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Abstract. Multi-face tracking in unconstrained videos is a challenging problem
as faces of one person often appear drastically different in multiple shots due to
significant variations in scale, pose, expression, illumination, and make-up. Low-
level features used in existing multi-target tracking methods are not effective for
identifying faces with such large appearance variations. In this paper, we tackle
this problem by learning discriminative, video-specific face features using con-
volutional neural networks (CNNs). Unlike existing CNN-based approaches that
are only trained on large-scale face image datasets offline, we further adapt the
pre-trained face CNN to specific videos using automatically discovered training
samples from tracklets. Our network directly optimizes the embedding space so
that the squared Euclidean distances correspond to a measure of semantic face
similarity. This is technically realized by minimizing an improved triplet loss
function. With the learned discriminative features, we apply the Hungarian algo-
rithm to link tracklets within each shot and the hierarchical clustering algorithm
to link tracklets across multiple shots to form final trajectories. We extensively
evaluate the proposed algorithm on a set of TV sitcoms and music videos and
demonstrate significant performance improvement over existing techniques.

1 Introduction

Multi-target tracking (MTT) aims at locating all targets of interest (e.g., faces, players,
and cars), and inferring their trajectories in a video sequence over time while maintain-
ing their identities. Multi-face tracking is one important domain of MTT that applies to
numerous high-level video understanding tasks such as face recognition, content-based
retrieval, surveillance, and group interaction analysis.

The goal of multi-face tracking in unconstrained scenarios is to track faces in videos
that are generated from multiple moving cameras with different views or scenes as
shown in Figure 1. Examples include automatic character tracking in movies, TV sit-
coms, or music videos. It has attracted increased attention in recent years due to the fast
growing popularity of such videos on the Internet. Unlike tracking in the constrained
counterparts (e.g., a video from a single camera that is either fixed or moved slowly)
where the main challenge is to deal with occlusions and intersections, multi-face track-
ing in unconstrained videos needs to address the following issues: (1) A video often
consists of many shots. The contents of two neighboring shots may be dramatically d-
ifferent; (2) It entails dealing with re-identifying faces of people with large appearance
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Fig. 1. We focus on tracking multiple faces according to their unknown identities in uncon-
strained videos, which consist of many shots from different cameras. The main challenge is to
address large face appearance variations from different shots due to changes in pose, view angle,
scale, makeup, illumination, camera motion and heavy occlusions.

variations due to changes in scale, pose, expression, illumination and make-up in differ-
ent shots or scenes; and (3) The results of face detection may be unreliable when there
are many uncontrolled factors, such as low resolution, occlusion, nonrigid deformation,
motion blurring and complex background.

Multi-target tracking has been extensively studied in the literature with a prime fo-
cus on humans. The task is often cast as a data association problem [1,2,3,4,5] that inte-
grates several cues such as appearance, position, motion, and size into an affinity model
to link detections or tracklets (track fragments) into final trajectories. Such methods are
effective when the targets are continuously detected and when the camera is either sta-
tionary or slowly moving. However, for unconstrained videos with many shot changes
and intermittent appearance of targets, the data association problem becomes difficult
because the assumptions such as appearance and size consistency, and continuous mo-
tion no longer hold. Therefore, the design of discriminative features plays a critical role
in identifying faces across shots in unconstrained scenarios.

Existing MTT methods [3,4,5] generally use combinations of low-level features
such as color histograms, Haar-like features, or HOG [6] to construct an appearance
model for each target. However, these traditional features often are not sufficiently dis-
criminative to identify faces with large appearance changes. For example, low-level
features extracted from faces of two different persons under the same pose (e.g., frontal
poses) are likely more similar than those extracted from faces of the same person under
different poses (e.g., frontal and profile poses).

Recently, features extracted from a convolutional neural network (CNN) trained on
a large-scale object recognition dataset have been successfully applied to a broad range
of generic visual recognition tasks [7]. In particular, CNN-based features have shown
impressive performance on face recognition and verification tasks [8,9,10,11]. These
CNNs are often trained using large-scale face recognition datasets in a fully supervised
manner and then serve as a feature extractor for unseen face images. Yet, they may not
achieve good performance in unconstrained videos as the visual domains of faces in the
training set and faces in given videos may be significantly different.

In this paper, we aim to address this domain shift by adapting a pre-trained CNN to
the specific videos. Due to the lack of manual annotations of target identities, we collect
a large number of training samples of faces by exploiting spatio-temporal constraints
of tracklets in an unsupervised manner. With these automatically discovered training
samples, we adapt the pre-trained CNN with an improved triplet loss function, so the
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squared Euclidean distance of the learned features reflects the semantic distance of
face images. We incorporate these adaptive features into a hierarchical agglomerative
clustering algorithm to link tracklets across multiple shots into final trajectories. We
demonstrate the effectiveness of the learned features to identify characters in 7 long TV
sitcom episodes and singers in 8 challenging music videos.

We make the following four contributions in this work:
– Unlike existing work that uses linear metric learning on hand-crafted features, we

address the large appearance variations of faces in videos by learning video-specific
features using the deep contrastive and triplet-based metric learning from automat-
ically discovered constraints.

– We propose a new triplet loss function (SymTriplet). By visualizing and analyz-
ing the gradient directions, we show that the SymTriplet simultaneously can pull
positive pairs closer and push away negative samples from the positive pairs.

– Unlike prior work that often use face tracks with false positives manually removed,
we take raw input video as the input and perform detection, tracking, clustering,
and feature adaptation in a fully automatic way.

– We contribute a new dataset with 8 music videos from YouTube. We provide full
annotations of 3,845 face tracklets and 117,598 face detections. The new dataset
presents a new set of challenges (e.g., frequent shot/scene changes, large appear-
ance variations, and rapid camera motion) that are crucial for developing multi-face
tracking algorithms in unconstrained environments.

2 Related Work

Multi-target tracking. Multi-target tracking algorithms typically integrate appearance
and motion cues into an affinity model to infer and link detections (or tracklets) into final
trajectories [1,4,12,13,14]. However, MTT methods do not work well in unconstrained
videos where abrupt changes across different shots/scenes occur as the assumptions of
continuous appearance or motion no longer hold.

To identify targets across shots, the features need to be sufficiently discriminative to
discern targets in various circumstances. Most existing MTT methods either use simple
color histogram features [4,15,16,17,18] or hand-crafted features [12,19,20,21,22] as
the appearance representation of targets. However, all these hand-crafted features are
not tailored toward faces, and thus are less effective at handling the large appearance
variations of faces in unconstrained scenarios.
Visual constraints in multi-target tracking. Several methods explore visual constraints
from tracklets for improving tracking performance. These constraints can then be used
implicitly for learning a cast-specific metric [21,23], explicitly for linking clusters [24],
or for joint tracklets linking and clustering [18]. Some work [24,25,26] also exploit
the visual constraints from tracklets for face clustering in videos. Note that some other
methods use non-visual cues from external sources (e.g., script) [27,28,29] and exploit
the weak supervision for improving face clustering and tracking. In this paper, we ex-
ploit visual constraints generated in a manner similar to [24,25,26]. Our method differs
from previous methods in two major aspects. First, existing approaches often rely on
hand-crafted features and then learn a linear transformation over the extracted features,
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which may not be effective to capture the nonlinear manifold where face samples lie on.
In this work, we apply a deep nonlinear metric learning method by adapting all layers
of the CNN to learn discriminative face feature representations. Second, previous work
often use face tracks with false positives manually removed [18,23,24,25,26]. In con-
trast, our approach takes raw input video as the input and perform detection, tracking,
clustering, and feature adaptation in a fully automatic way.
CNN-based face representation learning. With advances in deep learning, recent face
recognition and verification methods focus on learning identity-preserving feature rep-
resentations. While the implementation details may differ, in general these CNN-based
face representations (e.g., DeepID [8], DeepFace [30], FaceNet [10], VGG-Face [31])
are learned by training CNNs using large-scale face recognition datasets in a fully su-
pervised manner. These CNNs then act as face feature extractors for face recognition,
identification, and clustering tasks. Similar to [8,10,30,31], our approach learns fea-
ture representation in a purely data-driven manner. The main difference lies in that we
further adapt the pre-trained features to a specific video, resulting in improved discrim-
inative ability. Also, we introduce a new triplet-based loss function and demonstrate its
effectiveness over the commonly used contrastive loss and triplet loss.
Long-term object tracking. The goal of long-term object tracking [32,33] is to track a
specific target over time and re-detect it when the target leaves and re-enters the scene.
These trackers perform well on various types of targets, including human faces. How-
ever, these online trackers are designed to handle scenes recorded by a stationary or
slow-moving camera, and not effective in tracking faces in unconstrained videos be-
cause of the following two fundamental limitations. First, they are prone to target drift
due to the noisy training samples collected during the online model update process.
Second, the features employed by these trackers are rather low-level ones which are not
sufficiently discriminative to re-identify faces across different shots/scenes. We tackle
the first issue by processing offline, i.e., apply a face detector in every frame and then
associate all detections/tracklets in the video. For the second issue, we present to learn
discriminative and adaptive features to address face appearance variations.

3 Algorithmic Overview

Our goal is to track multiple faces across many shots in an unconstrained video while
maintaining identities of persons. To achieve this, we learn discriminative face appear-
ance features that are adapted to the appearance variations presented in the specific
videos. We then use a hierarchical clustering algorithm to link tracklets across shots
into final trajectories. We illustrate the four main steps of our algorithm in Figure 2:
(a) Pre-training: We pre-train a CNN model based on the AlexNet [34] using an ex-

ternal face recognition dataset to learn identity-preserving features (Section 6.1).
(b) Automatic training sample discovery: We detect shot changes and divide the

video into non-overlapping shots. Within each shot, we apply a face detector and
link adjacent detections into short tracklets. We discover a large collection of face
pairs or face triplets from tracklets based on spatio-temporal constraints (Section 4.1).

(c) Adaptive feature learning: We adapt the pre-trained CNN using the automatical-
ly discovered training samples to address large appearance changes of the imaged
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Fig. 2. Our method of tracking faces in unconstrained videos has four main steps. (a) Pre-training
a CNN on a large-scale face recognition dataset. (b) Generating face pairs or face triplets from the
tracklets in a specific video. (c) Adapting the pre-trained CNN to learn video-specific features.
(d) Linking tracklets in each shot and then across shots to form the final face trajectories.

faces presented in a specific video (Section 4.2). For adapting the CNN, we first
introduce two types of loss functions for optimizing the embedding space: the con-
trastive loss and the triplet loss. Moreover, we present a new triplet loss to improve
the discriminative ability of learned features (Section 4.3).

(d) Linking tracklets: For each shot, we use conventional multi-face tracking methods
to link tracklets into short trajectories. We use a hierarchically clustering algorithm
to link trajectories across shots. We assign the tracklets in each cluster with the
same identity (Section 5).

4 Learning Adaptive Discriminative Features

We present the algorithmic details of our unsupervised learning approach of discrim-
inative, video-specific features, including training sample discovery, adaptive feature
learning, and the improved triplet loss function.

4.1 Automatic training sample discovery

Shot detection and tracklets linking. We first use a publicly available shot change
detection method to divide the input video into non-overlapping shots.1 We then use an
off-the-shelf face detector [35] to locate faces in each frame. Given face detections, we
use a two-threshold strategy [16] to generate tracklets within each shot by linking the
detected faces in adjacent frames based on their similarities in appearances, positions,
and scales of the bounding boxes. Note that the two-threshold strategy for linking de-
tections could be replaced by more sophisticated methods, e.g., tracking using particle
filters [13,36]. We discard all tracklets shorter than five frames. Our face tracklets are
conservative with limited temporal spans up to the length of each shot.
Spatio-temporal constraints. Given a set of tracklets, we can discover a large col-
lection of positive and negative training sample pairs belonging to the same/different

1 http://sourceforge.net/projects/shot-change/
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Fig. 3. Illustration of the Siamese network (left) with pairs as inputs and the triplet network (right)
with triplets as inputs for Adaptive discriminative feature learning. The Siamese network consists
of two CNNs and uses a contrastive loss, while the Triplet network consists of three CNNs and
uses a triplet loss. The CNNs in each network share the same architectures and parameters, and
are initialized with the pre-trained parameters on the large-scale face recognition dataset.

persons: (1) all pairs of faces in one tracklet are from one person and (2) two face
tracklets that appear in the same frame contain faces of different persons.

Let Ti = {xi
1, . . . ,x

i
ni
} denote the ith face tracklet of length ni. We generate a set of

positive pairs P+ by collecting all within-tracklet face pairs: P+ = {(xi
k,x

i
l)}, s.t. ∀k, l =

1, ...,ni, k 6= l. Similarly, if tracklets Ti and T j overlap in some frames, we can gen-
erate a set of negative pairs N− by collecting all between-tracklet face pairs: N− =
{(xi

k,x
j
l )}, s.t. ∀k = 1, ...,ni, ∀l = 1, ...,n j.

4.2 Adaptive discriminative feature learning

With the automatically discovered training pairs, we aim to optimize the embedding
function f(·) based on the CNN so that the squared Euclidean distance in the embedding
space D(f(x1), f(x2)) reflects the semantic similarity of two face images x1 and x2. We
set the feature dimension f(·) as 64 in all our experiments. In what follows, we first
describe two commonly used loss functions for optimizing the embedding space: (1)
contrastive loss and (2) triplet loss, and then present an improved loss function for
feature learning.
Contrastive loss. The Siamese network [37,38] consists of two identical CNNs with
shared architecture and parameters as shown in Figure 3(left). Minimizing the con-
trastive loss function encourages small distance of two images of the same person and
large distance otherwise. Denote (x1,x2)∈ {P+,N−} as a pair of training images gener-
ated with the spatio-temporal constraints. Following [37,38], the contrastive loss func-
tion is of the form:

Lp =

{
1
2 D(f(x1), f(x2)) if (x1,x2) ∈ P+

1
2 max [0,τ−D(f(x1), f(x2))] if (x1,x2) ∈ N−

, (1)

where τ (τ = 1 in all our experiments) is the margin. Intuitively, if x1 and x2 are from
the same person, the loss is 1

2 D(f(x1), f(x2)) and we aim to decrease D(f(x1), f(x2)).
Otherwise, the loss is 1

2 max[0,τ−D(f(x1), f(x2))] and we increase D(f(x1), f(x2)) until
it is larger than the margin τ .
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(a) Original triplet loss (b) SymTriplet loss
Fig. 4. Illustration of the negative partial gradient direction to the triplet sample. (a) the original
triplet loss; (b) the SymTriplet loss. The triplet samples xi

k, xi
l and x j

m are highlighted with blue,
red and magenta, relatively. The circles denote faces from the same person whereas the triangle
denotes a different person. The gradient directions are color-coded.

Triplet loss. The Triplet-based network [10] consists of three identical CNNs with
shared architecture and parameters as shown in Figure 3(right). One triplet consists
of two face images of one person and one face image from another person. We can
generate a set of triplets S from two tracklets Ti and T j that overlap in some frames:
S = {(xi

k,x
i
l ,x

j
m)}, s.t. ∀k, l = 1, ...,ni, k 6= l, ∀m = 1, ...,n j. Here we aim to ensure that

the embedded distance of the positive pair (xi
k,x

i
l) is closer than that of the negative pair

(xi
k,x

j
m) by a distance margin α (α = 1). For one triplet, the triplet loss is of the form:

Lt =
1
2

max
(
0, D(f(xi

k), f(x
i
l))−D(f(xi

k), f(x
j
m))+α

)
. (2)

4.3 Improved triplet loss

We observe that in one triplet (xi
k, xi

l and x j
m) there are three distances between each

pair of samples. The conventional triplet loss in (2), however, takes only two of the
three distances into consideration: D(f(xi

k), f(x
i
l)) and D(f(xi

k), f(x
j
m)). We illustrate the

problem of the original triplet loss by analyzing the gradients of the loss function. We
first denote the difference vector between the triplet (k, l, m), e.g., ∆l,k = f(xi

l)− f(xi
k).

If the triplet loss in (2) is non-zero, we can compute the gradients as
∂Lt

∂ f(xi
k)

=−(∆l,k−∆m,k),
∂Lt

∂ f(xi
l)

= ∆l,k,
∂Lt

∂ f(x j
m)

=−∆m,k. (3)

Fig. 4(a) visualizes the negative gradient directions for each sample. There are two
issues with the original triplet loss. First, the negative point x j

m is only pushed away from
xi

k, not both of xi
k and xi

l . Second, the positive pair (xi
k,x

i
l) do not move consistently. For

example, xi
l only move in the direction between xi

k and xi
l , while xi

k would move in the
direction with a certain angle.

To address this issue, we propose an improved triplet-based loss function (SymTriplet)
by considering all three distances simultaneously. We define the SymTriplet loss as:

Ls = max
[

0, D(f(xi
k), f(x

i
l))−

1
2
(D(f(xi

k), f(x
j
m))+D(f(xi

l), f(x
j
m)))+α

]
, (4)
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where α is the distance margin. The gradients of the SymTriplet loss are
∂Ls

∂ f(xi
k)

=−(2∆l,k−∆m,k),
∂Ls

∂ f(xi
l)

= 2∆l,k +∆m,l ,
∂Ls

∂ f(x j
m)

=−(∆m,k +∆m,l). (5)

We visualize the negative gradient directions in Fig. 4(b). We show that the proposed
SymTriplet loss directly optimize the embedding space so that the positive pair are
pulled closer to each other and the negative sample (x j

m) is pulled away from the two
positive samples (xi

k,x
i
l). This property allows us to improve the discriminative ability

of the learned features.

5 Multi-face Tracking via Hierarchical Tracklet Linking

We follow a two-step procedure to associate face tracklets generated in Section 4.1 with
the learned features: (1) linking the face tracklets within each shot into shot-level track-
lets, and (2) merging shot-level tracklets across multiple shots into final trajectories.
Linking tracklets within each shot. We use conventional multi-target tracking algo-
rithms to solve the data association problem of face tracklets within each shot. The
appearance of each detection is represented as a feature descriptor extracted from the
learned Siamese/Triplet network. The linking probabilities between two tracklets are
measured based on temporal, kinematic and appearance information. We then use the
Hungarian algorithm to find a global optimum [16,39]. The tracklets with the same label
are linked into shot-level tracklets.
Linking tracklets across shots. We use a simple Hierarchical Agglomerative Cluster-
ing algorithm with a stopping threshold to link tracklets across shots with the learned
appearance features. We explicitly enforce the spatio-temporal constraints by setting
the distances between tracklets which have overlapped frames to infinity. We iteratively
merge tracklets until the smallest distance is larger than a predefined threshold θ . We
present the detailed linking processes in the supplementary material.

6 Experimental Results

In this section, we first describe the implementation details, datasets, and evaluation
metrics. We then compare the proposed algorithm with the state-of-the-art methods.
More experimental results and videos are available in the supplementary material.

6.1 Implementation Details

Pre-training: We adopt the AlexNet [34] architecture. We replace the original 1,000
node output layer with K nodes where each node corresponds to a specific person. Using
the CASIA-WebFace dataset [40], we select K = 9,427 persons, 80% of the images
(431,300 images) for training and the rest 20% (47,140 images) as the validation set.
We resize all face images to 227× 227× 3 pixels. We use stochastic gradient descent
with an initial learning rate of 0.01 that decreases by a factor of 10 for every 20,000
iterations. We use the Caffe [41] framework to train the network.
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CNN fine-tuning: We adapt the pre-trained CNN with the Siamese/Triplet network.
We replace the classification layer in the pre-trained network with 64 output nodes for
feature embedding. As the NVIDIA GT980Ti GPU used in our experiments has only
6GB memory, we find that it does not have sufficient memory to train the VGG-Face
model. We set a fixed learning rate to 0.0001 for fine-tuning.
Linking tracklets: For features from the Siamese network, we empirically set the
threshold of the HAC algorithm as θ = 0.4. For features from the Triplet network,
we use θ = 5 for both the original triplet loss and the improved triplet loss.

6.2 Datasets

We evaluate the proposed algorithm on three types of videos containing multiple per-
sons: (1) a constrained video in a laboratory setting: Frontal [18], (2) TV sitcoms: The
Big Bang Theory (BBT) dataset [18,24], and (3) music videos from YouTube.
Frontal video. This is a short video in a constrained scene taken indoors with a fixed
camera. Four persons facing the camera move around and occlude each other.
BBT dataset. We select the first 7 episodes from Season 1 of the Big Bang Theory TV
Sitcom (referred as BBT01-07). Each video is about 23 minutes long with the main cast
of 5-13 people and is taken mostly indoors. The main difficulty lies in identifying faces
of the same person from frequent changes of camera views and scenes, where faces
have large appearance variations in viewing angle, pose, scale, and illumination.
Music video dataset. We introduce a new set of 8 music videos from YouTube. These
videos present a new set of challenges, e.g., frequent shot/scene changes, large appear-
ance variations, and rapid camera motion. We believe that these challenges are crucial
for developing robust multi-face tracking algorithms in unconstrained environments.
Three of the sequences (T-ARA, WESTLIFE and PUSSYCAT DOLLS) are live vocal
concert recordings from multiple cameras with different views. The other sequences
(BRUNO MARS, APINK, HELLO BUBBLE, DARLING and GIRLS ALOUD) are MTV
videos. Faces in these videos often undergo large appearance variations due to changes
in pose, scale, makeup, illumination, camera motion, and occlusions.

6.3 Evaluation metrics

We evaluate the proposed method in two aspects. First, to evaluate the effectiveness
of the learned video-specific features, we use the bottom-up HAC algorithm to merge
pairs of tracklets until all tracklets have been merged into the ideal number of clusters
(i.e., the actual number of people in the video). We measure the quality of clustering
using the weighted purity: W = 1

M ∑c mc pc, where each cluster c contains mc elements
and its purity pc is measured as a fraction of the largest number of faces from the same
person to mc, and M denotes the total number of faces in the video. Second, we evaluate
the method with the metric set commonly used in multi-target tracking [42], including
Recall, Precision, F1, FAF, IDS, Frag, MOTA and MOTP.

6.4 Evaluation on features

We evaluate the proposed adaptive features against several alternatives:
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Table 1. Clustering results on 7 BBT videos and 8 music videos. The weighted purity of each
video is measured on the ideal number of clusters.

BBT dataset
Episodes BBT01 BBT02 BBT03 BBT04 BBT05 BBT06 BBT07
HOG 0.37 0.32 0.38 0.35 0.29 0.26 0.31
AlexNet 0.47 0.32 0.45 0.35 0.29 0.26 0.45
Pre-trained 0.62 0.72 0.73 0.57 0.52 0.52 0.61
VGG-Face 0.91 0.85 0.83 0.54 0.65 0.46 0.82
Ours-Siamese 0.94 0.95 0.87 0.74 0.70 0.70 0.89
Ours-Triplet 0.94 0.95 0.92 0.74 0.68 0.70 0.89
Ours-SymTriplet 0.94 0.95 0.92 0.78 0.85 0.75 0.91
Ours-SymTriplet-BBT02 0.90 0.95 0.87 0.74 0.79 0.67 0.88

Music dataset

Videos T-ara Pussycat
Dolls

Bruno
Mars

Hello
Bubble Darling Apink Westlife Girls Aloud

HOG 0.22 0.28 0.36 0.35 0.19 0.20 0.27 0.29
AlexNet 0.25 0.31 0.36 0.31 0.18 0.22 0.37 0.30
Pre-trained 0.31 0.31 0.50 0.34 0.24 0.29 0.37 0.33
VGG-Face 0.23 0.46 0.44 0.29 0.20 0.24 0.27 0.31
Ours-Siamese 0.69 0.77 0.88 0.54 0.46 0.48 0.54 0.67
Ours-Triplet 0.68 0.77 0.83 0.60 0.49 0.60 0.52 0.67
Ours-SymTriplet 0.69 0.78 0.90 0.64 0.70 0.72 0.56 0.69

– Ours-SymTriplet: a 64-D feature trained with the SymTriplet loss.
– Ours-Triplet: a 64-D feature trained with the original triplet loss.
– Ours-Siamese: a 64-D feature trained with the contrastive loss.
– HOG: a conventional hand-crafted feature with 4,356 dimensions.
– AlexNet: a generic feature representation with 4,096 dimensions from the AlexNet.
– Pre-trained: a 4,096-dimensional face feature from the AlexNet architecture trained

on the WebFace dataset.
– VGG-Face [31]: a publicly available face descriptor with 4,096 dimensions.

We note that our 64-D features are more compact than all other baseline features.
Clustering purity. We quantitatively evaluate the above features on the all videos. Ta-
ble 1 shows the performance of different features on 7 BBT sequences and 8 music
videos. We show that identity-preserving features (Pre-trained and VGG-Face) trained
on face datasets offline achieve better performance over generic feature representation
(e.g., AlexNet and HOG). Our video-specific features trained with Siamese and Triplet
networks achieve superior performance to other alternatives, highlighting the impor-
tance of learning adaptive features. Using the proposed Symmetric Triplet loss function,
Ours-SymTriplet achieves the best performance. For example, in the DARING sequence,
Ours-SymTriplet achieves the highest weighted purity of 0.70, significantly outperform-
ing other features, e.g., Ours-Siamese: 0.46, Ours-Triplet: 0.49, and VGG-Face: 0.20.
Overall, our results are more than twice as accurate as VGG-Face in music videos. For
the BBT dataset, Ours-SymTriplet consistently outperform all other alternatives.
The t-SNE visualization. In Figure 5, we extract the features using HOG, AlexNet,
Pre-trained and Ours-SymTriplet on the T-ARA video, and visualize them in 2D using
the t-SNE algorithm [43]. For HOG there exists no clear cluster structures, faces of
the same person are scattered into many different places. It shows that the conventional
features are not effective for faces with large appearance variations. Compared to HOG,
the AlexNet and Pre-trained features increase inter-person distances, but the clusters of
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Fig. 5. 2D tSNE visualization of all face features from the proposed fine-tuned CNN for adapting
video-specific variations, compared with HOG, AlexNet, and Pre-trained features. T-ARA has 6
main casts. The faces of different people are color coded.

the same person do not group together. Our adaptive features form tighter clusters for
the same person and greater separation for different persons.

6.5 Multi-face tracking

We compare the proposed algorithm with several state-of-the-art MTT trackers, includ-
ing modified versions of TLD [32], ADMM [44], IHTLS [45], and Wu et al. [18,24].
Note that TLD [32] is a long-term single-target tracker which can re-detect targets of
interest when targets leave and re-enter a scene. We implement two multi-face tracking
methods with TLD. The first method is called mTLD. On each sequence, we run multi-
ple TLD trackers for all targets, and each TLD tracker is initialized with the ground truth
bounding box in the first frame. For the second method, we integrate mTLD into our
framework (referred as Ours-mTLD). mTLD is used to generate shot-level trajectories
within each shot instead of the two-threshold and Hungarian algorithms. At the begin-
ning of each shot, we initialize TLD trackers with untracked detections, and link the
detections in the following frames according to their overlap scores with TLD outputs.

Table 2 shows quantitative results of the proposed algorithm and the mTLD [32],
ADMM [44] and IHTLS [45] on the BBT and music video datasets. We also show
the tracking results with the Pre-trained features instead of the proposed video-specific
features. Note that the results shown in Table 2 are the overall evaluation. We leave the
results on each individual sequence to the supplementary material.

The mTLD method does not perform well in terms of recall, precision, F1, and
MOTA metrics on both datasets. We attribute the poor performance to its tendency to
drift and the use of low-level features. The ADMM [44] and IHTLS [45] often produce
many identity switches and fragments because they fail to re-identify persons when
abrupt camera motions or shot changes occur. The Pre-trained features are not effective
to identify faces in different shots, and achieve very low MOTA. Ours-mTLD has more
IDS and Frag than Ours-SymTriplet. The main reason is that the shot-level trajectories
by mTLD are shorter and noisier than the original trajectories, since TLD trackers some-
times drift or do not output tracking results when there are large appearance changes.
Ours-SymTriplet performs better in terms of precision, F1, and MOTA metrics, with
significantly fewer identity switches and fragments than the competing algorithms.

Figure 6 shows sample tracking results of our algorithm with Ours-SymTriplet
features on all eight music videos and three BBT sequences (BBT01, BBT02, and
BBT05). The numbers and the colors indicate the inferred identities of the targets. The
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Fig. 6. Sample tracking results of the proposed algorithm. Shown from the top to bottom are HEL-
LO BUBBLE, APINK, DARLING, T-ARA, BRUNO MARS, GIRLS ALOUD, WESTLIFE, PUSSY-
CAT DOLLS, BBT01, BBT02 and BBT05. The faces of the different people are color coded.
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Table 2. Quantitative comparison with other state-of-the-art multi-target tracking methods on
the BBT and music video datasets. The best and second-best values are highlighted with the bold
and underline, respectively.

BBT dataset
Method Recall↑ Precision↑ F1↑ FAF↓ IDS↓ Frag↓ MOTA↑ MOTP↑
mTLD [32] 1.1% 8.1% 1.9% 0.18 8 83 -11.2% 73.2%
ADMM [44] 78.3% 56.8% 65.8% 0.49 2709 4623 39.5% 72.7%
IHTLS [45] 77.7% 63.4% 69.8% 0.49 2648 4496 39.2% 72.7%
Pre-trained 45.0% 76.8% 56.8% 0.19 908 2435 30.0% 77.9%
Ours-mTLD 63.7% 78.8% 70.5% 0.24 1224 3487 44.6% 77.6%
Ours-Siamese 74.5% 81.4% 77.8% 0.24 884 4051 56.1% 77.4%
Ours-Triplet 76.2% 80.2% 78.1% 0.27 944 4223 55.8% 77.3%
Ours-SymTriplet 76.6% 81.0% 78.7% 0.26 846 4261 57.2% 77.2%

Music video dataset
Method Recall↑ Precision↑ F1↑ FAF↓ IDS↓ Frag↓ MOTA↑ MOTP↑
mTLD [32] 9.7% 36.1% 15.3% 0.39 280 621 -7.7% 68.4%
ADMM [44] 75.5% 61.8% 68.0% 0.50 2382 2959 51.7% 63.7%
IHTLS [45] 75.5% 68.0% 71.6% 0.41 2013 2880 56.2% 63.7%
Pre-trained 60.1% 88.8% 71.7% 0.17 931 2140 51.5% 79.5%
Ours-mTLD 69.1% 88.1% 77.4% 0.21 1914 2786 57.7% 80.1%
Ours-Siamese 71.5% 89.4% 79.5% 0.19 986 2512 62.3% 64.0%
Ours-Triplet 71.8% 88.8% 79.4% 0.20 902 2546 61.8% 64.2%
Ours-SymTriplet 71.8% 89.7% 79.8% 0.19 699 2563 62.8% 64.3%

Fig. 7. Failure cases. Our method incorrectly identifies different persons as the same one across
shots on the APINK and DARLING sequences. Numbers and colors of rectangles indicate the
ground truth identities of persons. The red rectangles show the predicted locations, and are
tracked as one person by our method. On the APINK sequence on the left, the three different
persons are incorrectly assigned with the same identity. On the DARLING sequence on the right,
the middle person is assigned with an incorrect identity.

proposed algorithm is able to track multiple faces well despite large appearance varia-
tions in unconstrained videos. For example, there are significant changes in scale and
appearance (due to makeup and hairstyle) in the HELLO BUBBLE sequence (first row).
In the fourth row, the six singers have similar looks and thus make multi-face tracking
particularly challenging within and across shots. Nonetheless, the proposed algorithm
is able to distinguish the faces and track them reliably with few id switches. The results
in other rows illustrate that our method is able to generate correct identities and trajec-
tories when the same person appears in different shots or different scenes. More results
and large images are available in the supplementary material.

6.6 Discussions

While the proposed adaptive feature learning method performs favorably against the
state-of-the-art face tracking and clustering methods in handling challenging video se-
quences, there are three main limitations.

First, as our algorithm takes face detections as inputs, the tracking performance
depends on whether faces can be reliably detected. For examples, in the fourth row of
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Figure 6, the left-most person was not detected in Frame 419 and adjacent frames due to
occlusion, and thus is not tracked. In addition, falsely detected faces could be incorrectly
linked as a trajectory, e.g., the Marilyn Monroe image on the T-shirt in Frame 5,704 in
the eighth row of Figure 6.

Second, our method may not perform well on sequences where there are no suf-
ficient training samples. We show in Figure 7 two failure cases in the DARLING and
APINK sequences. In these two sequences, many shots contain only one single person.
Our method thus cannot generate negative face pairs for training the Siamese/Triplet
network for distinguishing similar faces. Our method incorrectly identifies different
persons as the same one. A promising direction would exploit other weak supervision
signals (e.g., scripts, voice, contextual information) to generate visual constraints.

Third, the CNN fine-tuning is time-consuming. It takes around 1 hour on a NVIDI-
A GT980Ti GPU to run 10,000 back-propagation iterations. There are two approaches
that may alleviate this issue. First, we may use faster training algorithms [46,47]. Sec-
ond, for TV Sitcom episodes we can use one or a few videos for feature adaptation and
apply the learned features to all other episodes. Note that we only need to adapt features
once as the main characters are the same. In Table 1, we trained Ours-SymTriplet fea-
tures on BBT02 (referred to Ours-SymTriplet-BBT02), and tested on other episodes.
Although the weight purity of Ours-SymTriplet-BBT02 is slightly inferior than that of
Ours-SymTriplet, it still outperforms the pre-trained features and the VGG-Face.

Several other work exploit body descriptors for improving character tracking in
TV Sitcom videos [48]. However, these body descriptors may not be helpful for music
videos as a person may be in completely different outfits in different scenes, e.g., the
first row in Figure 6. While in this work we investigate the multi-face tracking problem,
we believe that our framework based on tracklet information is also applicable to other
general unconstrained tracking problem, e.g., crowd analysis for pedestrians or cars in
surveillance videos. We leave this for future work.

7 Conclusions

We propose an effective feature learning method for multi-face tracking. We first pre-
train a CNN on a large-scale face recognition dataset to learn identity-preserving fea-
tures. This CNN is adapted with samples automatically discovered from the visual con-
straints. In addition, we propose the SymTriplet loss function to learn more discrimina-
tive features for handling appearance variations of faces presented in a specific video.
A hierarchical clustering algorithm is used to link face tracklets across multiple shots.
Experimental results show that the proposed algorithm outperforms the state-of-the-art
methods in terms of clustering accuracy and tracking performance.
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