of RNNs to filter/restore an image and
a deep CNN to learn to propagate the RNNs. The process of filtering/restoration is carried out
through RNNs with two inputs and one output result, denoted in red. Both parts are trained jointly
in an end-to-end fashion.

and one otherwise so that the other regions can be smoothed out via recurrent
propagation (as in (9)). For higher order recursive filters and some other tasks,
e.g., inpainting, the weight maps are more complex and do not correspond to
some explicit image structures. However, they reveal the propagation regulations
with respect to specific tasks, which are conditioned on the input image.

We have two types of input to a LRNN, i.e., an image X and a weight map
P . Given a hidden node h [k] and similar to (9), the spatially variant LRNN is:

h [k] = (1− p [k]) · x [k] + p [k] · h [k − 1] . (11)

In the back propagation pass, the derivative σ [k] with respect to p [k] is:

σ [k] = θ [k] · (h [k − 1]− x [k]) , (12)

such that the weight map p [k] of a spatially variant recursive filter can be learned.

4.2 Learning LRNN Weight Maps via CNN

We propose to learn the weight maps through a deep CNN, which takes an im-
age to be filtered as its input. The CNN can be small and deep, since it learns
the guidance of propagation instead of learning convolutional filters. The pro-
posed network is equipped with 10 convolutional layers. The first five layers are
followed by a max pooling, while the other five ones are followed by a bilin-
ear upsampling. The RELUs are used between adjacent convolutional layers. In
addition, 4 links between corresponding downsampling and upsampling units
connect feature maps of the same size at different levels in order to learn better
representations, where similar settings can be found in [33]. We use 3×3 kernels
with the number of channels ranging from 16 to 64, as shown in Fig. 3.

To connect with the LRNNs of different directions (4 distinct hidden layers,
see Fig. 3), the weight map can be equally split into 4 parts for the 4 directions.
To simplify the network implementation, each axis is allowed to share the same
part (e.g., the left-to-right and right-to-left directions share a common horizontal
map). Thus, for each LRNN, we have two parts in a weight map for the x
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and y-axis, respectively. We find that better results can be obtained by linearly
transferring the RGB input of LRNN into a feature space, e.g., through one
convolutional layer, and then perform LRNN on the proposed transform space.
We are then able to select a best direction at each point on the feature space
using a node-wise integration strategy, which combines the fore directions. The
combined maps can be transferred back to a 3-channel image through another
convolutional layer. We configure both of the transform convolutional layers
using 3×3 kernels. We set the number of channels in each hidden layer of LRNNs
to m = 16 in all experiments so that each x [k] and p [k] in (11) are vectors with
dimension of 16. The number of output channels for CNN is 2×m× R, where
R denotes the order of recursive filter (or equivalently the number of LRNNs),
e.g., it should be set to 64 with a network configured with a 2nd order recursive
filter. It is important that we equip a hyperbolic tangent function as the topmost
layer of the CNN, so that the weight map is restricted to (−1, 1) to stabilize the
LRNN, as introduced in Section 3.3.

5 Experimental Results

We apply the proposed model to a variety of low-level vision problems includ-
ing edge-preserving smoothing, enhancement, image denoising, inpainting and
colorization. All the following applications share the same model size as well as
the run-time. Specifically, our model reaches real-time performance on images
of 320 × 240 pixels (QVGA) using a Nvidia Geforce GTX Ti GPU with 3 GB
memory. Due to space limitations, we present some results in this section. More
and large images are included in the supplemental materials. The trained models
and source code will be made available at www.sifeiliu.net/project.

Experimental Settings. To obtain rich information from different scales of an
image, we use multi-scale input through downsampling the color image with ratio
of {1/2, 1/4, 1/8, 1/16}, resizing them to the original size, and concatenating
them to be a single input. Therefore, nodes in a LRNN can reach to a more
global range via processing on coarse scales, without increasing the number of
coefficient maps to be learned. We use 96 × 96 image patches as the original
inputs that are randomly cropped from training images, which are then processed
as multi-scale input through average pooling and upsampling. All patches are
augmented through perturbation using the similarity transform, so as to adapt
to the scale-variant property for some existing filters. We use roughly 400, 000
image patches that are randomly cropped from the MS COCO dataset [34] in
the training process with data augmentations. For all the following applications,
the order of filter is set to 2 with specific structures shown in Fig. 3. The only
difference lies in the integration manner with respect to these 2 LRNNs, e.g., in
cascade or parallel way, which is specified in each application.

5.1 Edge-Preserving Smoothing

Xu et al. in [7] propose a CNN model to approximate various filters such that
many conventional implementations can be accelerated significantly. We show

www.sifeiliu.net/project
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(a) original (b) RTV-x (c) RTV-y (d) weight-x (e) weight-y (f) our result

Fig. 4. Visualization of weight maps for approximating the RTV filter using first order recursive
filter. (a) original image; (b) and (c): manually designed edge prior maps in RTV for x and y axes;
(d) and (e): weight maps generated from the CNN for x and y; (f) our filtered result.

that the proposed algorithm is able to approximate various filters and performs
favorably against [7] in terms of accuracy, run time, and model size. We selec-
tively learn a group of local and global filters including bilateral filter (BLF) [18],
weighted least square (WLS) [20], L0 smoothing [35], RTV texture smoothing
[11], weighted median filter (WMF) [36], and rolling guidance filter (RGF) [37].

Visualization of Weight Maps. We first demonstrate through a first order
recursive filter using a single scale RGB image without any linear transformation
as the input to both CNN and LRNN, where the weight maps with respect to x
and y axes accurately correspond to the edges of the image. This is carried out
by setting the number of output channels of the CNN to 2, such that the maps
for x and y axes, which are then shared by all channels of the hidden layers in
the LRNN, can be obtained and visualized.

We note that some edge-preserving methods, e.g., RTV [11], focus on ex-
tracting the main structures of an image. The designed edge prior maps for
RTV (Fig. 4(b) and (c)), which reflect the main structures of an image, deter-
mine whether the image regions should be smoothed or not in the propagation
step [11]. Interestingly, the learned data-driven weight maps by our model (see
Fig. 4(d) and (e)) have the similar effects to the hand-craft maps. They accu-
rately locate the image edges with cleaner background, and effectively remove
the grid-like texture in the input image, as shown in Fig. 4(f). As our method is
data-driven, different weight maps can be generated for different tasks. The data-
driven approach allows the proposed algorithm to be generalized to a variety of
applications without hand-craft priors.

Quantitative Comparisons. We show the applications that are based on a sec-
ond order filter. Specifically for edge-smoothing tasks (e.g., L0, WLS and RTV,
etc.), the two LRNNs are connected in cascade since it is more amicable to
low-pass filtering. On the other hand, we use the parallel integration scheme for
learning shock filters [38] with enhancement effects. We quantitatively evaluate
the proposed algorithm against [7] on the dataset used in [7]. Table 1 shows that
our method generates high quality filtered images with significant improvements
over the state-of-the-art CNN based method. In addition, the proposed model is
much smaller and faster due to its hybrid structure, which can be used to accel-
erate more conventional algorithms, e.g., region covariance filter (RegCov) [39]
and local laplacian filter (LLF) [40].
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Table 1. Quantitative evaluations for learning various image filters.

Methods L0 [35] BLF [18] RTV [11] RGF [37] WLS [20] WMF [36] Shock filter [38]
PSNRs of [7] 32.8 38.4 32.1 35.9 36.2 31.6 30.0
Our PSNRs 30.9 38.6 37.1 42.2 39.4 34.0 31.8

(a) Input (b) Xu et al. [7] (c) Ours (d) Original filters

Fig. 5. Approximation of edge-preserving filters. (a) input images. (b) results by Xu et al. [7].
(c) results of our model. (d) results from the original filters. First row: Results by approximating
RGF [37]. Second row: Results by approximating WLS smoothing [20].

Fig. 5 shows approximations of RGF [37] and WLS smoothing [20]. The
results by our model preserve more accurate structures without including details
that are supposed to be removed. The filtered images are visually the same
as those generated by the original implementations. We note that the CNN
based filter [7] misses important local structures by approximating the RGF,
and includes some details that should be removed by approximating the WLS,
as shown in Fig. 5(b). More results are included in the supplemental material.

Run Time and Model Size We evaluate all the following methods with the
same computer introduced in the beginning of this section. The proposed method
achieves favorable speed as shown in Table 2, and is significantly smaller than
that of [7] (0.54 vs 5.60 MB). It can speed up a variety of conventional filters for
denoising, inpainting and colorization, etc.

Table 2. Run-time (second) performance against [7] and some conventional methods at different
resolutions of color images.

method BLF [18] WLS [20] RTV [11] WMF [36] EPLL [41] Levin [42] Xu et al. [7] Ours
QVGA 0.46 0.71 0.81 0.67 33.82 2.10 0.23 0.05
VGA 1.41 3.40 3.51 1.70 466.79 9.24 0.83 0.16
720p 3.18 11.38 9.94 3.80 1395.61 31.09 2.10 0.37
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(a) Input (b)EPLL, PSNR: 31.0 (c) CNN, PSNR:31.0 (d)Ours, PSNR: 32.3

(a) Input (b)EPLL, PSNR: 31.1 (c) CNN, PSNR: 29.5 (d) Ours, PSNR: 31.6

Fig. 6. Image denoising. (b) denotes the results of image patch prior based method EPLL [41]. (c)
denotes the results by end-to-end trainable CNN method [9].

5.2 Image Denoising

The proposed method can be used to learn filters for image denoising. Specif-
ically, we train the model with thousands of patches in which white Gaussian
noise with the standard deviation of 0.01 is added. At the output end, the model
is supervised by the original image patches. We apply the parallel connection
to the two LRNNs to preserve more details. The other settings are the same as
those used in Section 5.1.

Fig. 6 shows the results with two state-of-the-art algorithms including ex-
pected patch log likelihood (EPLL) [41] and a deep CNN based model [9]. The
denoising method [41] is based on a prior of image patches, and the vectorization-
based deep CNN [9] is based on a two-layer convolutional model. Although sig-
nificant noise has been removed by both methods, some details are not preserved
well and the restored results can be over-smoothed. The learned filter by the pro-
posed model generates clear images with well preserved fine details, as shown
in Fig. 6(d). It retains important image contents such as the brushstrokes of oil
painting in the first row, or pattens of the feather in the second row.

The deep CNN method is likely to be slower in terms of run-time (was not
specified in [9]) due to its large model size, while the EPLL takes more than
hundreds of seconds to process one image. In contrast, the proposed method
achieves several order of magnitude accelerations (see Section 5.1).
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(a) occluded (b) restored (c) original

Fig. 7. Pixel interpolation. (a) input image. (b) restored image for masking half pixels in (a).

5.3 Image Propagation Examples

In this section, we validate the effectiveness of propagation-study of the network
by restoring images from degraded frames with masks. The deep CNN here learns
more complex rules than the edges that are used for smoothing. We apply the
proposed model to two interesting applications for pixel and color interpolation
(e.g., inpainting and colorizaiton). Specifically, we retain randomly 50% pixels for
the image interpolation and 3% monochrome pixels for the color interpolation.
The proposed model takes degraded images as well as masks as input channels,
and learns the weight maps with the supervision of the original images. It learns
complex regulations including identifying the occluded pixels and restoring them
by propagating information from the other pixels, and identifying the image
structures such that the restored pixels can naturally adapt to them.

Pixel Interpolation. The goal of pixel interpolation is to restore the values
in missing regions according to a mask of pixels that are to be restored. In this
model, the random mask is concatenated with the degraded image as the input,
such that it learns the propagation rules according to all the visual information.
The LRNNs filter the degraded image according to the learned rules and output
an interpolated result. It does not require explicit regulations to compute the
missing data, nor expensive optimizations for each test image. Therefore, it is
accurate and fast to execute through forward propagation.

We show that the proposed algorithm can restore fine details (e.g., pattens
on a butterfly) in Fig. 7 with randomly half pixels are masked. We discover that
the proposed model trained for image interpolation can be directly applied to
image inpainting with texts, as shown in the first row of Fig. 8. Both results are
visually very similar to the original images, as shown in Fig. 7(b) and 8(c).

Color Interpolation. The proposed algorithm can be applied to color image
restoration and editing despite providing little color information, e.g., user in-
puts. Given the brightness channels (y channel in the YCbCr color space), we
retain only 3% color pixels, as shown in Fig. 8(e). Taking a degraded image and a
mask as input, the proposed model learns to propagate the known colors to other
regions to be restored. Specifically, the proposed model generates favorable re-
sults (visually the same with the original image) compared to the state-of-the-art
method [42], which takes more than 3 seconds on a QVGA image.
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(a) occluded (b) Xu et al. (c) ours (d) original

(e) degraded (f) Levin et al. (g) ours (h) original

Fig. 8. First row: image inpainting on the regions of texts with comparison to Xu et al. [8]. We
directly apply the pixel interpolation model to inpainting. The model does not require any network
finetuning on texts masks. Second row: color interpolation with comparison to Levin et al. [42].

(a) origin (b) reference (c) re-colored

Fig. 9. Re-colorization by applying the brightness channel of (a) and directly taking 3% color pixels
from the monochrome channels in a reference image with the same size.

The proposed model can also be generalized to image re-colorization by ap-
plying the brightness channel of an input image, and directly taking 3% color
pixels from the monochrome channels in a reference image of the same size. The
re-colored image has the contents of the original image, but with the color style
of the reference image. Fig. 9 shows one example of image re-colorization. More
results are included in the supplemental material.

6 Conclusion

In this work, we propose a novel hybrid neural network for low-level vision tasks,
based on the recursive filters whose coefficients can be learned by a deep CNN.
We show that the proposed model is faster and significantly smaller than the
deep CNN filters. It is also more generic, and can effectively and efficiently
handle a variety of applications including image smoothing and enhancement,
image denoising and pixel interpolation.
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