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Abstract. Background modeling and subtraction is a fundamental re-
search topic in computer vision. Pixel-level background model uses a
Gaussian mixture model (GMM) or kernel density estimation to repre-
sent the distribution of each pixel value. Each pixel will be process in-
dependently and thus is very efficient. However, it is not robust to noise
due to sudden illumination changes. Region-based background model us-
es local texture information around a pixel to suppress the noise but is
vulnerable to periodic changes of pixel values and is relatively slow. A
straightforward combination of the two cannot maintain the advantages
of the two. This paper proposes a real-time integration based on robust
estimator. Recent efficient minimum spanning tree based aggregation
technique is used to enable robust estimators like M-smoother to run
in real time and effectively suppress the noisy background estimates ob-
tained from Gaussian mixture models. The refined background estimates
are then used to update the Gaussian mixture models at each pixel lo-
cation. Additionally, optical flow estimation can be used to track the
foreground pixels and integrated with a temporal M -smoother to ensure
temporally-consistent background subtraction. The experimental result-
s are evaluated on both synthetic and real-world benchmarks, showing
that our algorithm is the top performer.

Keywords: Background Modeling, Video Segmentation, Tracking, Op-
tical Flow

1 Introduction

Background modeling is one of the most extensively researched topics in com-
puter vision. It is normally used as a fundamental pre-processing step in many
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vision tasks, including video-surveillance, teleconferencing, video editing, human-
computer interface, etc. It has recently experienced somewhat of a new era, as
a result of publically available benchmarks for performance evaluation. These
benchmarks simplify the comparison of a new algorithm against all the state-of-
the-art algorithms. Both artificial pixel-level evaluation data sets [5] and real-
world region-level data sets obtained by human experts [11] are available for
comprehensive evaluation.

This paper focuses on traditional background subtraction problem with the
assumption of a static video camera. There are significant publications on this
topic, and can be classified into three broad categories: pixel-level background
subtraction [9], [27], [8] [12], [33], [7], [10], region-level background subtraction
[23], [15], [31], [14], frame-level background subtraction [32] and hybrid back-
ground subtraction [29] [28], [26], [13].

It is well understood that pixel-based models like mixture of Gaussians fail in
sudden illumination changes. Region-based models on the other hand are more
robust to these changes and tend to be vulnerable to periodic changes of pixel
values. This paper proposes a way to synergistically combine the two to create
a state-of-the-art background subtraction system.

The Gaussian mixture background model [27] is adopted in this paper. It
is used to obtain an initial background estimate at each individual pixel loca-
tion. Efficient minimum spanning tree (MST) based aggregation technique [30]
is then integrated with a robust estimator - M -smoother to refine the initial es-
timates for a spatially-consistent background subtraction solution. The refined
background estimates are then used to update the Gaussian mixture models to
model stochastic changes in the value of each pixel. The updated Gaussian mix-
ture models are thus robust to both periodic and sudden changes of pixel values.
Note that comparing with the original Gaussian mixture background model [27],
the extra computational cost is the MST based M -smoother, which is indeed
extremely efficient. It takes about 6 ms to process a QVGA (320 × 240) color
image on a single core CPU. Optical flow estimation is further employed to ex-
tend the proposed MST based M-smoother to the temporal domain to enhance
temporal consistency. Although optical flow estimation is traditionally believed
to be slow, recent fast nearest neighbor field [3] based optical flow algorithms
like EPPM [2] enables the whole background subtraction pipeline to run in near
realtime on state-of-the-art GPU.

The paper is organized as follows: Section 2 gives a brief overview of the
Gaussian mixture background model adopted in the paper and the details of
the proposed background modeling and subtraction algorithms. Section 3 re-
ports results supporting the claims that the algorithm is currently the strongest
available on standard benchmarks [5], [11]. Section 4 concludes.
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2 Background Subtraction

A brief overview of Gaussian mixture background model is given in Sec. 2.1 and
the proposed Spatially-consistent and temporally-consistent Background Models
are presented in Sec. 2.2 and 2.3, respectively.

2.1 Gaussian Mixture Background Model

Stauffer and Grimson [27] propose to model the values of an image pixel as a
mixture of Gaussians for background estimation. A pixel is considered to be
background only when at least one of the Gaussians of the mixture includes its
pixel value with sufficient and consistent evidence. The probability of observing
a pixel value Itp at pixel p for frame t can be represented as follows

P (Itp) =

K∑
k=1

wtk · η(Itp, µ
t
k, Σ

t
k), (1)

where η is a Gaussian probability density function
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µtk and Σt
k are the mean value and the covariance matrix of the k-th Gaussian

in the mixture at time t, respectively.
Each pixel has a total of K different Gaussian distributions. To adapt to

illumination changes, the new pixel values from the following frames will be
used to update the mixture model, as long as they can be represented by a
major component of the model.

To handle background changes, Shimada et al. [26] propose to leverage in-
formation from a future period with an acceptable delay as 33 milliseconds (the
duration of just one video frame). The use of the information observed in future
image frames was demonstrated to improve the accuracy by about 30%.

2.2 Spatially-consistent Background Modeling Based on Minimum
Spanning Tree

The bidirectional GMM [26] has been demonstrated to be a very effective back-
ground model while being very efficient. However, each pixel is processed inde-
pendently and thus is less robust to noise. Region-based background model uses
local texture information around a pixel to suppress the noise but is relatively
slow and vulnerable to periodic changes of pixel values.

This section assumes that connected pixels with similar pixel values shall
have similar background estimates, and thus spatially-consistent background
segmentation can be obtained. The similarity between every two pixels is then
defined using the minimax path [24] between the two pixels by treating the video
frame as a connected, undirected graph G = (V,E). The vertices V are all the
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image pixels and the edges E are all the edges between the nearest neighboring
pixels. Minimax path can identify region boundaries without high contrast and
will not cross the boundary of thin-structured homogeneous object; and thus
can preserve details. Additionally, minimax path can be efficiently extracted
with the use of a minimum spanning tree (MST) [16]. Recent study show that
a minimum spanning tree can be extracted from an 8-bit depth image in time
linear in the number of image pixel [1].

Let d(p, q) denote the minimax path between a pair of node {p, q} for the
current frame It and btp = {0, 1} denote the corresponding binary background es-
timates at pixel p obtained from Gaussian mixture background model. Minimax
path d(p, q) (= d(q, p)) is then employed in a robust estimator - M -smoother
[6] to handle outliers in the coarse estimates from mixture of Gaussians. The
refined background estimates is

bt,spatialp = arg min
i

∑
q∈It

exp(−d(p, q)

σ
)|i− btq|α. (3)

When α = 1, Eq. (3) is indeed a weighted median filter that utilize the minimax
path length and thus is aware of the underlying regularity of the video frame.
Because btp = {0, 1}, (btp)

α = btp and

bt,spatialp =

{
1 if

∑
q∈It exp(−

d(p,q)
σ ) · btq >

∑
q∈It exp(−

d(p,q)
σ ) · |1− btq|,

0 else.
(4)

Let Bt denote an image whose pixel value is (btq) at pixel q and F t denote an
image whose pixel value is |1− btq| at pixel q for frame t. Let

Bt,↓p =
∑
q∈It

exp(−d(p, q)

σ
)Btq (5)

and

F t,↓p =
∑
q∈It

exp(−d(p, q)

σ
)F tq (6)

denote the weighted aggregation result of image Bt and F t, respectively. Eq. (4)
becomes

bt,spatialp =

{
1 if Bt,↓q > F t,↓q ,
0 else.

(7)

The new background estimate bt,spatialp obtained from the proposed MST-
based M -smoother will be used with the original estimate btp to adjust the K
Gaussian distributions, and the only difference is that the distributions will
remain unchanged if either bt,spatialp or btp classifies pixel p as a foreground pixel.
The noisy contribution from background pixel values for updating distributions
can be significantly reduced using the spatially-consistent background estimates.
As shown in Fig. 1 (b), part of the moving vehicle on the bottom right will
be continuously detected as the background using Gaussian Mixture Model by



Spatiotemporal Background Subtraction Using MST and Optical Flow 5

(a)Video frame (b)Mixture of Gaussians[27] (c)Spatially-consistent

Fig. 1. Spatially-consistent background subtraction. (a) is a video frame extracted from
the SABS data set [5] and (b) and (c) are foreground masks obtained from Gaussian
mixture background model and the proposed spatially-consistent background model,
respectively.

adding foreground colors as new Gaussian distributions. Proposed MST-based
M -smoother uses bnewp as a new constrain to update Gaussian distributions and
thus can correct most of the errors as can be seen in Fig. 1 (c).

A linear time solution According to Eq. (7), the main computational com-
plexity of the proposed proposedM -smoother resides in the weighted aggregation
step in Eq. (5) and (6). The brute-force implementation of the nonlocal aggre-
gation step is very slow. Nevertheless, the recursive matching cost aggregation
solution proposed in [30] can be adopted:

Bt,↓p = exp(−d(P (p), p)

σ
) · Bt,↓P (p) +

(
1− exp(−2 ∗ d(p, P (p))

σ
)

)
· Bt,↑p , (8)

where P (p) denote the parent of node p, and

Bt,↑p = Btp +
∑

P (q)=p

exp(−d(p, q)

σ
) · Bt,↑q . (9)

Note that for 8-bit depth images, d(P (p), p) ∈ [0, 255] and d(p, q) ∈ [0, 255]

(when P (q) = p) and thus exp(−d(P (p),p)
σ ) and exp(−d(p,q)σ ) can be extracted

from a single lookup table and
(

1− exp(− 2∗d(p,P (p))
σ )

)
can be extracted from

another. Let T1 and T2 denote the two lookup tables, Eq. (8) and (9) can be
written as

Bt,↓p = T1[d(P (p), p)] · Bt,↓P (p) + T2[d(p, P (p))] · Bt,↑p , (10)

Bt,↑p = Btp +
∑

P (q)=p

T1[d(p, q)] · Bt,↑q . (11)

The computational complexity is now straightforward. Only a total of two ad-
dition operations and three multiplication operations are required at each pixel
location; and thus is extremely efficient.
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2.3 Temporally-consistent Background Modeling Based on Optical
Flow

This section extends the spatially-weighted M -smoother proposed in Sec. 2.2 to
the temporal domain as follows:

bt,temporalp = arg min
i

t∑
j=1

∑
qj∈Ij

W (p, qj)|i− bjqj |, (12)

where the similarity measurement

W (p, qj) =

{
1 if qj is the correct correspondence of p in frame j,
0 else.

(13)

W (p, qj) is obtained directly from optical flow estimation with the assumption
that the background estimate for the same object appearing in difference video
frames should be identical. Theoretically, the most robust optical flow should
be employed to obtain the best performance. However, most of the optical flow
algorithms are slow. According to Middlebury benchmark statistics, an optical
flow algorithm takes around 1 minute to process a VGA resolution video frame.
As a result, to ensure practicality, EPPM [2] which is currently fastest optical
flow algorithm is used in this paper. Although it is not the top performer on
standard benchmarks, EPPM significantly improves the accuracy of the proposed
background subtraction algorithm as discussed in Section 3.

Let ∆t,j
p denote the motion vector between pixel p in frame t and its the

correspondence pixel pj = p+∆t,j
p in frame j and

vtp =

t∑
j=1

|bj
p+∆t,j

p
|, (14)

Eq. (12) can be simplified as follows:

bt,temporalp = arg min
i

t∑
j=1

|i− bj
p+∆t,j

p
|, (15)

=

{
1 if vtp >

t
2 ,

0 else.
(16)

The direct implementation of Eq. (15) is extremely slow as optical flow estima-
tion will be required between any two video frames, that is optical flow estimation

are required for a total of t(t−1)
2 image pairs to obtain the motion vectors ∆t,j

p

for j ∈ [1, t− 1]. In practice, a recursive implementation is used to approximate
vtp in Eq. (14) so that optical flow estimation is required only between every two
successive frames:

vtp = vt−1
p+∆t,t−1

p
+ |btp|. (17)
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Spatiotemporal Background Modeling A spatiotemporal background mod-
eling solution can be directly obtained from Eq. (15) by replacing btp with the

spatially-consistent background estimates bt,spatialp (from Section 2.2) in Eq. (17):

vtp = vt−1
p+∆t,t−1

p
+ |bt,spatialp |. (18)

3 Experimental Results

In this section, the effectiveness of the proposed background subtraction method
is experimentally verified for a variety of scenes using two standard benchmarks
that use both artificial pixel-level evaluation data set [5] and real-world region-
level data set obtained by human experts [11]. Visual or quantitative comparisons
with the traditional model and recent methods are presented.

3.1 Evaluation Data Sets

Two public benchmarks containing both artificial and real-world scenes with
different types of challenges were used for performance evaluation.

The first benchmark is SABS (Stuttgart Artificial Background Subtraction)
[5], which is used for pixel-level evaluation of background models. Six artificial
data sets used this benchmark cover a wide range of detection challenges. The
Dynamic Background data set contains periodic or irregular movement in back-
ground such as waving trees or traffic lights; the Bootstrapping data set has no
initialization data, thus subtraction starts after the first frame; the gradual scene
change by varying the illumination constantly requires the segmentation when
the contrast between background and foreground decreases in the Darkening
data set; suddenly change are simulated in the Light Switch data set; the Noisy
Night data set is severely affected by sensor noise which need to be coped with.
Each data set contains 600 frames with the exception of Darkening and Boot-
strapping both having 1400 frames. The sequences have a resolution of 800×600
pixels and are captured from a fixed viewpoint.

The second benchmark is ChangeDetection [11], which provide a realistic,
camera-captured (no CGI), diverse set of videos. The real data sets used in this
benchmark are representative of typical indoor and outdoor visual data cap-
tured today in surveillance, smart environment, and video database scenarios.
A total of 31 video sequences with human labeled ground truth are used for
testing. Similar to SABS benchmark, the video sequences are separated into six
categories based on different types of challenges. The Baseline category repre-
sents a mixture of mild challenges typical of the other categories; The Dynamic
Background category depicts outdoor scenes with strong (parasitic) background
motion; The Camera Jitter category contains videos captured by unstable (e.g.,
vibrating) cameras; The Shadows category contains videos exhibiting strong as
well as faint shadows; The Intermittent Object Motion category contains videos
with scenarios known for causing “ghosting” artifacts in the detected motion,
i.e., objects move, then stop for a short while, after which they start moving
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again; The Thermal category contains videos captured by far-infrared cameras
that result in typical thermal artifacts.

3.2 Evaluation Metric

The performance of an algorithm is evaluated on pixel-level, and the segmenta-
tion result of each pixel is a binary classification. The evaluation metric considers
TP , FP and FN factors, where TP and FP denotes correctly and incorrectly
classified foreground pixels respectively, FN denotes foreground pixels in GT are
incorrectly classified background pixels. It also uses the F1-measure, a balance
measure between precision and recall rate:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (19)

F1 = 2
Recall · Precision
Recall + Precision

. (20)

The F1-Measures (averaged over sequence) and Precision-recall charts of the
performance of the approach with varying threshold will be computed and com-
pared with respect to different data sets.

3.3 Evaluation on SABS Benchmark

This section reports performance evaluation of proposed background subtraction
algorithm on SABS benchmark [5]. The maximal F-measure of the proposed
spatially-consistent background model and the extended spatiotemporal back-
ground model are presented and compared with nine other background models
reported to the benchmark in Table 3.3.

The proposed models clearly outperform all the other models on this bench-
mark. The proposed spatially-consistent background model outperforms the lat-
est bidirectional Case-based background model [26] in almost every data set as
can be seen in table 3.3. Additionally, the extended spatiotemporal background
model outperforms all the other models under all types of challenges.

The corresponding recall precision curves with respect to different challenges
are presented in Fig. 2. As can be seen, the proposed spatiotemporal consistent
background model obtains the highest recall ratio under the same precision level.
The proposed spatiotemporal background model clearly outperforms the others
under three challenges: dynamic background (Dynamic Background data set),
sudden illumination changes (Light Switch data set) and sensor noise (Noisy
Night data set). Note that region-based background models are fragile to the
first challenge while pixel-level background models are not robust to last two; the
proposed models synergistically combine the two to cope with all the challenges.
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Table 1. F-measures for the SABS benchmark [5]. The best and the 2th best perform-
ers are shown in red color and blue color, respectively. The last column presents the
average F-measures. Note that the proposed spatially-consistent background subtrac-
tion algorithm outperforms the others on average, and the extended spatiotemporal
algorithm outperforms all the other on all the six data sets with different types of
challenges.

Approach Basic
Dynamic

Background
BootstrapDarkening

Light
Switch

Noisy
Night

Average

McFarlane[20] 0.614 0.482 0.541 0.496 0.211 0.203 0.425
Stauffer[27] 0.800 0.704 0.642 0.404 0.217 0.194 0.494
Oliver[22] 0.635 0.552 - 0.300 0.198 0.213 0.380
McKenna[21] 0.522 0.415 0.301 0.484 0.306 0.098 0.354
Li[18] 0.766 0.641 0.678 0.704 0.316 0.047 0.525
Kim[17] 0.582 0.341 0.318 0.342 - - 0.396
Zivkovic[33] 0.768 0.704 0.632 0.620 0.300 0.321 0.558
Maddalena[19] 0.766 0.715 0.495 0.663 0.213 0.263 0.519
Barnich[4] 0.761 0.711 0.685 0.678 0.268 0.271 0.562
AtsushiShimada[26] 0.723 0.623 0.708 0.577 0.335 0.475 0.574

Proposed (spatial) 0.764 0.747 0.669 0.672 0.364 0.519 0.623

Proposed
(spatiotemporal)

0.813 0.788 0.736 0.753 0.5150.680 0.714

3.4 Evaluation on ChangeDetection Benchmark

This section evaluates the proposed method using a real-world region-level bench-
mark - ChangeDetection with data sets obtained by human experts. Due to the
lack of pixel-level accuracy in the ground-truth labels, a post-processing step like
median filter is normally required for all background subtraction algorithms. As
a result, the MST-based M -smoother proposed in Sec. 2.2 were applied to our
background subtraction results as a post-processing step.

Table 3.4 presents the detailed evaluation results of the proposed background
subtraction models on different types of challenges in terms of F-measure. Note
that the proposed methods outperform the state of the art on this benchmark,
especially when the Shadow category is excluded. The performance of the pro-
posed models is good for most of the categories, especially on Baseline, Camera
Jitter, Intermittent Object Motion and Thermal categories. Both of the pro-
posed models are the either the best or second best performer on these four
categories. Some of the extracted foreground mask are presented in Fig. 3 for
visual evaluation.

The performance of the proposed method is surprisingly low on the Shadow
category as visible in Table 3.4 and Fig. 4. This is because as we believe that
shadow deserves to be processed separately and thus is not considered in the pro-
posed background models. The performance on Shadow category can be greatly
improved with the use of an existing shadow detection algorithm like [25].
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(a)Basic (b)Dynamic Background

(c)Bootstrapping (d)Darkening

(e)Light Switch (f)Noisy Night

Fig. 2. Precision-recall charts for SABS benchmark [5] with different challenges. The
dark solid curve presents the performance of the proposed spatiotemporal background
subtraction algorithm. Note that it outperforms all the others overall.

3.5 Computational Cost

This section reports the computational cost of the proposed background model-
ing and subtraction algorithms in Table 3.5. The proposed approach are tested
on a laptop computer with a 2.3 GHz Intel Core i7 CPU and 4 GB memory.
Similar to [26], the runtime of the proposed algorithms were evaluated with
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Table 2. F-measures for ChangeDetection benchmark. The best and the 2th best per-
formers are shown in red color and blue color, respectively. The last two columns present
the average F-measures including and excluding the Shadow category. Note that the
proposed spatially-consistent background subtraction algorithm is comparable to the
state-of-the-art algorithms, and the extended spatiotemporal algorithm outperforms
all the others on average when shadows detection is required. However, the improve-
ment is not significant. This is mainly because shadow modeling is not included in the
proposed algorithms as we believe that shadow detection deserves to be considered
separately. The improvement over the current state of the art is more significant when
the Shadow category is excluded as shown in the last column.

Approach Baseline Dynamic Camera Intermittent ShadowThermal Average
Background Jitter Object Motion (Shadow) (no Shadow)

PBAS-PID 0.9248 0.7357 0.7206 0.6267 0.8617 0.7622 0.7720 0.7540
DPGMM 0.9286 0.8137 0.7477 0.5418 0.8127 0.8134 0.7763 0.7690
Spectral-360 0.9330 0.7872 0.7156 0.5656 0.8843 0.7764 0.7770 0.7556
CwisarD 0.9075 0.8086 0.7814 0.5674 0.8412 0.7619 0.7780 0.7654
GPRMF 0.9280 0.7726 0.8596 0.4870 0.8889 0.8305 0.7944 0.7755

Proposed
(spatial)

0.9250 0.7882 0.7413 0.6755 0.7606 0.8423 0.7888 0.7945

Proposed
(spatiotemporal)

0.9345 0.8193 0.7522 0.6780 0.7764 0.8571 0.8029 0.8082

respect to GMM [27]. Comparing to the bidirectional GMM [26], the main ad-
ditional cost of the proposed spatially-consistent background model is the use
of the proposed MST-based M -smoother. Luckily, the computational complex-
ity of this M -smoother is extremely low as has been analysis in Sec. 2.2. The
total computational cost is higher than [26] but has a higher performance. The
computational cost of proposed spatiotemporally-consistent background model
is much higher due to the use of optical flow which is known to be slow. Never-
theless, near real-time performance (over 12 frames per second) can be obtained
for QVGA-resolution videos when a state-of-the-art GPU is available.

Table 3. Computational cost of the proposed background modeling algorithms for
QVGA-resolution videos (milliseconds/frame).

GMMBidirectional GMM Proposed
Method [27] [26] (spatial)(spatiotemporal)

CPU CPU GPU

Time 12 5 15 982 83

4 Conclusions

In this paper, a background modeling and subtraction algorithm based on MST
and optical flow estimation was proposed. The MST is used to form an efficient
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(a)Input frame (b)GMM[26] (c)Proposed (d)Proposed (e)Ground truth
(spatial) (spatiotemporal)

Fig. 3. Visual comparison using foreground mask. From top to bottom: video frames
extracted Baseline, Dynamic Background, Camera Jitter, Intermittent Object Motion
and Thermal categories. (a) are the video frames extracted from different categories,
(b) to (d) are the corresponding foreground masks obtained from GMM, proposed
spatially-consistent and spatiotemporally-consistent background models, respectively
and (e) are the ground-truth masks. As can be seen, the proposed extensions obviously
outperforms the original GMM algorithm.

(a)Input frame (b)GMM [26] (c)Proposed (d)Proposed (e)Ground truth
(spatial) (spatiotemporal)

Fig. 4. Visual comparison on Shadow category using foreground mask. GMM and the
proposed background models do not detect shadows and thus cannot separate shadow
from foreground.

weighted M -smoother to enhance the spatial consistency while optical flow esti-
mation is used to track the motion of image pixels to extend the proposed MST
based M -smoother to the temporal domain.
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Our algorithm is outperforming all other algorithms on both SABS and
ChangeDetection benchmarks, but there is space left for improvement. For in-
stance, our algorithm simply adopts the currently fastest optical flow algorithm
[2] to ensure that the proposed algorithm is practical. However, other optical
flow algorithms that are relatively slow but more accurate have not yet tested.
They can potentially increase the performance of the proposed spatiotemporal
background subtraction algorithm. Another question that was left for further
study is how to adjust the algorithm for a moving camera.
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