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Abstract. The human face is one of the most interesting subjects in-
volved in numerous applications. Significant progress has been made to-
wards the image deblurring problem, however, existing generic deblur-
ring methods are not able to achieve satisfying results on blurry face im-
ages. The success of the state-of-the-art image deblurring methods stems
mainly from implicit or explicit restoration of salient edges for kernel es-
timation. When there is not much texture in the blurry image (e.g., face
images), existing methods are less effective as only few edges can be used
for kernel estimation. Moreover, recent methods are usually jeopardized
by selecting ambiguous edges, which are imaged from the same edge of
the object after blur, for kernel estimation due to local edge selection
strategies. In this paper, we address these problems of deblurring face
images by exploiting facial structures. We propose a maximum a poste-
riori (MAP) deblurring algorithm based on an exemplar dataset, with-
out using the coarse-to-fine strategy or ad-hoc edge selections. Extensive
evaluations against state-of-the-art methods demonstrate the effective-
ness of the proposed algorithm for deblurring face images. We also show
the extendability of our method to other specific deblurring tasks.

1 Introduction

The goal of image deblurring is to recover the sharp image and the corresponding
blur kernel from one blurred input image. The process under a spatially-invariant
model is usually formulated as

B = I ∗ k + ε, (1)

where I is the latent sharp image, k is the blur kernel, B is the blurred input
image, ∗ is the convolution operator, and ε is the noise term. The single im-
age deblurring problem has attracted much attention with significant advances
in recent years [5, 15, 20, 3, 22, 12, 13, 6, 24]. As image deblurring is an ill-posed
problem, additional information is required to constrain the solutions. One com-
mon approach is to utilize prior knowledge from the statistics of natural images,
such as heavy-tailed gradient distributions [5, 15, 20, 14], L1/L2 prior [13], and
sparsity constraints [1]. While these priors perform well for generic cases, they
are not designed to capture image properties for specific object classes, e.g., text
and face images. The methods that exploit specific object properties are likely
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Fig. 1. A challenging example. (a) Blurred face image. (b)-(d) are the results of Cho
and Lee [3], Krishnan et al. [13], and Xu et al. [24]. (e)-(f) are the intermediate results
of Krishnan et al. [13] and Xu et al. [24]. (g) Our predicted salient edges visualized by
Poisson reconstruction. (h) Our results (with the support size of 75× 75 pixels).

to perform well, e.g., text images [2, 19] and low-light images [10]. As the human
face is one of the most interesting objects that finds numerous applications, we
focus on face image deblurring in this work.

The success of state-of-the-art image deblurring methods hinges on implicit
or explicit extraction of salient edges for kernel estimation [3, 22, 12, 24]. Those
algorithms employ sharp-edge prediction steps, mainly based on local struc-
ture, while not considering the structural information of an object class. This
inevitably brings ambiguity to salient-edge selection if only considering local
appearance, since multiple blurred edges from the same latent edge could be se-
lected for kernel estimation. Moreover, for blurred images with less texture, the
edge prediction step is less likely to provide robust results and usually requires
parameter tuning, which would downgrade the performance of these methods.
For example, face images have similar components and skin complexion with less
texture than natural images, and existing deblurring methods do not perform
well on face images. Fig. 1(a) shows a challenging face example which contains
scarce texture due to large motion blur. For such images, it is difficult to restore
a sufficient number of sharp edges for kernel estimation using the state-of-the-
art methods. Fig. 1(b) and (c) show that the state-of-the-art methods based on
sparsity prior [13] and explicit edge prediction [3] do not deblur this image well.

In this work, we propose an exemplar-based method for face image deblurring
to address the above-mentioned issues. To express the structural information, we
collect an exemplar dataset of face images and extract important structures from
exemplars. For each test image, we compare it with the exemplars’ structure and
find the best matched one. The matched structure is used to reconstruct salient
edges and guide the kernel estimation process. The proposed method is able to
extract good facial structures (Fig. 1(g)) for kernel estimation, and better restore
this heavily blurred image (Fig. 1(h)). We will also demonstrate its ability to
extend to other objects.

2 Related Work

Image deblurring has been studied extensively and numerous algorithms have
been proposed. In this section we discuss the most relevant algorithms and put
this work in proper context.
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Since blind deblurring is an ill-posed problem, it requires certain assumptions
or prior knowledge to constrain the solution space. Early approaches, e.g., [25],
usually use the assumptions of simple parametric blur kernels to deblur images,
which cannot deal with complex motion blur. As image gradients of natural im-
ages can be described well by a heavy-tailed distribution, Fergus et al. [5] use a
mixture of Gaussians to learn the prior for deblurring. Similarly, Shan et al. [20]
use a parametric model to approximate the heavy-tailed prior of natural images.
In [1], Cai et al. assume that the latent images and kernels can be sparsely repre-
sented by an over-complete dictionary based on wavelets. On the other hand, it
has been shown that the most favorable solution for a MAP deblurring method
with sparse prior is usually a blurred image rather than a sharp one [14]. Conse-
quently, an efficient approximation of marginal likelihood deblurring method is
proposed in [15]. In addition, different sparsity priors have been introduced for
image deblurring. Krishnan et al. [13] present a normalized sparsity prior and
Xu et al. [24] use L0 constraint on image gradients for kernel estimation. Re-
cently, non-parametric patch priors that model appearance of image edges and
corners have also been proposed [21] for blur kernel estimation. We note that
although the use of sparse priors facilitates kernel estimation, it is likely to fail
when the blurred images do not contain rich texture.

In addition to statistical priors, numerous blind deblurring methods explicitly
exploit edges for kernel estimation [3, 22, 12, 4]. Joshi et al. [12] and Cho et
al. [4] directly use the restored sharp edges from a blurred image for kernel
estimation. In [3], Cho and Lee utilize bilateral filter together with shock filter
to predict sharp edges. The blur kernel is determined by alternating between
restoring sharp edges and estimating the blur kernel in a coarse-to-fine manner.
As strong edges extracted from a blurred image are not necessarily useful for
kernel estimation, Xu and Jia [22] develop a method to select informative ones for
deblurring. Despite demonstrated success, these methods rely largely on heuristic
image filtering methods (e.g., shock and bilateral filters) for restoring sharp
edges, which are less effective for objects with known geometric structures.

For face image deblurring, there are a few algorithms proposed to boost
recognition performance. Nishiyama et al. [17] learn subspaces from blurred face
images with known blur kernels for recognition. As the set of blur kernels is
pre-defined, the application domain of this approach is limited. Zhang et al. [26]
propose a joint image restoration and recognition method based on sparse rep-
resentation prior. However, this method is most effective for well-cropped face
images with limited alignment errors and simple motion blurs.

Recently, HaCohen et al. [8] propose a deblurring method which uses a sharp
reference example for guidance. The method requires a reference image with the
same content as the input and builds up dense correspondence for reconstruction.
It has shown decent results on deblurring specific images, however, the usage of
the same-content reference image restrains its applications. Different from this
method, we do not require the exemplar to be similar to the input. The blurred
face image can be of different identity and background compared to any exemplar
images. Moreover, our method only needs the matched contours that encode the
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Fig. 2. The influence of salient edges in kernel estimation. (a) True image and kernel.
(h) Blurred image. (b)-(f) are extracted salient edges from the clear images visualized
by Poisson reconstruction. (g) shows the ground truth edges of (a). (i)-(n) are the
results by using edges (b)-(g), respectively.

global structure of the exemplar for kernel estimation, instead of using dense
corresponding pixels. In this sense, our method is more general on the object
deblurring task with less constraints.

3 Proposed Algorithm

As the kernel estimation problem is non-convex [5, 15], most state-of-the-art de-
blurring methods use coarse-to-fine approaches to refine the estimated kernels.
Furthermore, explicit or implicit edge selections are adopted to constrain and
converge to feasible solutions. Notwithstanding demonstrated success in deblur-
ring images, these methods are less effective for face images that contain fewer
textures. To address these issues, we propose an exemplar-based algorithm to
estimate blur kernels for face images. The proposed method extracts good struc-
tural information from exemplars to facilitate estimating accurate kernels.

3.1 Structure of Face Images

We first determine the types and number of salient edges for kernel estimation
within the context of face deblurring. For face images, the salient edges that
capture the object structure could come from the lower face contour, mouth, eyes,
nose, eyebrows and hair. As human eyebrows and hair have small edges which
could jeopardize the performance [22, 11], combined with their large variation,
we do not take them into consideration as useful structures. Fig. 2 shows several
components extracted from a clear face image as approximations of the latent
image for kernel estimation (the extraction step will be described later). We
test those edges by posing them as the predicted salient edges in the deblurring
framework and estimate the blur kernels according to [15] by

k∗ = arg min
k
‖∇S ∗ k −∇B‖22 + α‖k‖0.5, (2)
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Fig. 3. The relationship between extracted salient edges and kernel estimation accu-
racy(“KS” is the abbreviation of kernel similarity). The notation (b)-(g) for salient
edges represent the 6 edge status as Fig. 2(b)-(g).

where ∇S is the gradients of the salient edges extracted from an exemplar image
as shown in Fig. 2(b)-(g), ∇B is the gradient computed from the blurred input
(Fig. 2(h)), k is the blur kernel, and α is a weight (e.g., 0.005 in this work) for the
kernel constraint. The sparse deconvolution method [15] with a hyper-Laplacian
prior L0.8 is employed to recover the images (Fig. 2(i)-(n)). The results show
that the deblurred result using the above-mentioned components (e.g., Fig. 2(l)
and (m)), is comparable to that using the ground truth edges (Fig. 2(n)), which
is the ideal case for salient edge prediction.

To validate the above-mentioned point, we collect 160 images generated from
20 images (10 images from CMU PIE dataset [7] and 10 images from the Inter-
net) convolving with 8 blur kernels and extract their corresponding edges from
different component combination (i.e., Fig. 2(b)-(g)). We conduct the same ex-
periment as Fig. 2, and compute the average accuracy of the estimated kernels
in terms of kernel similarity [11]. The curve in Fig. 3 depicts the relationship
between the edges of facial components and the accuracy of the estimated ker-
nel. As shown in the figure, the metric tends to converge as all the mentioned
components (e.g., Fig. 2(e)) are included, and the set of those edges is sufficient
(kernel similarity value of 0.9 in Fig. 3) for accurate kernel estimation.

For real-world applications, the ground-truth edges are not available. Recent
methods adopt thresholding or similar techniques to select salient edges for ker-
nel estimation and this inevitably introduces some incorrect edges from a blurred
image. Furthermore, the edge selection strategies, either explicitly or implicitly,
consider only local edges rather than structural information of a particular object
class, e.g., facial components and contour. In contrast, we consider the geometric
structures of a face image for kernel estimation. From the experiments with dif-
ferent facial components, we determine that the set of lower face contour, mouth
and eyes is sufficient to achieve high-quality kernel estimation and deblurred re-
sults. More importantly, these components can also be robustly extracted [28]
unlike the other parts (e.g., eyebrows or nose in Fig. 2(a)). Thus, we use these
three components as the informative structures for face image deblurring.
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(a) Input image (b) Initial contour (c) Refined contour

Fig. 4. Extracted salient edges (See Sec. 3.2 for details)

3.2 Exemplar Structures

We collect 2, 435 face images from the CMU PIE dataset [7] as our exemplars.
The selected face images are from different identities with variant facial expres-
sions and poses. For each exemplar, we extract the informative structures (i.e.,
lower face contour, eyes and mouth) as discussed in Sec. 3.1. We manually locate
the initial contours of the informative components (Fig. 4(b)), and use the guided
filter [9] to refine the contours. The optimal threshold, computed by the Otsu
method [18], is applied to each filtered image for the refined contour maskM of
the facial components (Fig. 4(c)). Thus, a set of 2, 435 exemplar structures are
generated as the potential facial structure for kernel estimation.

Given a blurred image B, we search for its best matched exemplar structure.
We use the maximum response of normalized cross-correlation as the measure
to find the best candidate based on their gradients

vi = max
t

{ ∑
x∇B(x)∇Ti(x+ t)

‖∇B(x)‖2‖∇Ti(x+ t)‖2

}
, (3)

where i is the index of the exemplar, Ti(x) is the i-th exemplar, and t is the
possible shift between image gradients ∇B(x) and ∇Ti(x). If ∇B(x) is similar
to ∇Ti(x), vi is large; otherwise, vi is small. To deal with different scales, we
resize each exemplar with sampled scaling factors in the range [1/2, 2] before
performing (3). Similarly, we handle rotated faces by testing the rotation angle
in [-10, 10] degree.

We denote the predicted salient edges used for kernel estimation as ∇S and
it is defined as

∇S = ∇Si∗ , (4)

where i∗ = arg maxi vi, and ∇Si∗(x) is computed as

∇Si∗(x) =

{
∇Ti∗(x), if x ∈ {x|Mi∗(x) = 1},
0, otherwise.

(5)

Here Mi∗ is the contour mask for i∗-th exemplar. In the experiments, we find
that using the edges of exemplars ∇Ti∗(x) as the predicted salient edges perform
similarly as that of the input image ∇B(x), which can be found in Sec. 4. The
reason is that ∇Ti∗(x) and ∇B(x) share similar structures due to the matching
step, thus the results using either of them as the guidance are similar.
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Fig. 5. The influence of noise on the proposed matching criterion.

We conduct experiments with the quantitative accuracy to verify the effec-
tiveness and robustness of our matching criterion. We collect 100 clear images
on 50 identities, with 2 images for each. The images from the same person are
different in terms of facial expression and background. In the test phase, we blur
one image with random noise as the test image, and pose the others as exem-
plars. If the matched exemplar is the image from the same person, we mark the
matching successful. We perform the test on each images with 8 blur kernels and
11 noise levels (0-10%) and show the matching accuracy in Fig. 5(b). We note
that although noise will decrease the average matching values (see Fig. 5(a)), it
does not affect the matching accuracy (Fig. 5(b)).

3.3 Kernel Estimation from Exemplar Structure

After obtaining salient edges ∇S, we estimate the blur kernel by alternately
solving

min
I
‖I ∗ k −B‖22 + λ‖∇I‖0 (6)

and
min
k
‖∇S ∗ k −∇B‖22 + γ‖k‖22, (7)

where λ and γ are parameters for the regularization terms. Here the L0-norm
is employed to restore I and effectively remove some ringing artifacts in I as
shown by [23]. In (7), the L2-norm based regularization is employed to stabilize
the blur kernel estimation with a fast solver.

For (6), we employ the half-quadratic splitting L0 minimization method [23]
to solve it. We introduce auxiliary variables w = (wx, wy)> corresponding to ∇I
and rewrite (6) as

min
I,w
‖I ∗ k −B‖22 + β‖w−∇I‖22 + λ‖w‖0, (8)

where β is a scalar weight and increases by a factor of 2 over iterations. When
β is close to ∞, the solution of (8) approaches that of (6).

We note that (8) can be efficiently solved through alternately minimizing I
and w independently. At each iteration, the solution of I can be obtained by

min
I
‖I ∗ k −B‖22 + β‖w−∇I‖22, (9)
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Algorithm 1 Solving (6)

Input: Blur image B and estimated kernel k.
I ← B, β ← 2λ.
repeat

solve for w using (11).
solve for I using (10).
β ← 2β.

until β > 1e5

Output: Latent image I.

Algorithm 2 Blur kernel estimation algorithm

Input: Blur image B and predicted salient edges ∇S.
for l = 1→ n do

solve for k using (7).
solve for I using Algorithm 1.
∇S ← ∇I.

end for
Output: Blur kernel k and intermediate latent image I.

which has a closed-form solution computed in the frequency domain by

I = F−1

(
F(k)F(B) + β(F(∂x)F(wx) + F(∂x)F(wy))

F(k)F(k) + β(F(∂x)F(∂x) + F(∂y)F(∂y))

)
. (10)

Here F(·) and F−1(·) denote the Discrete Fourier Transform (DFT) and in-
verse DFT, respectively, ∂x and ∂y denote the vertical and horizontal derivative
operators, and the · is the complex conjugate operator.

Given I, the solution of w in (8) can be obtained by

w =

{
∇I, |∇I|2 > λ

β ,

0, otherwise.
(11)

The main steps for solving (6) are shown in Algorithm 1.
Based on the above analysis, the main steps for the proposed kernel estima-

tion algorithm are summarized in Algorithm 2. We use the conjugate gradient
method to solve the least square problem (7).

3.4 Recovering Latent Image

Once the blur kernel is determined, the latent image can be estimated by a
number of non-blind deconvolution methods. In this paper, we use the method
with a hyper-Laplacian prior L0.8 [16] to recover the latent image.

3.5 Analysis and Discussion

The initial predicted salient edges ∇S play a critical role in kernel estimation.
We use an example to demonstrate the effectiveness of the proposed algorithm
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Fig. 6. Results without and with predicted salient edges ∇S. (a)-(c) denote the 1st,
2nd, and 9th iteration intermediate results, respectively, with edge selection method [3]
to predict salient edges ∇S in Algorithm 2. (d) Deblurred result with edge selection
method [3] to predict salient edges ∇S in Algorithm 2. (e)-(g) denote the 1st, 2nd, and
9th iteration intermediate results, respectively, using our method to predict salient
edges ∇S in Algorithm 2. (h) Our deblurred result. The blurred image in this figure is
the same as that of Fig. 1.

for predicting initial salient edges ∇S. Fig. 6 shows that the deblurred result
using the edge selection method [3] is unsatisfactory as it introduces artifacts by
selecting ambiguous edges. However, the proposed method using the facial struc-
ture does not introduce ambiguous edges and thus avoids the misleading kernel
estimation. Fig. 6(e)-(g) also demonstrate that the correct predicted salient edges
∇S lead to fast convergence.

We note that the proposed algorithm does not require coarse-to-fine kernel
estimation strategies or ad-hoc edge selections. The coarse-to-fine strategy can be
viewed as the initialization for the finer levels, which both constrains the solution
and reduces the computational load. Recent results of several state-of-the-art
methods [3, 13, 24] show that good salient edges at the initial stage are important
for kernel estimation. If good initial edges can be obtained, it is not necessary to
use coarse-to-fine strategies and specific edge selection, thereby simplifying the
kernel estimation process significantly. Our method acts on the original scale only
and exploits the exemplar-based structure information to regularize the solution.
Benefiting from the facial structure, the proposed method performs well from
the beginning without a coarse-to-fine strategy and achieves fast convergence.
In the method [3], blur kernels are estimated in a coarse-to-fine manner based
on an ad-hoc edge selection strategy. However, it is difficult to select salient
edges from severely blurred images without exploiting any structural information
(Fig. 6(a)). Comparing to the intermediate results using L0 prior (Fig. 1(f)),
our method maintains the facial components well (Fig. 6(g)), which boosts the
performance of kernel estimation and the image restoration.

Robustness of exemplar structures: We use (3) to find the best matched
exemplar in gradient space. If the face contour in the latent image is salient, it
would present more saliently than other edges after blur. Thus the matched ex-
emplar should share similar parts of the contours with the input, although not
perfectly (e.g., Fig. 1(g)). Moreover, the shared contours encode global struc-
tures and do not contain many false salient edges caused by blur. We also note
that most mismatched contours caused by facial expressions correspond to the
small gradients in blurred images. In this situation, these components exert little
effect on the kernel estimation according to the edge based methods [3, 22]. To
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Fig. 7. Robustness to the size of dataset.

alleviate the problem, we update exemplar edges during the iteration to increase
its reliability as shown in Fig. 6(e)-(g). For these reasons, along with the fact
that a few correct contours would lead to high-quality kernel estimation, the
matched exemplar guides kernel estimation well.

Robustness to dataset: Large dataset will provide reliable results in an exemplar-
based method. However, since our method only requires partial matched contours
as the initialization, it does not require a huge dataset for good results. To test
the sensitivity, we evaluate our method with different numbers of exemplars. We
use the k-means method on the exemplar dataset, and choose 40, 80, 100, and
200 clustering centers as the new exemplar datasets, respectively. Similar to [14],
we generate 40 blurred images consisting of 5 images (of different identities as
the exemplars) with 8 blur kernels for test. The cumulative error ratio [14] is
used to evaluate the method. Fig. 7 shows that the proposed method can pro-
vide good results with very few exemplars (e.g., 40). With the increasing size of
the exemplar dataset, the estimated results do not change significantly, which
demonstrates the robustness of our method to the size of dataset.

Robustness to noise: If the blurred image contains severe noise, several edge
selection methods [3, 22] and other state-of-the-art methods (e.g., [15, 13, 24])
may not provide reliable edge information for kernel estimation. However, our
method will not be affected much due to the robustness of our matching criterion
(See analysis in Sec. 3.2). We will show some examples in Sec. 4.

4 Experimental Results

In all the experiments, the parameters λ, γ and n are set to be 0.002, 1 and
50, respectively. We implement Algorithm 2 in MATLAB, and it takes about
27 seconds to process a blurred image of 320 × 240 pixels on an Intel Xeon
CPU with 12 GB RAM. The MATLAB code and dataset are available at http:
//eng.ucmerced.edu/people/zhu/eccv14_facedeblur. As the method of [8]
requires a reference image with same content as the blurred image which is
not practical, we do not compare to [8] in this section, but we provide some
comparisons in the supplementary material.



Deblurring Face Images with Exemplars 11

3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Error ratios

S
u

cc
es

s 
ra

te
 (

%
)

 

 

Ours with predicted exemplar ∇S
Ours with predicted blurred ∇S
Ours without predicted ∇S
Shan et al.
Cho and Lee
Xu and Jia
Krishnan et al.
Levin et al.
Xu et al.

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Error ratios

S
u

cc
es

s 
ra

te
 (

%
)

 

 

Ours with predicted exemplar ∇S
Ours with predicted blurred ∇S
Zhong et al.
Cho and Lee
Xu and Jia
Krishnan et al.
Levin et al.
Xu et al.
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Fig. 8. Quantitative comparisons with several state-of-the-art single-image blind de-
blurring methods: Shan et al. [20], Cho and Lee [3], Xu and Jia [22], Krishnan et al. [13],
Levin et al. [15], Zhong et al. [27], and Xu et al. [24].

Synthetic Dataset: For quantitative evaluations, we collect a dataset of 60 clear
face images and 8 ground truth kernels in a way similar to [14] to generate a test
set of 480 blurred inputs. We evaluate the proposed algorithm against state-of-
the-art methods based on edge selection [3, 22] and sparsity prior [20, 13, 15, 24]
using the error metric proposed by Levin et al. [14]. Fig. 8 shows the cumulative
error ratio where higher curves indicate more accurate results. The proposed
algorithm generates better results than state-of-the-art methods for face image
deblurring. The results show the advantages of using the global structure as
the guidance comparing with those using local edge selection methods [3, 22,
24]. We also test different strategies for computing the predicted edges ∇S: 1)
using the edges of exemplars ∇Ti∗(x) as ∇S (original); 2) using the edges of
the input image ∇B(x) as ∇S; 3) not using ∇S at all. The first two approaches
perform similarly as ∇B(x) and the matched ∇Ti∗(x) share partial structures,
which also demonstrates the effectiveness of our matching step. Compared to
the results without predicted edges ∇S, the ones using the predicted edges are
significantly improved as shown in Fig. 8(a). It is noted that our method without
predicted ∇S does not use coarse-to-fine strategy and generates similar results
to [24], which indicates that the coarse-to-fine strategy does not help the kernel
estimation much on face images with few textures.

To test the robustness to noise, we add 1% random noise to the test images
and present the quantitative comparisons in Fig. 8(b). Compared to other state-
of-the-arts methods, our method is robust to noise. We note that the results on
noise images are of higher curve than that of noise-free images. The reason is
that a noisy input increases the denominator value of the measure [14]. Thus
the error ratios from noisy images are usually smaller than those from noise-free
images, under the same blur kernel.

We show one example from the test dataset in Fig. 9 for discussion. The
sparsity-prior-based methods [20, 13] generate deblurred images with significant
artifacts as the generic priors are not effective for kernel estimation when blurred
images do not contain rich texture. Edge based methods [3, 22] do not perform
well for face deblurring as the assumption that there exists a sufficient number
of sharp edges in the latent images does not hold. Compared to the method [24]
based on an L0-regularized method, the results by our method contain fewer
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(a) Input & kernel (b) Exemplar image (c) Predicted ∇S

Error Ratio:
20.4228

(d) Shan [20]

Error Ratio:
78.4529

(e) Cho and Lee [3]

Error Ratio:
39.7786

(f) Xu and Jia [22]

Error Ratio:
21.3309

(g) Krishnan [13]

Error Ratio:
7.3642

(h) Xu [24]

Error Ratio:
44.0270

(i) Ours without ∇S

Error Ratio:
4.7381

(j) Our results

Fig. 9. An example from the synthesized test dataset.

visual artifacts with lower error. Although the best matched exemplar is from
a different person (the identities of exemplar and test sets are not overlapped)
with different facial expressions, the main structures of Fig. 9(a) and (b) are
similar, e.g., the lower face contours and upper eye contours. This also indicates
that our approach via (3) is able to find the image with similar structure. The
results shown in Fig. 9(i) and (j) demonstrate that the predicted salient edges
significantly improve the accuracy of kernel estimation, while the kernel estima-
tion result without predicted salient edges looks like a delta kernel. Although our
method is also MAP-based, the predicted salient edges based on the matched
exemplar provide good initialization for kernel estimation such that the delta
kernel solution (e.g., Fig. 9(i)) is not preferred.

Real Images: We have evaluated the proposed algorithm on real blurred images
and show some comparisons with the state-of-the-art deblurring methods. In this
example, the input image (Fig. 10(a)) contains some noise and several saturated
pixels. The results of [20, 3, 22, 13, 27] are not favorable with obvious noise and
ringing artifacts. The proposed method generates a deblurred result with fewer
visual artifacts and finer details compared with other methods despite the best
matched exemplar visually bearing partial resemblance to the input image.

Fig. 11(a) shows another example of a real captured image. The edge selection
methods [3, 22] do not perform well as ambiguous edges are selected for kernel
estimation. Similarly, the sparsity prior based methods [20, 13, 24] do not perform
well with unpleasant artifacts, while our method generates decent results.
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(a) Input (b) Exemplar image (c) Predicted ∇S (d) Shan [20] (e) Cho and Lee [3]

(f) Xu and Jia [22] (g) Krishnan [13] (h) Zhong [27] (i) Xu [24] (j) Our results

Fig. 10. Real captured example with some noise and saturated pixels. The support
size is 35× 35 pixels.

(a) Input (b) Exemplar image (c) Predicted ∇S (d) Shan [20] (e) Cho and Lee [3]

(f) Xu and Jia [22] (g) Krishnan [13] (h) Zhong [27] (i) Xu [24] (j) Our results

Fig. 11. Example of real captured image. The support size is 25× 25 pixels.

4.1 Extension of the Proposed Method

In this work, we focus on face image deblurring, as it is of great interest with
numerous applications. However, our exemplar-based method can be applied
to other deblurring tasks by simply preparing exemplars with the extracted
structure. We use an example on car images to demonstrate the extendability
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(a) Input (b) Exemplar image (c) Predicted ∇S (d) Cho and Lee [3]

(e) Krishnan [13] (f) Zhong [27] (g) Xu [24] (h) Our results

Fig. 12. Our exemplar-based method on car image. Our method generates the de-
blurred result with fewer ringing artifacts.

of the proposed method in Fig. 12. Similar to the face images, we first prepare
some exemplar images and extract the main structures (e.g., car body, windows
and wheels) described in Sec. 3.2. For each test image, we use (3) to find the best
exemplar image and compute salient edges according to (4). Finally, Algorithm 2
is used to generate the results. The results of [3, 13, 24, 27] still contain some
blur and ringing artifacts. Compared to these methods, our method generates
pleasant deblurred results with fewer noise and ringing artifacts.

5 Conclusion

We propose a novel exemplar-based deblurring algorithm for face images that
exploits the structural information. The proposed method uses face structure and
reliable edges from exemplars for kernel estimation without resorting to complex
edge predictions. Our method generates good initialization without coarse-to-
fine optimization strategies to enforce convergence, and performs well when the
blurred images do not contain rich textures. Extensive evaluations with state-
of-the-art deblurring methods show that the proposed algorithm is effective for
deblurring face images. We also show the possible extension of our method on
the other specific deblurring tasks.
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