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Abstract. Filtering based algorithms have become popular in tracking
human body pose. Such algorithms can suffer the curse of dimensionality
due to the high dimensionality of the pose state space; therefore, efforts
have been dedicated to either smart sampling or reducing the dimension-
ality of the original pose state space. In this paper, a novel formulation
that employs a dimensionality reduced state space for multi-hypothesis
tracking is proposed. During off-line training, a mixture of factor an-
alyzers is learned. Each factor analyzer can be thought of as a “local
dimensionality reducer” that locally approximates the pose manifold.
Global coordination between local factor analyzers is achieved by learn-
ing a set of linear mixture functions that enforces agreement between lo-
cal factor analyzers. The formulation allows easy bidirectional mapping
between the original body pose space and the low-dimensional space.
During online tracking, the clusters of factor analyzers are utilized in a
multiple hypothesis tracking algorithm. Experiments demonstrate that
the proposed algorithm tracks 3D body pose efficiently and accurately ,
even when self-occlusion, motion blur and large limb movements occur.
Quantitative comparisons show that the formulation produces more ac-
curate 3D pose estimates over time than those that can be obtained via
a number of previously-proposed particle filtering based tracking algo-
rithms.

1 Introduction

Tracking articulated human motion is of interest in numerous applications: video
surveillance, gesture analysis, human computer interfaces, computer animation,
etc. Various tracking algorithms have been proposed that require neither special
clothing nor markers on the human body. A number of algorithms track body
motion in the image plane (2D), thereby avoiding the need for complex 3D mod-
els or camera calibration information. While these methods are usually efficient,
only 2D joint locations and angles can be inferred. As a result, the 2D methods
have difficulty in handling occlusions and they are inutile for applications where
accurate 3D information is required. To better understand human motion, 3D
tracking algorithms resort to detailed 3D articulated models which require sig-
nificantly more degrees of freedom. Consequently, algorithms that are able to
handle high-dimensional, non-linear data efficiently and effectively are essential
to the success of 3D human tracking algorithms.



In this paper, we propose an efficient and accurate algorithm for tracking
3D articulated human motion given monocular video sequences. We exploit
the physical constraints of human motion by learning a low-dimensional latent
model from high-dimensional motion capture data. A probabilistic algorithm
is employed to perform non-linear dimensionality reduction and clustering con-
currently within a global coordinate system. The projected data forms clusters
within the globally coordinated low-dimensional space; this makes it possible
to derive an efficient multiple hypothesis tracking algorithm based on the dis-
tribution modes. By tracking in low-dimensional space, we avoid the sample
impoverishment problem [1] and retain the simplicity of the multiple hypothesis
tracking algorithm at the same time. Given clusters formed in the latent space,
temporal smoothness is only enforced within each cluster. In experiments with
real video, the system reliably tracks body motion during self-occlusions and in
the presence of motion blur. The system can accurately track large movements
of the human limbs in adjacent time steps by propagating each cluster’s infor-
mation over time in the multiple hypothesis tracking algorithm. A quantitative
comparison shows that the formulation produces more accurate 3D pose esti-
mates than those obtained via a number of previously-proposed particle filtering
based tracking algorithms.

2 Related Work

In this section, we first outline recent progress in particle filtering based tracking
algorithms. We then give a quick review of dimensionality reduction algorithms,
followed by a discussion of algorithms that solve the tracking problem in the
dimensionality reduced space.

2.1 Particle Filtering

Particle filtering methods have been applied widely in tracking applications. Un-
fortunately, the number of particles needed to sufficiently approximate the state
posterior distribution can explode when the state vector is high dimensional.
Various approaches have been proposed to alleviate this problem. One common
approach is to reposition the particles according to some importance function [2]
to ensure a high survival rate [3]. For example, particles can be resampled using
weighted resampling [3] or repositioned using deterministic search [4, 5] to local-
ize the set of particles around significant maxima of the importance function.
Other methods employ a coarse to fine search on the weighting function, e.g.,
the annealed particle filter [6] or layered sampling [7]. If the particle dynamics
can be factored into independent components, then partitioned sampling [3] can
be used to improve the performance of the particle filter.

2.2 Non-Linear Dimensionality Reduction Algorithms
Dimensionality reduction algorithms are popular techniques to discover compact
representations of high-dimensional data. As a classic dimensionality reduction
algorithm, Principal Component Analysis (PCA) is inadequate to handle the
non-linear behavior inherent to our problem domain. Locally Linear Embedding
(LLE) [8], Isomap [9] and Laplacian Eigenmaps [10] are some representative non-



linear dimensionality reduction algorithms – but unfortunately, these techniques
are typically not invertible. Inverse mapping of particles (proposals) back to the
original human pose space is needed in order to reweight the particles given the
image measurements. A number of existing dimensionality reduction methods
provide inverse mappings, such as Charting [11], Locally Linear Coordination
(LLC) [12] and the Gaussian Process Latent Variable Model (GPLVM) [13].
In principle, any dimensionality reduction technique that provides an inverse
mapping will be applicable. LLC is chosen in our algorithm because it is a
probabilistic algorithm that performs non-linear dimensionality reduction and
clustering concurrently within a global coordinate system. The projected data
forms clusters within the globally coordinated low-dimensional space; this makes
it possible to derive an efficient multiple hypothesis tracking algorithm based on
distribution modes.

2.3 Human Motion Tracking

There is a broad range of work related to human motion tracking. See [14] for a
recent survey as our focus is on the subclass of stochastic tracking algorithms.

Following the seminal work of [15], the CONDENSATION algorithm has been
adapted for human motion tracking [4, 6]. Multiple Hypothesis Tracking [16]
tracks modes in a simpler piece-wise Gaussian distribution. In [17], exemplars
are incorporated into the CONDENSATION algorithm. A more specific motion
model and accurate background modelling using learning are used in [18, 19].

Recently, researchers have proposed the use of dimensionality reduction tech-
niques on the state space to reduce the size of the body pose state vector. This
is justified by the insight that the space of possible human motions is intrin-
sically low-dimensional [20–22]. Particle filtering with the reduced state space
will be faster because significantly fewer particles are required to adequetely ap-
proximate the state space posterior distribution. Recent works [23–25] are most
closely related to our proposed algorithm for tracking human in a dimensionality-
reduced space. In [23], two different regression algorithms are used for the for-
ward mapping (dimensionality reduction) and inverse mapping. The represen-
tatives used in the regression are chosen in an heuristic manner [23]. In [25],
GPLVM and a second order Markov model are used for tracking applications.
The learned GPLVM model is used to provide model prior. Tracking is then done
by minimizing a cost of 2D image matching, with the negative log-likelihood of
the model prior as the regularization term. Both [23] and [25] advocate the use
of gradient descent optimization techniques; hence, the low-dimensional space
learned has to be smooth. An alternative approach [24] employs the GPLVM in
a modified particle filtering algorithm where samples are drawn from the low-
dimensional latent space. The GPLVM model in this case is used as a good
non-linear dimensionality reduction algorithm. The smoothness enforced in the
low-dimensional space by the learning algorithms in these three papers works
well for tracking small limb movements, but may fail when large limb movements
occur over time. In the case of using gradient descent optimization techniques,
good initialization is required for the success of such techniques.
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Fig. 1: Overview of our algorithm.

As will be shown in the rest of this paper, Locally Linear Coordination
(LLC) leads to a principled way of solving the embedding and inverse map-
ping problems. Instead of enforcing smoothness everywhere in the latent space,
this algorithm preserves the clustering behavior of similar high-dimensional data
points and separates different clusters in the global coordinate system. The model
learned from the LLC is then used in the algorithm for multiple hypothesis track-
ing of 3D human body motion.

3 Formulation

There are two main components in the proposed tracking algorithm as shown
in Fig. 1. The first component is an off-line algorithm that learns a bidirec-
tional mapping function between the low-dimensional space and the original
pose space. The second component is an on-line algorithm for articulated hu-
man pose tracking that makes use of a modified multiple hypothesis tracking
algorithm; the modes of this multiple hypothesis tracker are propagated over
time in the embedded space.

3.1 Learning the Global Coordination Model

Roweis et. al. [26] proposed a model which performs a global coordination of local
coordinate systems in a mixture of factor analyzers (MFA). Each factor analyzer
(FA) can also be regarded as a local dimensionality reducer. The assumption is
that both the high-dimensional data y and its global coordinate g are generated
from the same set of latent variables s and zs, where each discrete hidden variable
s refers to the s-th FA and each continuous hidden variable zs represents the
low-dimensional local coordinates in the s-th FA.

In the MFA model, data generated from s-th FA with prior probability P (s),
and the distribution of zs are Gaussian: zs|s ∼ N (0, I), where I is the identity
matrix. Given s and zs, y and the global coordinate g are generated by the
following linear equations:

y = TLs
zs + µs + us,

g = TGs
zs + κs + vs, (1)

where TLs
and TGs

are the transformation matrices, µs and κs are uniform
translations between the coordinate systems, us ∼ N (0, Λus

) and vs ∼ N (0, Λvs
)

are independent zero mean Gaussian noise terms. The following probability dis-



tributions can be derived from Eq. 1, 1:

y|s, zs ∼ N (TLs
zs + µs, Λus

)
g|s, zs ∼ N (TGs

zs + κs, Λvs
). (2)

With zs being integrated out, we have

y|s ∼ N (µs, Λus + TLsT
T
Ls

)

g|s ∼ N (κs, Λvs
+ TGs

TT
Gs

). (3)

The inference of global coordinate g conditioned on a data point yn can be
rewritten as

p(g|yn) =
∑

s

p(g|yn, s)p(s|yn), (4)

where
p(g|yn, s) =

∫
p(g|s, zs)p(zs|s,yn)dzs. (5)

Given Eq. 1, both p(g|s, zs) and p(zs|s,yn) are Gaussian distributions, p(g|yn, s)
also follows a Gaussian distribution. Since p(s|yn) ∝ p(yn|s)p(s) can be com-
puted and viewed as a weight, p(g|yn) is essentially a mixture of Gaussians.
Though the mappings from {s, zs} to y and g are linear, the mappings between
them are not. An EM algorithm is proposed in [26] to learn this global coordi-
nation by maximizing the likelihood of the data, with an additional variational
penalty term to encourage consistency of internal coordinates of each factor ana-
lyzer. This algorithm requires a user given trade-off parameter between modeling
data and having consistent local coordinate systems. This algorithm suffers from
the same problems of standard EM approaches, i.e., inefficiency and local min-
ima.

Teh and Roweis came up with an efficient two stage model learning algorithm
in [12]. By leveraging on the mixture of local models to collapse large groups
of points together, their proposed algorithm works only with the groups rather
than individual data points in the global coordination. In the two-stage model
learning process, first the MFA between y and (s, zs) is learned as proposed in
[27]. Given the learned MFA model with S factor analyzers, zns is the expected
local coordinate in the s-th FA for each data point yn. Let rns denote the
likelihood, p(yn|s). From Eqs. 1 and 2, gn, the expected global coordinate of yn

is defined as:
gn =

∑
s

rns(TGszns + κs) = Lun, (6)

where
L = [TG1 , κ1,TG2 , κ2 . . . ,TGS

, κS ]

and
uT

n = [rn1z
T
n1

, rn1 , rn2z
T
n2

, rn2 , . . . , rnS
zT

nS
, rnS

].

Let G = [g1,g2, . . . ,gN ]T be the global coordinates of the whole data set (the
rows of G corresponding to the coordinated data points) and U = [u1,u2, . . . ,uN ]T ,
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Fig. 2: The two stage learning process of [12].

we then have a compact representation G = UL. We want to estimate L. To
determine L, we need to minimize a cost function that incorporates the topolog-
ical constraints that govern gn. The cost function used here is based on LLE [8].
For each data point yn, we denote its nearest neighbors as ym (m ∈ Nn) and
minimize the following:

ξ(Y,W) =
∑

n

‖yn −
∑

m∈Nn

wnmym‖2

= Tr(YT (I−WT )(I−W)Y), (7)

with respect to W and subject to the constraint
∑

m∈Nn
wnm = 1. Here the set

of training data points is Y = [y1,y2, . . . ,yN ]T where each row of Y corresponds
to a training data point. The weights wnm are unique and can be obtained via
constrained least squares. These weights represent the locally linear relationships
between yn and its neighbors. In a similar fashion, we can define the following
cost function:

ξ(G,W) =
∑

n

‖gn −
∑

m∈Nn

gm‖2

= Tr(GT (I−WT )(I−W)G)
= Tr(LT AL), (8)

where A = U(I − WT )(I − W)UT . To ensure G is invariant to translations,
rotations and scaling, the following constraints are defined,

1
N

∑
n

gn = 0 (9)



and
1
N

∑
n

gngT
n =

1
N

GT G = LT BL = I, (10)

where I is the identity matrix and B = 1
N UT U. Both the cost function Eq. 8

and the constraints Eq. 10 are quadratic and the optimal L is determined by
solving a generalized eigenvalue problem [12]. Let d � D be the dimensionality
of the underlying manifold that y is generated from. The 2nd to (d+1)th smallest
generalized vectors solved from Av = λBv form the columns of L. The whole
process is summarized in Fig. 2.

3.2 Learning the Joint Angle Configurations

In our application for using LLC to learn the dimensionality reduced space, each
training data y is a column vector that consists of joint angles computed from
motion capture data. We adopt the same 3D cylindrical model used in [18]; we
ignore the global translation. The dimension of y is 28 and 1900 frames from a
motion capture sequence with a person walking are used for training. Y is used
to represent the collection of training data yn, n = 1, . . . N and N = 1900.
In the LLC learning, the dimension for variables z in each MFA is 3 and the
number of mixtures S = 10. In the global coordination stage, the dimension of
the latent space variable g is 3 (these parameters were determined empirically).
The learning algorithm is summarized in Algorithm 1. Clusters are obtained
through the two stage learning process described above. Each cluster is modeled
as a Gaussian distribution in the latent space with its own mean vector and
covariance matrix as shown in Fig. 3. This cluster-based representation leads
to a straightforward algorithm for multiple hypothesis tracking, as described in
Section 3.3.

3.3 3D Articulated Human Tracking

In the application to 3D articulated human tracking, at each time instance, the
tracker state vector is represented by Xt = (Pt,gt). Pt is the 3D location of
the pelvis (which is the root of the kinematic chain of the 3D human model)
and gt is the point in latent space. Once tracker state has been initialized, the
basic idea of a filtering based tracking algorithm is to maintain a time-evolving
probability distribution over the tracker state. Let Zt denote the aggregation of

Algorithm 1 Learning the globally coordinated space of human motion
Compute local linear reconstruction weights wnm based on Eq. 7 using Y
Train a mixture of local dimensionality reducers.

Apply this mixture to training human motion poses Y.
Obtain a local representation zns and responsibility rns for each submodel s and
each data point yn.

Form the matrix U and compute A and B from Eq. 8, Eq. 9 and Eq. 10.
Solve the generalized eigenvalue problem Av = λBv and form L as described in
Section 3.1.
Return G = UL and L.
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Fig. 3: The learned globally coordinated latent space. Each ellipsoid represents
a cluster in the latent space, where mean is the centroid and covariances are the
axes of the ellipsoids.

past image observations (i.e. Zt = {z1, z2, . . . , zt}). Assuming zt is independent
of Zt−1 given Xt, we have the following standard equation:

p(Xt|Zt) ∝ p(zt|Xt)p(Xt|Zt−1) (11)

Here we use a multiple hypothesis tracker (MHT) together with the learned
LLC model for the tracking task. As LLC provides clusters in the latent space
as a step in the global coordination, it is natural to make use the centers of the
clusters as the initial modes in the MHT (p(g|zs, s) follows a Gaussian distrib-
ution). Given that in each cluster, the points in the latent space represent the
poses that are similar to each other in the original space, we can apply a much
simpler dynamical model in the prediction step of the filtering algorithm. The
modified MHT is summarized in Algorithm 2. To compute the likelihood for the

Algorithm 2 A Modified Multiple Hypothesis Tracker
for each time instance t do

Prediction:
generate the prior density p(Xt|Zt−1) by passing through the modes of p(Xt|Zt−1

through a simple constant velocity predictor.

Likelihood computation:

1. Create the initial hypothesis seeds by sampling the distribution of p(Xt|Zt−1).
Note the samples of g are drawn around the modes of G in the latent space
based on the covariance matrix of each cluster in the latent space.

2. Obtain the modes (local maxima) of the likelihood function p(zt|Xt) by com-
puting the matching cost of the samples.

3. Measure the local statistics associated with each likelihood mode.

Posterior density computation:
The posterior density p(Xt|Zt) is updated through Eq. 11.

end for



current prediction and the input video frame, first the silhouette of the current
video frame is extracted through background subtraction. The predicted model
is then projected onto the image and the chamfer matching cost between the
projected model and the image silhouettes is considered to be proportional to
the negative log-likelihood. We use the same model proposed by [28], which con-
sists of a group of cylinders. The MHT algorithm proposed here differs from the
algorithm proposed in [16] in the use of the latent space to generate proposals
in a principled way. This is in contrast with [16], where the modes were se-
lected empirically and the distributions were assumed to be piecewise Gaussian.
While in the proposed algorithm, the output from the off-line learning algorithm
(LLC) forms clusters (each cluster is described by a Gaussian distribution in la-
tent space), the samples generated from the latent space are indeed drawn from
a piecewise Gaussian distribution. The choice of modes to propagate over time
becomes straightforward given the statistics of the clusters in the latent space.

4 Experiments

The proposed algorithm has been tested in tracking walking humans. The data
set and calibration information were obtained from [28]. The video data set shows
a person walking, as captured simultaneously from four different viewpoints.
Sigal et. al. have used the multiple view information for 3D tracking [28]. We
only need monocular sequences, and so we use each of the four videos as an
individual test sequence for our algorithm. Our proposed tracker is able to track
reliably over 400 frames for all four test sequences (there are 596 frames in each
sequence).

We conducted a quantitative comparison of our method (where 10 modes
are used) against (1) simple particle filtering, (2) annealed particle filtering [6],
and (3) the tracking algorithm proposed by [24] where the GPLVM was used
for non-linear dimensionality reduction. We used 2000 particles for the simple
particle filtering algorithm and 200 particles for our implementation of [24]. Ten
layers and 100 particles for each layer are used in the annealed particle filter-
ing algorithm, following the setup of [6]. The frame rate for both our proposed
method and the method of [24] on a 1.6GHz machine with 512MB RAM was
approximately one minute per frame, while the annealed particle filtering algo-
rithm took two minutes per frame. The frame rate of the simple particle filtering
was about four minutes per frame due to the large number of particles. In both
our proposed algorithm and [24], the global translation was modeled separately
by simple linear dynamics learned from motion capture data.

Fig. 4 shows the accuracy of the four different tracking algorithms. As pro-
posed in [28], the error is measured as the absolute distance in millimeters be-
tween the true and estimated marker positions on the body limbs. 15 markers are
chosen which correspond roughly to the locations of the joints and “ends” of the
limbs. As can be seen in the graph of Fig. 4, our proposed method is consistently
more accurate and the simple particle filtering algorithm does much worse than
all other methods. Smart sampling, or a dimensionality reduction method can
greatly improve the performance of particle filtering based tracking. Based on
the performance reported in [28] (up to 50 frames), our proposed algorithm is
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able to track reliably over a longer time on monocular video sequences (all 400
frames, for all four sequences).

Figs. 5 and 6 show example tracking results and the corresponding 3D poses.
The results of particle filtering are not shown here due to the large error. With
a learned prior model, both the proposed algorithm and particle filtering with
GPLVM are able to track reliably when self-occlusion or motion blur occurred.
In contrast, annealed particle filtering usually loses track of some body limbs. At
frame 183 in Fig. 5, particle filtering with GPLVM loses track of the subject’s
left arm. The strength of the GPLVM (global smoothness) in this case may be
its weakness. As GPLVM ensures temporal smoothness, it may learn a over-
smoothed density function and consequently fail to capture large pose change
over time. This over-smoothing effect is also demonstrated in the tracking result
of frame 70 in Fig. 6, where the left leg movement was underestimated. In con-
trast, our method propagates modes over time. At each time step, the samples
are generated from each mode separately and temporal smoothness is only en-
forced on samples drawn from the same cluster; hence, our proposed algorithm
is able to capture large movements accurately.

5 Conclusions and Future Work

We have proposed a algorithm for tracking 3D body poses. The proposed algo-
rithm is able to track long sequences of video robustly. The experiments demon-
strate that our tracker performs much better than the recent tracking algorithms
proposed by [6] and [24]. It is also shown that our tracker is capable of handling
self-occlusions, motion blur and large movement over time. The tracking al-
gorithm is tested on sequences that contain similar motion with respect to the
training data set. Currently we only learned the model of human walking. Essen-
tially, with the proposed learning algorithm, multiple motions can be clustered



Fig. 5: Selected frames of the tracking results from one of the four se-
quences and the corresponding 3D poses. The proposed algorithm was able
to track the pose reliably while the other two failed to track the movement
of the limbs, e.g., forearm (frame 38 and 299) and legs (frame 183). See
http://cs-people.bu.edu/lir/tracking for videos.



Fig. 6: Selected frames of the tracking results from another sequence and the cor-
responding 3D poses. The proposed algorithm was able to track the pose reliably
while the other two failed to track the movement of the certain limbs, this is similar
to what has been observed in Fig.5. See http://cs-people.bu.edu/lir/tracking
for videos.



in the globally coordinated system; hence, more complicated tracking tasks can
be accomplished using the same tracking algorithm when more data becomes
available. Another promising direction is to recognize activities during tracking
by analyzing the mode jumping in the latent space. It is likely that motions from
the same category will form clusters together in the latent space, so whenever a
mode jumping occurs, there is likely a change of activity.
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